/* -----------------------------------------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
of the MPEG specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
individually for the purpose of encoding or decoding bit streams in products that are compliant with
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
software may already be covered under those patent licenses when it is used for those licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
applications information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification, are permitted without
payment of copyright license fees provided that you satisfy the following conditions:
You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation and/or other materials
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived from this library without
prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
and the date of any change. For modified versions of the FDK AAC Codec, the term
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
respect to this software.
You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
or business interruption, however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of this software, even if
advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------------------------------------- */
/***************************** MPEG-4 AAC Decoder ***************************
Author(s): Robert Weidner (DSP Solutions)
Description: HCR Decoder: Prepare decoding of non-PCWs, segmentation- and
bitfield-handling, HCR-Statemachine
*******************************************************************************/
#include "aacdec_hcrs.h"
#include "aacdec_hcr.h"
#include "aacdec_hcr_bit.h"
#include "aac_rom.h"
#include "aac_ram.h"
static UINT InitSegmentBitfield(UINT *pNumSegment,
SCHAR *pRemainingBitsInSegment,
UINT *pSegmentBitfield,
UCHAR *pNumWordForBitfield,
USHORT *pNumBitValidInLastWord);
static void InitNonPCWSideInformationForCurrentSet(H_HCR_INFO pHcr);
static INT ModuloValue(INT input, INT bufferlength);
static void ClearBitFromBitfield(STATEFUNC *ptrState,
UINT offset,
UINT *pBitfield);
/*---------------------------------------------------------------------------------------------
description: This function decodes all non-priority codewords (non-PCWs) by using a
state-machine.
-------------------------------------------------------------------------------------------- */
void DecodeNonPCWs(HANDLE_FDK_BITSTREAM bs, H_HCR_INFO pHcr)
{
UINT numValidSegment;
INT segmentOffset;
INT codewordOffsetBase;
INT codewordOffset;
UINT trial;
UINT *pNumSegment;
SCHAR *pRemainingBitsInSegment;
UINT *pSegmentBitfield;
UCHAR *pNumWordForBitfield;
USHORT *pNumBitValidInLastWord;
UINT *pCodewordBitfield;
INT bitfieldWord;
INT bitInWord;
UINT tempWord;
UINT interMediateWord;
INT tempBit;
INT carry;
UINT numCodeword;
UCHAR numSet;
UCHAR currentSet;
UINT codewordInSet;
UINT remainingCodewordsInSet;
SCHAR *pSta;
UINT ret;
pNumSegment = &(pHcr->segmentInfo.numSegment);
pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
pNumWordForBitfield = &(pHcr->segmentInfo.numWordForBitfield);
pNumBitValidInLastWord = &(pHcr->segmentInfo.pNumBitValidInLastWord);
pSta = pHcr->nonPcwSideinfo.pSta;
numValidSegment = InitSegmentBitfield(pNumSegment,
pRemainingBitsInSegment,
pSegmentBitfield,
pNumWordForBitfield,
pNumBitValidInLastWord);
if ( numValidSegment != 0 ) {
numCodeword = pHcr->sectionInfo.numCodeword;
numSet = ((numCodeword - 1) / *pNumSegment) + 1;
pHcr->segmentInfo.readDirection = FROM_RIGHT_TO_LEFT;
/* Process sets subsequently */
for ( currentSet = 1; currentSet < numSet ; currentSet++ ) {
/* step 1 */
numCodeword -= *pNumSegment; /* number of remaining non PCWs [for all sets] */
if ( numCodeword < *pNumSegment ) {
codewordInSet = numCodeword; /* for last set */
}
else {
codewordInSet = *pNumSegment; /* for all sets except last set */
}
/* step 2 */
/* prepare array 'CodewordBitfield'; as much ones are written from left in all words, as much decodedCodewordInSetCounter nonPCWs exist in this set */
tempWord = 0xFFFFFFFF;
pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
for ( bitfieldWord = *pNumWordForBitfield; bitfieldWord !=0; bitfieldWord-- ) { /* loop over all used words */
if ( codewordInSet > NUMBER_OF_BIT_IN_WORD ) { /* more codewords than number of bits => fill ones */
/* fill a whole word with ones */
*pCodewordBitfield++ = tempWord;
codewordInSet -= NUMBER_OF_BIT_IN_WORD; /* subtract number of bits */
}
else {
/* prepare last tempWord */
for (remainingCodewordsInSet = codewordInSet; remainingCodewordsInSet < NUMBER_OF_BIT_IN_WORD ; remainingCodewordsInSet++ ) {
tempWord = tempWord & ~(1 << (NUMBER_OF_BIT_IN_WORD-1-remainingCodewordsInSet)); /* set a zero at bit number (NUMBER_OF_BIT_IN_WORD-1-i) in tempWord */
}
*pCodewordBitfield++ = tempWord;
tempWord = 0x00000000;
}
}
pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
/* step 3 */
/* build non-PCW sideinfo for each non-PCW of the current set */
InitNonPCWSideInformationForCurrentSet(pHcr);
/* step 4 */
/* decode all non-PCWs belonging to this set */
/* loop over trials */
codewordOffsetBase = 0;
for ( trial = *pNumSegment; trial > 0; trial-- ) {
/* loop over number of words in bitfields */
segmentOffset = 0; /* start at zero in every segment */
pHcr->segmentInfo.segmentOffset = segmentOffset; /* store in structure for states */
codewordOffset = codewordOffsetBase;
pHcr->nonPcwSideinfo.codewordOffset = codewordOffset; /* store in structure for states */
for ( bitfieldWord=0; bitfieldWord < *pNumWordForBitfield; bitfieldWord++ ) {
/* derive tempWord with bitwise and */
tempWord = pSegmentBitfield[bitfieldWord] & pCodewordBitfield[bitfieldWord];
/* if tempWord is not zero, decode something */
if ( tempWord != 0 ) {
/* loop over all bits in tempWord; start state machine if & is true */
for ( bitInWord = NUMBER_OF_BIT_IN_WORD; bitInWord > 0; bitInWord-- ) {
interMediateWord = ((UINT)1 << (bitInWord-1) );
if ( ( tempWord & interMediateWord ) == interMediateWord ) {
/* get state and start state machine */
pHcr->nonPcwSideinfo.pState = aStateConstant2State[pSta[codewordOffset]];
while(pHcr->nonPcwSideinfo.pState) {
ret = ((STATEFUNC) pHcr->nonPcwSideinfo.pState)(bs, pHcr);
#if STATE_MACHINE_ERROR_CHECK
if ( ret != 0 ) {
return;
}
#endif
}
}
/* update both offsets */
segmentOffset += 1; /* add NUMBER_OF_BIT_IN_WORD times one */
pHcr->segmentInfo.segmentOffset = segmentOffset;
codewordOffset += 1; /* add NUMBER_OF_BIT_IN_WORD times one */
codewordOffset = ModuloValue(codewordOffset,*pNumSegment); /* index of the current codeword lies within modulo range */
pHcr->nonPcwSideinfo.codewordOffset = codewordOffset;
}
}
else {
segmentOffset += NUMBER_OF_BIT_IN_WORD; /* add NUMBER_OF_BIT_IN_WORD at once */
pHcr->segmentInfo.segmentOffset = segmentOffset;
codewordOffset += NUMBER_OF_BIT_IN_WORD; /* add NUMBER_OF_BIT_IN_WORD at once */
codewordOffset = ModuloValue(codewordOffset,*pNumSegment); /* index of the current codeword lies within modulo range */
pHcr->nonPcwSideinfo.codewordOffset = codewordOffset;
}
} /* end of bitfield word loop */
/* decrement codeword - pointer */
codewordOffsetBase -= 1;
codewordOffsetBase = ModuloValue(codewordOffsetBase,*pNumSegment); /* index of the current codeword base lies within modulo range */
/* rotate numSegment bits in codewordBitfield */
/* rotation of *numSegment bits in bitfield of codewords (circle-rotation) */
/* get last valid bit */
tempBit = pCodewordBitfield[*pNumWordForBitfield-1] & (1 << (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord));
tempBit = tempBit >> (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord);
/* write zero into place where tempBit was fetched from */
pCodewordBitfield[*pNumWordForBitfield-1] = pCodewordBitfield[*pNumWordForBitfield-1] & ~(1 << (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord));
/* rotate last valid word */
pCodewordBitfield[*pNumWordForBitfield-1] = pCodewordBitfield[*pNumWordForBitfield-1] >> 1;
/* transfare carry bit 0 from current word into bitposition 31 from next word and rotate current word */
for ( bitfieldWord = *pNumWordForBitfield-2; bitfieldWord > -1 ; bitfieldWord-- ) {
/* get carry (=bit at position 0) from current word */
carry = pCodewordBitfield[bitfieldWord] & 1;
/* put the carry bit at position 31 into word right from current word */
pCodewordBitfield[bitfieldWord+1] = pCodewordBitfield[bitfieldWord+1] | (carry << (NUMBER_OF_BIT_IN_WORD-1));
/* shift current word */
pCodewordBitfield[bitfieldWord] = pCodewordBitfield[bitfieldWord] >> 1;
}
/* put tempBit into free bit-position 31 from first word */
pCodewordBitfield[0] = pCodewordBitfield[0] | (tempBit << (NUMBER_OF_BIT_IN_WORD-1));
} /* end of trial loop */
/* toggle read direction */
pHcr->segmentInfo.readDirection = ToggleReadDirection(pHcr->segmentInfo.readDirection);
}
/* end of set loop */
/* all non-PCWs of this spectrum are decoded */
}
/* all PCWs and all non PCWs are decoded. They are unbacksorted in output buffer. Here is the Interface with comparing QSCs to asm decoding */
}
/*---------------------------------------------------------------------------------------------
description: This function prepares the bitfield used for the
segments. The list is set up once to be used in all following sets. If a
segment is decoded empty, the according bit from the Bitfield is removed.
-----------------------------------------------------------------------------------------------
return: numValidSegment = the number of valid segments
-------------------------------------------------------------------------------------------- */
static UINT InitSegmentBitfield(UINT *pNumSegment,
SCHAR *pRemainingBitsInSegment,
UINT *pSegmentBitfield,
UCHAR *pNumWordForBitfield,
USHORT *pNumBitValidInLastWord)
{
SHORT i;
USHORT r;
UCHAR bitfieldWord;
UINT tempWord;
USHORT numValidSegment;
*pNumWordForBitfield = ((*pNumSegment-1) >> THIRTYTWO_LOG_DIV_TWO_LOG) + 1;
/* loop over all words, which are completely used or only partial */
/* bit in pSegmentBitfield is zero if segment is empty; bit in pSegmentBitfield is one if segment is not empty */
numValidSegment = 0;
*pNumBitValidInLastWord = *pNumSegment;
/* loop over words */
for ( bitfieldWord=0; bitfieldWord < *pNumWordForBitfield - 1; bitfieldWord++ ) {
tempWord = 0xFFFFFFFF; /* set ones */
r = bitfieldWord << THIRTYTWO_LOG_DIV_TWO_LOG;
for ( i=0; i < NUMBER_OF_BIT_IN_WORD; i++) {
if ( pRemainingBitsInSegment[r + i] == 0 ) {
tempWord = tempWord & ~(1 << (NUMBER_OF_BIT_IN_WORD-1-i)); /* set a zero at bit number (NUMBER_OF_BIT_IN_WORD-1-i) in tempWord */
}
else {
numValidSegment += 1; /* count segments which are not empty */
}
}
pSegmentBitfield[bitfieldWord] = tempWord; /* store result */
*pNumBitValidInLastWord -= NUMBER_OF_BIT_IN_WORD; /* calculate number of zeros on LSB side in the last word */
}
/* calculate last word: prepare special tempWord */
tempWord = 0xFFFFFFFF;
for ( i=0; i < ( NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord ); i++ ) {
tempWord = tempWord & ~(1 << i); /* clear bit i in tempWord */
}
/* calculate last word */
r = bitfieldWord << THIRTYTWO_LOG_DIV_TWO_LOG;
for ( i=0; i<*pNumBitValidInLastWord; i++) {
if ( pRemainingBitsInSegment[r + i] == 0 ) {
tempWord = tempWord & ~(1 << (NUMBER_OF_BIT_IN_WORD-1-i)); /* set a zero at bit number (NUMBER_OF_BIT_IN_WORD-1-i) in tempWord */
}
else {
numValidSegment += 1; /* count segments which are not empty */
}
}
pSegmentBitfield[bitfieldWord] = tempWord; /* store result */
return numValidSegment;
}
/*---------------------------------------------------------------------------------------------
description: This function sets up sideinfo for the non-PCW decoder (for the current set).
---------------------------------------------------------------------------------------------*/
static void InitNonPCWSideInformationForCurrentSet(H_HCR_INFO pHcr)
{
USHORT i,k;
UCHAR codebookDim;
UINT startNode;
UCHAR *pCodebook = pHcr->nonPcwSideinfo.pCodebook;
UINT *iNode = pHcr->nonPcwSideinfo.iNode;
UCHAR *pCntSign = pHcr->nonPcwSideinfo.pCntSign;
USHORT *iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
UINT *pEscapeSequenceInfo = pHcr->nonPcwSideinfo.pEscapeSequenceInfo;
SCHAR *pSta = pHcr->nonPcwSideinfo.pSta;
USHORT *pNumExtendedSortedCodewordInSection = pHcr->sectionInfo.pNumExtendedSortedCodewordInSection;
int numExtendedSortedCodewordInSectionIdx = pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx;
UCHAR *pExtendedSortedCodebook = pHcr->sectionInfo.pExtendedSortedCodebook;
int extendedSortedCodebookIdx = pHcr->sectionInfo.extendedSortedCodebookIdx;
USHORT *pNumExtendedSortedSectionsInSets = pHcr->sectionInfo.pNumExtendedSortedSectionsInSets;
int numExtendedSortedSectionsInSetsIdx = pHcr->sectionInfo.numExtendedSortedSectionsInSetsIdx;
FIXP_DBL *pQuantizedSpectralCoefficients = SPEC_LONG(pHcr->decInOut.pQuantizedSpectralCoefficientsBase);
int quantizedSpectralCoefficientsIdx = pHcr->decInOut.quantizedSpectralCoefficientsIdx;
const UCHAR *pCbDimension = pHcr->tableInfo.pCbDimension;
int iterationCounter = 0;
/* loop over number of extended sorted sections in the current set so all codewords sideinfo variables within this set can be prepared for decoding */
for ( i=pNumExtendedSortedSectionsInSets[numExtendedSortedSectionsInSetsIdx]; i != 0; i-- ) {
codebookDim = pCbDimension[pExtendedSortedCodebook[extendedSortedCodebookIdx]];
startNode = *aHuffTable[pExtendedSortedCodebook[extendedSortedCodebookIdx]];
for ( k = pNumExtendedSortedCodewordInSection[numExtendedSortedCodewordInSectionIdx]; k != 0; k-- ) {
iterationCounter++;
if (iterationCounter > (1024>>2)) {
return;
}
*pSta++ = aCodebook2StartInt[pExtendedSortedCodebook[extendedSortedCodebookIdx]];
*pCodebook++ = pExtendedSortedCodebook[extendedSortedCodebookIdx];
*iNode++ = startNode;
*pCntSign++ = 0;
*iResultPointer++ = quantizedSpectralCoefficientsIdx;
*pEscapeSequenceInfo++ = 0;
quantizedSpectralCoefficientsIdx += codebookDim; /* update pointer by codebookDim --> point to next starting value for writing out */
if (quantizedSpectralCoefficientsIdx >= 1024) {
return;
}
}
numExtendedSortedCodewordInSectionIdx++; /* inc ptr for next ext sort sec in current set */
extendedSortedCodebookIdx++; /* inc ptr for next ext sort sec in current set */
if (numExtendedSortedCodewordInSectionIdx >= (MAX_SFB_HCR+MAX_HCR_SETS) || extendedSortedCodebookIdx >= (MAX_SFB_HCR+MAX_HCR_SETS)) {
return;
}
}
numExtendedSortedSectionsInSetsIdx++; /* inc ptr for next set of non-PCWs */
if (numExtendedSortedCodewordInSectionIdx >= (MAX_SFB_HCR+MAX_HCR_SETS)) {
return;
}
/* Write back indexes */
pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx = numExtendedSortedCodewordInSectionIdx;
pHcr->sectionInfo.extendedSortedCodebookIdx = extendedSortedCodebookIdx;
pHcr->sectionInfo.numExtendedSortedSectionsInSetsIdx = numExtendedSortedSectionsInSetsIdx;
pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx = numExtendedSortedCodewordInSectionIdx;
pHcr->decInOut.quantizedSpectralCoefficientsIdx = quantizedSpectralCoefficientsIdx;
}
/*---------------------------------------------------------------------------------------------
description: This function returns the input value if the value is in the
range of bufferlength. If is smaller, one bufferlength is added,
if is bigger one bufferlength is subtracted.
-----------------------------------------------------------------------------------------------
return: modulo result
-------------------------------------------------------------------------------------------- */
static INT ModuloValue(INT input, INT bufferlength)
{
if ( input > (bufferlength - 1) ) {
return (input - bufferlength);
}
if ( input < 0 ) {
return (input + bufferlength);
}
return input;
}
/*---------------------------------------------------------------------------------------------
description: This function clears a bit from current bitfield and
switches off the statemachine.
A bit is cleared in two cases:
a) a codeword is decoded, then a bit is cleared in codeword bitfield
b) a segment is decoded empty, then a bit is cleared in segment bitfield
-------------------------------------------------------------------------------------------- */
static void ClearBitFromBitfield(STATEFUNC *ptrState,
UINT offset,
UINT *pBitfield)
{
UINT numBitfieldWord;
UINT numBitfieldBit;
/* get both values needed for clearing the bit */
numBitfieldWord = offset >> THIRTYTWO_LOG_DIV_TWO_LOG; /* int = wordNr */
numBitfieldBit = offset - (numBitfieldWord << THIRTYTWO_LOG_DIV_TWO_LOG); /* fract = bitNr */
/* clear a bit in bitfield */
pBitfield[numBitfieldWord] = pBitfield[numBitfieldWord] & ~(1 << (NUMBER_OF_BIT_IN_WORD-1 - numBitfieldBit));
/* switch off state machine because codeword is decoded and/or because segment is empty */
*ptrState = NULL;
}
/* =========================================================================================
the states of the statemachine
========================================================================================= */
/*---------------------------------------------------------------------------------------------
description: Decodes the body of a codeword. This State is used for codebooks 1,2,5 and 6.
No sign bits are decoded, because the table of the quantized spectral values
has got a valid sign at the quantized spectral lines.
-----------------------------------------------------------------------------------------------
output: Two or four quantizes spectral values written at position where pResultPointr
points to
-----------------------------------------------------------------------------------------------
return: 0
-------------------------------------------------------------------------------------------- */
UINT Hcr_State_BODY_ONLY(HANDLE_FDK_BITSTREAM bs, void *ptr)
{
H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
UINT *pSegmentBitfield;
UINT *pCodewordBitfield;
UINT segmentOffset;
FIXP_DBL *pResultBase;
UINT *iNode;
USHORT *iResultPointer;
UINT codewordOffset;
UINT branchNode;
UINT branchValue;
UINT iQSC;
UINT treeNode;
UCHAR carryBit;
USHORT *pLeftStartOfSegment;
USHORT *pRightStartOfSegment;
SCHAR *pRemainingBitsInSegment;
UCHAR readDirection;
UCHAR *pCodebook;
UCHAR dimCntr;
const UINT *pCurrentTree;
const UCHAR *pCbDimension;
const SCHAR *pQuantVal;
const SCHAR *pQuantValBase;
pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
readDirection = pHcr->segmentInfo.readDirection;
pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
segmentOffset = pHcr->segmentInfo.segmentOffset;
pCodebook = pHcr->nonPcwSideinfo.pCodebook;
iNode = pHcr->nonPcwSideinfo.iNode;
pResultBase = pHcr->nonPcwSideinfo.pResultBase;
iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
pCbDimension = pHcr->tableInfo.pCbDimension;
treeNode = iNode[codewordOffset];
pCurrentTree = aHuffTable[pCodebook[codewordOffset]];
for ( ; pRemainingBitsInSegment[segmentOffset] > 0 ; pRemainingBitsInSegment[segmentOffset] -= 1 ) {
carryBit = HcrGetABitFromBitstream( bs,
&pLeftStartOfSegment[segmentOffset],
&pRightStartOfSegment[segmentOffset],
readDirection);
CarryBitToBranchValue(carryBit, /* make a step in decoding tree */
treeNode,
&branchValue,
&branchNode);
/* if end of branch reached write out lines and count bits needed for sign, otherwise store node in codeword sideinfo */
if ((branchNode & TEST_BIT_10) == TEST_BIT_10) { /* test bit 10 ; ==> body is complete */
pQuantValBase = aQuantTable[pCodebook[codewordOffset]]; /* get base address of quantized values belonging to current codebook */
pQuantVal = pQuantValBase + branchValue; /* set pointer to first valid line [of 2 or 4 quantized values] */
iQSC = iResultPointer[codewordOffset]; /* get position of first line for writing out result */
for ( dimCntr = pCbDimension[pCodebook[codewordOffset]]; dimCntr != 0; dimCntr-- ) {
pResultBase[iQSC++] = (FIXP_DBL)*pQuantVal++; /* write out 2 or 4 lines into spectrum; no Sign bits available in this state */
}
ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
segmentOffset,
pCodewordBitfield); /* clear a bit in bitfield and switch off statemachine */
pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of for loop counter (see above) is done here */
break; /* end of branch in tree reached i.e. a whole nonPCW-Body is decoded */
}
else { /* body is not decoded completely: */
treeNode = *(pCurrentTree + branchValue); /* update treeNode for further step in decoding tree */
}
}
iNode[codewordOffset] = treeNode; /* store updated treeNode because maybe decoding of codeword body not finished yet */
if ( pRemainingBitsInSegment[segmentOffset] <= 0 ) {
ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
segmentOffset,
pSegmentBitfield); /* clear a bit in bitfield and switch off statemachine */
#if STATE_MACHINE_ERROR_CHECK
if ( pRemainingBitsInSegment[segmentOffset] < 0 ) {
pHcr->decInOut.errorLog |= STATE_ERROR_BODY_ONLY;
return BODY_ONLY;
}
#endif
}
return STOP_THIS_STATE;
}
/*---------------------------------------------------------------------------------------------
description: Decodes the codeword body, writes out result and counts the number of quantized
spectral values, which are different form zero. For those values sign bits are
needed.
If sign bit counter cntSign is different from zero, switch to next state to
decode sign Bits there.
If sign bit counter cntSign is zero, no sign bits are needed and codeword is
decoded.
-----------------------------------------------------------------------------------------------
output: Two or four written quantizes spectral values written at position where
pResultPointr points to. The signs of those lines may be wrong. If the signs
[on just one signle sign] is wrong, the next state will correct it.
-----------------------------------------------------------------------------------------------
return: 0
-------------------------------------------------------------------------------------------- */
UINT Hcr_State_BODY_SIGN__BODY(HANDLE_FDK_BITSTREAM bs, void *ptr)
{
H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
SCHAR *pRemainingBitsInSegment;
USHORT *pLeftStartOfSegment;
USHORT *pRightStartOfSegment;
UCHAR readDirection;
UINT *pSegmentBitfield;
UINT *pCodewordBitfield;
UINT segmentOffset;
UCHAR *pCodebook;
UINT *iNode;
UCHAR *pCntSign;
FIXP_DBL *pResultBase;
USHORT *iResultPointer;
UINT codewordOffset;
UINT iQSC;
UINT cntSign;
UCHAR dimCntr;
UCHAR carryBit;
SCHAR *pSta;
UINT treeNode;
UINT branchValue;
UINT branchNode;
const UCHAR *pCbDimension;
const UINT *pCurrentTree;
const SCHAR *pQuantValBase;
const SCHAR *pQuantVal;
pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
readDirection = pHcr->segmentInfo.readDirection;
pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
segmentOffset = pHcr->segmentInfo.segmentOffset;
pCodebook = pHcr->nonPcwSideinfo.pCodebook;
iNode = pHcr->nonPcwSideinfo.iNode;
pCntSign = pHcr->nonPcwSideinfo.pCntSign;
pResultBase = pHcr->nonPcwSideinfo.pResultBase;
iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
pSta = pHcr->nonPcwSideinfo.pSta;
pCbDimension = pHcr->tableInfo.pCbDimension;
treeNode = iNode[codewordOffset];
pCurrentTree = aHuffTable[pCodebook[codewordOffset]];
for ( ; pRemainingBitsInSegment[segmentOffset] > 0 ; pRemainingBitsInSegment[segmentOffset] -= 1 ) {
carryBit = HcrGetABitFromBitstream( bs,
&pLeftStartOfSegment[segmentOffset],
&pRightStartOfSegment[segmentOffset],
readDirection);
CarryBitToBranchValue(carryBit, /* make a step in decoding tree */
treeNode,
&branchValue,
&branchNode);
/* if end of branch reached write out lines and count bits needed for sign, otherwise store node in codeword sideinfo */
if ((branchNode & TEST_BIT_10) == TEST_BIT_10) { /* test bit 10 ; if set body complete */
/* body completely decoded; branchValue is valid, set pQuantVal to first (of two or four) quantized spectral coefficients */
pQuantValBase = aQuantTable[pCodebook[codewordOffset]]; /* get base address of quantized values belonging to current codebook */
pQuantVal = pQuantValBase + branchValue; /* set pointer to first valid line [of 2 or 4 quantized values] */
iQSC = iResultPointer[codewordOffset]; /* get position of first line for writing result */
/* codeword decoding result is written out here: Write out 2 or 4 quantized spectral values with probably */
/* wrong sign and count number of values which are different from zero for sign bit decoding [which happens in next state] */
cntSign = 0;
for ( dimCntr = pCbDimension[pCodebook[codewordOffset]]; dimCntr != 0; dimCntr-- ) {
pResultBase[iQSC++] = (FIXP_DBL)*pQuantVal; /* write quant. spec. coef. into spectrum */
if ( *pQuantVal++ != 0 ) {
cntSign += 1;
}
}
if ( cntSign == 0 ) {
ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
segmentOffset,
pCodewordBitfield); /* clear a bit in bitfield and switch off statemachine */
}
else {
pCntSign[codewordOffset] = cntSign; /* write sign count result into codewordsideinfo of current codeword */
pSta[codewordOffset] = BODY_SIGN__SIGN; /* change state */
pHcr->nonPcwSideinfo.pState = aStateConstant2State[pSta[codewordOffset]]; /* get state from separate array of cw-sideinfo */
}
pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of for loop counter (see above) is done here */
break; /* end of branch in tree reached i.e. a whole nonPCW-Body is decoded */
}
else {/* body is not decoded completely: */
treeNode = *(pCurrentTree + branchValue); /* update treeNode for further step in decoding tree */
}
}
iNode[codewordOffset] = treeNode; /* store updated treeNode because maybe decoding of codeword body not finished yet */
if ( pRemainingBitsInSegment[segmentOffset] <= 0 ) {
ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
segmentOffset,
pSegmentBitfield); /* clear a bit in bitfield and switch off statemachine */
#if STATE_MACHINE_ERROR_CHECK
if ( pRemainingBitsInSegment[segmentOffset] < 0 ) {
pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN__BODY;
return BODY_SIGN__BODY;
}
#endif
}
return STOP_THIS_STATE;
}
/*---------------------------------------------------------------------------------------------
description: This state decodes the sign bits belonging to a codeword. The state is called
as often in different "trials" until pCntSgn[codewordOffset] is zero.
-----------------------------------------------------------------------------------------------
output: The two or four quantizes spectral values (written in previous state) have
now the correct sign.
-----------------------------------------------------------------------------------------------
return: 0
-------------------------------------------------------------------------------------------- */
UINT Hcr_State_BODY_SIGN__SIGN(HANDLE_FDK_BITSTREAM bs, void *ptr)
{
H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
SCHAR *pRemainingBitsInSegment;
USHORT *pLeftStartOfSegment;
USHORT *pRightStartOfSegment;
UCHAR readDirection;
UINT *pSegmentBitfield;
UINT *pCodewordBitfield;
UINT segmentOffset;
UCHAR *pCntSign;
FIXP_DBL *pResultBase;
USHORT *iResultPointer;
UINT codewordOffset;
UCHAR carryBit;
UINT iQSC;
UCHAR cntSign;
pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
readDirection = pHcr->segmentInfo.readDirection;
pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
segmentOffset = pHcr->segmentInfo.segmentOffset;
pCntSign = pHcr->nonPcwSideinfo.pCntSign;
pResultBase = pHcr->nonPcwSideinfo.pResultBase;
iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
iQSC = iResultPointer[codewordOffset];
cntSign = pCntSign[codewordOffset];
/* loop for sign bit decoding */
for ( ; pRemainingBitsInSegment[segmentOffset] > 0 ; pRemainingBitsInSegment[segmentOffset] -= 1 ) {
carryBit = HcrGetABitFromBitstream( bs,
&pLeftStartOfSegment[segmentOffset],
&pRightStartOfSegment[segmentOffset],
readDirection);
cntSign -= 1; /* decrement sign counter because one sign bit has been read */
/* search for a line (which was decoded in previous state) which is not zero. [This value will get a sign] */
while ( pResultBase[iQSC] == (FIXP_DBL)0 ) {
iQSC++; /* points to current value different from zero */
if (iQSC >= 1024) {
return BODY_SIGN__SIGN;
}
}
/* put sign together with line; if carryBit is zero, the sign is ok already; no write operation necessary in this case */
if ( carryBit != 0 ) {
pResultBase[iQSC] = -pResultBase[iQSC]; /* carryBit = 1 --> minus */
}
iQSC++; /* update pointer to next (maybe valid) value */
if ( cntSign == 0 ) { /* if (cntSign==0) ==> set state CODEWORD_DECODED */
ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
segmentOffset,
pCodewordBitfield); /* clear a bit in bitfield and switch off statemachine */
pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of for loop counter (see above) is done here */
break; /* whole nonPCW-Body and according sign bits are decoded */
}
}
pCntSign[codewordOffset] = cntSign;
iResultPointer[codewordOffset] = iQSC; /* store updated pResultPointer */
if ( pRemainingBitsInSegment[segmentOffset] <= 0 ) {
ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
segmentOffset,
pSegmentBitfield); /* clear a bit in bitfield and switch off statemachine */
#if STATE_MACHINE_ERROR_CHECK
if ( pRemainingBitsInSegment[segmentOffset] < 0 ) {
pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN__SIGN;
return BODY_SIGN__SIGN;
}
#endif
}
return STOP_THIS_STATE;
}
/*---------------------------------------------------------------------------------------------
description: Decodes the codeword body in case of codebook is 11. Writes out resulting
two or four lines [with probably wrong sign] and counts the number of
lines, which are different form zero. This information is needed in next
state where sign bits will be decoded, if necessary.
If sign bit counter cntSign is zero, no sign bits are needed and codeword is
decoded completely.
-----------------------------------------------------------------------------------------------
output: Two lines (quantizes spectral coefficients) which are probably wrong. The
sign may be wrong and if one or two values is/are 16, the following states
will decode the escape sequence to correct the values which are wirtten here.
-----------------------------------------------------------------------------------------------
return: 0
-------------------------------------------------------------------------------------------- */
UINT Hcr_State_BODY_SIGN_ESC__BODY(HANDLE_FDK_BITSTREAM bs, void *ptr)
{
H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
SCHAR *pRemainingBitsInSegment;
USHORT *pLeftStartOfSegment;
USHORT *pRightStartOfSegment;
UCHAR readDirection;
UINT *pSegmentBitfield;
UINT *pCodewordBitfield;
UINT segmentOffset;
UINT *iNode;
UCHAR *pCntSign;
FIXP_DBL *pResultBase;
USHORT *iResultPointer;
UINT codewordOffset;
UCHAR carryBit;
UINT iQSC;
UINT cntSign;
UINT dimCntr;
UINT treeNode;
SCHAR *pSta;
UINT branchNode;
UINT branchValue;
const UINT *pCurrentTree;
const SCHAR *pQuantValBase;
const SCHAR *pQuantVal;
pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
readDirection = pHcr->segmentInfo.readDirection;
pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
segmentOffset = pHcr->segmentInfo.segmentOffset;
iNode = pHcr->nonPcwSideinfo.iNode;
pCntSign = pHcr->nonPcwSideinfo.pCntSign;
pResultBase = pHcr->nonPcwSideinfo.pResultBase;
iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
pSta = pHcr->nonPcwSideinfo.pSta;
treeNode = iNode[codewordOffset];
pCurrentTree = aHuffTable[ESCAPE_CODEBOOK];
for ( ; pRemainingBitsInSegment[segmentOffset] > 0 ; pRemainingBitsInSegment[segmentOffset] -= 1 ) {
carryBit = HcrGetABitFromBitstream( bs,
&pLeftStartOfSegment[segmentOffset],
&pRightStartOfSegment[segmentOffset],
readDirection);
/* make a step in tree */
CarryBitToBranchValue(carryBit,
treeNode,
&branchValue,
&branchNode);
/* if end of branch reached write out lines and count bits needed for sign, otherwise store node in codeword sideinfo */
if ((branchNode & TEST_BIT_10) == TEST_BIT_10) { /* test bit 10 ; if set body complete */
/* body completely decoded; branchValue is valid */
/* set pQuantVol to first (of two or four) quantized spectral coefficients */
pQuantValBase = aQuantTable[ESCAPE_CODEBOOK]; /* get base address of quantized values belonging to current codebook */
pQuantVal = pQuantValBase + branchValue; /* set pointer to first valid line [of 2 or 4 quantized values] */
/* make backup from original resultPointer in node storage for state BODY_SIGN_ESC__SIGN */
iNode[codewordOffset] = iResultPointer[codewordOffset];
/* get position of first line for writing result */
iQSC = iResultPointer[codewordOffset];
/* codeword decoding result is written out here: Write out 2 or 4 quantized spectral values with probably */
/* wrong sign and count number of values which are different from zero for sign bit decoding [which happens in next state] */
cntSign = 0;
for ( dimCntr = DIMENSION_OF_ESCAPE_CODEBOOK; dimCntr != 0; dimCntr-- ) {
pResultBase[iQSC++] = (FIXP_DBL)*pQuantVal; /* write quant. spec. coef. into spectrum */
if ( *pQuantVal++ != 0 ) {
cntSign += 1;
}
}
if ( cntSign == 0 ) {
ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
segmentOffset,
pCodewordBitfield); /* clear a bit in bitfield and switch off statemachine */
/* codeword decoded */
}
else {
/* write sign count result into codewordsideinfo of current codeword */
pCntSign[codewordOffset] = cntSign;
pSta[codewordOffset] = BODY_SIGN_ESC__SIGN; /* change state */
pHcr->nonPcwSideinfo.pState = aStateConstant2State[pSta[codewordOffset]]; /* get state from separate array of cw-sideinfo */
}
pRemainingBitsInSegment[segmentOffset] -= 1; /* the last reinitialzation of for loop counter (see above) is done here */
break; /* end of branch in tree reached i.e. a whole nonPCW-Body is decoded */
}
else { /* body is not decoded completely: */
/* update treeNode for further step in decoding tree and store updated treeNode because maybe no more bits left in segment */
treeNode = *(pCurrentTree + branchValue);
iNode[codewordOffset] = treeNode;
}
}
if ( pRemainingBitsInSegment[segmentOffset] <= 0 ) {
ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
segmentOffset,
pSegmentBitfield); /* clear a bit in bitfield and switch off statemachine */
#if STATE_MACHINE_ERROR_CHECK
if ( pRemainingBitsInSegment[segmentOffset] < 0 ) {
pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__BODY;
return BODY_SIGN_ESC__BODY;
}
#endif
}
return STOP_THIS_STATE;
}
/*---------------------------------------------------------------------------------------------
description: This state decodes the sign bits, if a codeword of codebook 11 needs some.
A flag named 'flagB' in codeword sideinfo is set, if the second line of
quantized spectral values is 16. The 'flagB' is used in case of decoding
of a escape sequence is necessary as far as the second line is concerned.
If only the first line needs an escape sequence, the flagB is cleared.
If only the second line needs an escape sequence, the flagB is not used.
For storing sideinfo in case of escape sequence decoding one single word
can be used for both escape sequences because they are decoded not at the
same time:
bit 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
===== == == =========== =========== ===================================
^ ^ ^ ^ ^ ^
| | | | | |
res. flagA flagB escapePrefixUp escapePrefixDown escapeWord
-----------------------------------------------------------------------------------------------
output: Two lines with correct sign. If one or two values is/are 16, the lines are
not valid, otherwise they are.
-----------------------------------------------------------------------------------------------
return: 0
-------------------------------------------------------------------------------------------- */
UINT Hcr_State_BODY_SIGN_ESC__SIGN(HANDLE_FDK_BITSTREAM bs, void *ptr)
{
H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
SCHAR *pRemainingBitsInSegment;
USHORT *pLeftStartOfSegment;
USHORT *pRightStartOfSegment;
UCHAR readDirection;
UINT *pSegmentBitfield;
UINT *pCodewordBitfield;
UINT segmentOffset;
UINT *iNode;
UCHAR *pCntSign;
FIXP_DBL *pResultBase;
USHORT *iResultPointer;
UINT *pEscapeSequenceInfo;
UINT codewordOffset;
UINT iQSC;
UCHAR cntSign;
UINT flagA;
UINT flagB;
UINT flags;
UCHAR carryBit;
SCHAR *pSta;
pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
readDirection = pHcr->segmentInfo.readDirection;
pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
segmentOffset = pHcr->segmentInfo.segmentOffset;
iNode = pHcr->nonPcwSideinfo.iNode;
pCntSign = pHcr->nonPcwSideinfo.pCntSign;
pResultBase = pHcr->nonPcwSideinfo.pResultBase;
iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
pEscapeSequenceInfo = pHcr->nonPcwSideinfo.pEscapeSequenceInfo;
codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
pSta = pHcr->nonPcwSideinfo.pSta;
iQSC = iResultPointer[codewordOffset];
cntSign = pCntSign[codewordOffset];
/* loop for sign bit decoding */
for ( ; pRemainingBitsInSegment[segmentOffset] > 0 ; pRemainingBitsInSegment[segmentOffset] -= 1 ) {
carryBit = HcrGetABitFromBitstream( bs,
&pLeftStartOfSegment[segmentOffset],
&pRightStartOfSegment[segmentOffset],
readDirection);
/* decrement sign counter because one sign bit has been read */
cntSign -= 1;
pCntSign[codewordOffset] = cntSign;
/* get a quantized spectral value (which was decoded in previous state) which is not zero. [This value will get a sign] */
while ( pResultBase[iQSC] == (FIXP_DBL)0 ) {
iQSC++;
}
iResultPointer[codewordOffset] = iQSC;
/* put negative sign together with quantized spectral value; if carryBit is zero, the sign is ok already; no write operation necessary in this case */
if ( carryBit != 0 ) {
pResultBase[iQSC] = - pResultBase[iQSC]; /* carryBit = 1 --> minus */
}
iQSC++; /* update index to next (maybe valid) value */
iResultPointer[codewordOffset] = iQSC;
if ( cntSign == 0 ) {
/* all sign bits are decoded now */
pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of for loop counter (see above) is done here */
/* check decoded values if codeword is decoded: Check if one or two escape sequences 16 follow */
/* step 0 */
/* restore pointer to first decoded quantized value [ = original pResultPointr] from index iNode prepared in State_BODY_SIGN_ESC__BODY */
iQSC = iNode[codewordOffset];
/* step 1 */
/* test first value if escape sequence follows */
flagA = 0; /* for first possible escape sequence */
if ( fixp_abs(pResultBase[iQSC++]) == (FIXP_DBL)ESCAPE_VALUE ) {
flagA = 1;
}
/* step 2 */
/* test second value if escape sequence follows */
flagB = 0; /* for second possible escape sequence */
if ( fixp_abs(pResultBase[iQSC]) == (FIXP_DBL)ESCAPE_VALUE ) {
flagB = 1;
}
/* step 3 */
/* evaluate flag result and go on if necessary */
if ( !flagA && !flagB ) {
ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
segmentOffset,
pCodewordBitfield); /* clear a bit in bitfield and switch off statemachine */
}
else {
/* at least one of two lines is 16 */
/* store both flags at correct positions in non PCW codeword sideinfo pEscapeSequenceInfo[codewordOffset] */
flags = 0;
flags = flagA << POSITION_OF_FLAG_A;
flags |= (flagB << POSITION_OF_FLAG_B);
pEscapeSequenceInfo[codewordOffset] = flags;
/* set next state */
pSta[codewordOffset] = BODY_SIGN_ESC__ESC_PREFIX;
pHcr->nonPcwSideinfo.pState = aStateConstant2State[pSta[codewordOffset]]; /* get state from separate array of cw-sideinfo */
/* set result pointer to the first line of the two decoded lines */
iResultPointer[codewordOffset] = iNode[codewordOffset];
if ( !flagA && flagB ) {
/* update pResultPointr ==> state Stat_BODY_SIGN_ESC__ESC_WORD writes to correct position. Second value is the one and only escape value */
iQSC = iResultPointer[codewordOffset];
iQSC++;
iResultPointer[codewordOffset] = iQSC;
}
} /* at least one of two lines is 16 */
break; /* nonPCW-Body at cb 11 and according sign bits are decoded */
} /* if ( cntSign == 0 ) */
} /* loop over remaining Bits in segment */
if ( pRemainingBitsInSegment[segmentOffset] <= 0 ) {
ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
segmentOffset,
pSegmentBitfield); /* clear a bit in bitfield and switch off statemachine */
#if STATE_MACHINE_ERROR_CHECK
if ( pRemainingBitsInSegment[segmentOffset] < 0 ) {
pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__SIGN;
return BODY_SIGN_ESC__SIGN;
}
#endif
}
return STOP_THIS_STATE;
}
/*---------------------------------------------------------------------------------------------
description: Decode escape prefix of first or second escape sequence. The escape prefix
consists of ones. The following zero is also decoded here.
-----------------------------------------------------------------------------------------------
output: If the single separator-zero which follows the escape-prefix-ones is not yet decoded:
The value 'escapePrefixUp' in word pEscapeSequenceInfo[codewordOffset] is updated.
If the single separator-zero which follows the escape-prefix-ones is decoded:
Two updated values 'escapePrefixUp' and 'escapePrefixDown' in word
pEscapeSequenceInfo[codewordOffset]. This State is finished. Switch to next state.
-----------------------------------------------------------------------------------------------
return: 0
-------------------------------------------------------------------------------------------- */
UINT Hcr_State_BODY_SIGN_ESC__ESC_PREFIX(HANDLE_FDK_BITSTREAM bs, void *ptr)
{
H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
SCHAR *pRemainingBitsInSegment;
USHORT *pLeftStartOfSegment;
USHORT *pRightStartOfSegment;
UCHAR readDirection;
UINT *pSegmentBitfield;
UINT segmentOffset;
UINT *pEscapeSequenceInfo;
UINT codewordOffset;
UCHAR carryBit;
UINT escapePrefixUp;
SCHAR *pSta;
pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
readDirection = pHcr->segmentInfo.readDirection;
pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
segmentOffset = pHcr->segmentInfo.segmentOffset;
pEscapeSequenceInfo = pHcr->nonPcwSideinfo.pEscapeSequenceInfo;
codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
pSta = pHcr->nonPcwSideinfo.pSta;
escapePrefixUp = (pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_PREFIX_UP) >> LSB_ESCAPE_PREFIX_UP;
/* decode escape prefix */
for ( ; pRemainingBitsInSegment[segmentOffset] > 0 ; pRemainingBitsInSegment[segmentOffset] -= 1 ) {
carryBit = HcrGetABitFromBitstream( bs,
&pLeftStartOfSegment[segmentOffset],
&pRightStartOfSegment[segmentOffset],
readDirection);
/* count ones and store sum in escapePrefixUp */
if ( carryBit == 1 ) {
escapePrefixUp += 1; /* update conter for ones */
/* store updated counter in sideinfo of current codeword */
pEscapeSequenceInfo[codewordOffset] &= ~MASK_ESCAPE_PREFIX_UP; /* delete old escapePrefixUp */
escapePrefixUp <<= LSB_ESCAPE_PREFIX_UP; /* shift to correct position */
pEscapeSequenceInfo[codewordOffset] |= escapePrefixUp; /* insert new escapePrefixUp */
escapePrefixUp >>= LSB_ESCAPE_PREFIX_UP; /* shift back down */
}
else { /* separator [zero] reached */
pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of for loop counter (see above) is done here */
escapePrefixUp += 4; /* if escape_separator '0' appears, add 4 and ==> break */
/* store escapePrefixUp in pEscapeSequenceInfo[codewordOffset] at bit position escapePrefixUp */
pEscapeSequenceInfo[codewordOffset] &= ~MASK_ESCAPE_PREFIX_UP; /* delete old escapePrefixUp */
escapePrefixUp <<= LSB_ESCAPE_PREFIX_UP; /* shift to correct position */
pEscapeSequenceInfo[codewordOffset] |= escapePrefixUp; /* insert new escapePrefixUp */
escapePrefixUp >>= LSB_ESCAPE_PREFIX_UP; /* shift back down */
/* store escapePrefixUp in pEscapeSequenceInfo[codewordOffset] at bit position escapePrefixDown */
pEscapeSequenceInfo[codewordOffset] &= ~MASK_ESCAPE_PREFIX_DOWN; /* delete old escapePrefixDown */
escapePrefixUp <<= LSB_ESCAPE_PREFIX_DOWN; /* shift to correct position */
pEscapeSequenceInfo[codewordOffset] |= escapePrefixUp; /* insert new escapePrefixDown */
escapePrefixUp >>= LSB_ESCAPE_PREFIX_DOWN; /* shift back down */
pSta[codewordOffset] = BODY_SIGN_ESC__ESC_WORD; /* set next state */
pHcr->nonPcwSideinfo.pState = aStateConstant2State[pSta[codewordOffset]]; /* get state from separate array of cw-sideinfo */
break;
}
}
if ( pRemainingBitsInSegment[segmentOffset] <= 0 ) {
ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
segmentOffset,
pSegmentBitfield); /* clear a bit in bitfield and switch off statemachine */
#if STATE_MACHINE_ERROR_CHECK
if ( pRemainingBitsInSegment[segmentOffset] < 0 ) {
pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__ESC_PREFIX;
return BODY_SIGN_ESC__ESC_PREFIX;
}
#endif
}
return STOP_THIS_STATE;
}
/*---------------------------------------------------------------------------------------------
description: Decode escapeWord of escape sequence. If the escape sequence is decoded
completely, assemble quantized-spectral-escape-coefficient and replace the
previous decoded 16 by the new value.
Test flagB. If flagB is set, the second escape sequence must be decoded. If
flagB is not set, the codeword is decoded and the state machine is switched
off.
-----------------------------------------------------------------------------------------------
output: Two lines with valid sign. At least one of both lines has got the correct
value.
-----------------------------------------------------------------------------------------------
return: 0
-------------------------------------------------------------------------------------------- */
UINT Hcr_State_BODY_SIGN_ESC__ESC_WORD(HANDLE_FDK_BITSTREAM bs, void *ptr)
{
H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
SCHAR *pRemainingBitsInSegment;
USHORT *pLeftStartOfSegment;
USHORT *pRightStartOfSegment;
UCHAR readDirection;
UINT *pSegmentBitfield;
UINT *pCodewordBitfield;
UINT segmentOffset;
FIXP_DBL *pResultBase;
USHORT *iResultPointer;
UINT *pEscapeSequenceInfo;
UINT codewordOffset;
UINT escapeWord;
UINT escapePrefixDown;
UINT escapePrefixUp;
UCHAR carryBit;
UINT iQSC;
INT sign;
UINT flagA;
UINT flagB;
SCHAR *pSta;
pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
readDirection = pHcr->segmentInfo.readDirection;
pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
segmentOffset = pHcr->segmentInfo.segmentOffset;
pResultBase = pHcr->nonPcwSideinfo.pResultBase;
iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
pEscapeSequenceInfo = pHcr->nonPcwSideinfo.pEscapeSequenceInfo;
codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
pSta = pHcr->nonPcwSideinfo.pSta;
escapeWord = pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_WORD;
escapePrefixDown = (pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_PREFIX_DOWN) >> LSB_ESCAPE_PREFIX_DOWN;
/* decode escape word */
for ( ; pRemainingBitsInSegment[segmentOffset] > 0 ; pRemainingBitsInSegment[segmentOffset] -= 1 ) {
carryBit = HcrGetABitFromBitstream( bs,
&pLeftStartOfSegment[segmentOffset],
&pRightStartOfSegment[segmentOffset],
readDirection);
/* build escape word */
escapeWord <<= 1; /* left shift previous decoded part of escapeWord by on bit */
escapeWord = escapeWord | carryBit; /* assemble escape word by bitwise or */
/* decrement counter for length of escape word because one more bit was decoded */
escapePrefixDown -= 1;
/* store updated escapePrefixDown */
pEscapeSequenceInfo[codewordOffset] &= ~MASK_ESCAPE_PREFIX_DOWN; /* delete old escapePrefixDown */
escapePrefixDown <<= LSB_ESCAPE_PREFIX_DOWN; /* shift to correct position */
pEscapeSequenceInfo[codewordOffset] |= escapePrefixDown; /* insert new escapePrefixDown */
escapePrefixDown >>= LSB_ESCAPE_PREFIX_DOWN; /* shift back */
/* store updated escapeWord */
pEscapeSequenceInfo[codewordOffset] &= ~MASK_ESCAPE_WORD; /* delete old escapeWord */
pEscapeSequenceInfo[codewordOffset] |= escapeWord; /* insert new escapeWord */
if ( escapePrefixDown == 0 ) {
pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of for loop counter (see above) is done here */
/* escape sequence decoded. Assemble escape-line and replace original line */
/* step 0 */
/* derive sign */
iQSC = iResultPointer[codewordOffset];
sign = (pResultBase[iQSC] >= (FIXP_DBL)0) ? 1 : -1; /* get sign of escape value 16 */
/* step 1 */
/* get escapePrefixUp */
escapePrefixUp = (pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_PREFIX_UP) >> LSB_ESCAPE_PREFIX_UP;
/* step 2 */
/* calculate escape value */
pResultBase[iQSC] = (FIXP_DBL)(sign * (((INT) 1 << escapePrefixUp) + escapeWord));
/* get both flags from sideinfo (flags are not shifted to the lsb-position) */
flagA = pEscapeSequenceInfo[codewordOffset] & MASK_FLAG_A;
flagB = pEscapeSequenceInfo[codewordOffset] & MASK_FLAG_B;
/* step 3 */
/* clear the whole escape sideinfo word */
pEscapeSequenceInfo[codewordOffset] = 0;
/* change state in dependence of flag flagB */
if ( flagA != 0 ) {
/* first escape sequence decoded; previous decoded 16 has been replaced by valid line */
/* clear flagA in sideinfo word because this escape sequence has already beed decoded */
pEscapeSequenceInfo[codewordOffset] &= ~MASK_FLAG_A;
if ( flagB == 0 ) {
ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
segmentOffset,
pCodewordBitfield); /* clear a bit in bitfield and switch off statemachine */
}
else {
/* updated pointer to next and last 16 */
iQSC++;
iResultPointer[codewordOffset] = iQSC;
/* change state */
pSta[codewordOffset] = BODY_SIGN_ESC__ESC_PREFIX;
pHcr->nonPcwSideinfo.pState = aStateConstant2State[pSta[codewordOffset]]; /* get state from separate array of cw-sideinfo */
}
}
else {
ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
segmentOffset,
pCodewordBitfield); /* clear a bit in bitfield and switch off statemachine */
}
break;
}
}
if ( pRemainingBitsInSegment[segmentOffset] <= 0 ) {
ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
segmentOffset,
pSegmentBitfield); /* clear a bit in bitfield and switch off statemachine */
#if STATE_MACHINE_ERROR_CHECK
if ( pRemainingBitsInSegment[segmentOffset] < 0 ) {
pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__ESC_WORD;
return BODY_SIGN_ESC__ESC_WORD;
}
#endif
}
return STOP_THIS_STATE;
}