/* -----------------------------------------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

� Copyright  1995 - 2013 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
  All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
of the MPEG specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
individually for the purpose of encoding or decoding bit streams in products that are compliant with
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
software may already be covered under those patent licenses when it is used for those licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
applications information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification, are permitted without
payment of copyright license fees provided that you satisfy the following conditions:

You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation and/or other materials
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived from this library without
prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
and the date of any change. For modified versions of the FDK AAC Codec, the term
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
respect to this software.

You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
or business interruption, however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of this software, even if
advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------------------------------------- */

/*****************************  MPEG-4 AAC Decoder  ***************************

   Author(s):   Robert Weidner (DSP Solutions)
   Description: HCR Decoder: HCR initialization, preprocess HCR sideinfo,
                decode priority codewords (PCWs)

*******************************************************************************/

#include "aacdec_hcr.h"



#include "aacdec_hcr_types.h"
#include "aacdec_hcr_bit.h"
#include "aacdec_hcrs.h"
#include "aac_ram.h"
#include "aac_rom.h"
#include "channel.h"
#include "block.h"

#include "aacdecoder.h"     /* for ID_CPE, ID_SCE ... */
#include "FDK_bitstream.h"

extern int mlFileChCurr;

static void errDetectorInHcrSideinfoShrt(SCHAR cb,
                                         SHORT numLine,
                                         UINT *errorWord);

static void errDetectorInHcrLengths(SCHAR  lengthOfLongestCodeword,
                                    SHORT  lengthOfReorderedSpectralData,
                                    UINT  *errorWord);

static void HcrCalcNumCodeword                    (H_HCR_INFO pHcr);
static void HcrSortCodebookAndNumCodewordInSection(H_HCR_INFO pHcr);
static void HcrPrepareSegmentationGrid            (H_HCR_INFO pHcr);
static void HcrExtendedSectionInfo                (H_HCR_INFO pHcr);

static void DeriveNumberOfExtendedSortedSectionsInSets(UINT   numSegment,
                                                       USHORT  *pNumExtendedSortedCodewordInSection,
                                                       int      numExtendedSortedCodewordInSectionIdx,
                                                       USHORT  *pNumExtendedSortedSectionsInSets,
                                                       int      numExtendedSortedSectionsInSetsIdx);

static INT  DecodeEscapeSequence(HANDLE_FDK_BITSTREAM  bs,
                                 INT                   quantSpecCoef,
                                 USHORT               *pLeftStartOfSegment,
                                 SCHAR                *pRemainingBitsInSegment,
                                 int                  *pNumDecodedBits
                                );

static int DecodePCW_Sign(HANDLE_FDK_BITSTREAM  bs,
                          UINT                  codebookDim,
                          const SCHAR          *pQuantVal,
                          FIXP_DBL             *pQuantSpecCoef,
                          int                  *quantSpecCoefIdx,
                          USHORT               *pLeftStartOfSegment,
                          SCHAR                *pRemainingBitsInSegment,
                          int                  *pNumDecodedBits
                         );

static const SCHAR *DecodePCW_Body(HANDLE_FDK_BITSTREAM  bs,
                                   const UINT           *pCurrentTree,
                                   const SCHAR          *pQuantValBase,
                                         USHORT         *pLeftStartOfSegment,
                                         SCHAR          *pRemainingBitsInSegment,
                                         int            *pNumDecodedBits
                                  );

static void DecodePCWs(HANDLE_FDK_BITSTREAM bs, H_HCR_INFO pHcr);

static void HcrReorderQuantizedSpectralCoefficients(
        H_HCR_INFO pHcr,
        CAacDecoderChannelInfo *pAacDecoderChannelInfo,
        const SamplingRateInfo *pSamplingRateInfo
        );


#if CHECK_SEGMENTATION_IMMEDIATELY
static UCHAR errDetectPcwSegmentation(SCHAR       remainingBitsInSegment,
                                      H_HCR_INFO  pHcr,
                                      PCW_TYPE    kind,
                                      FIXP_DBL   *qsc_base_of_cw,
                                      UCHAR       dimension);
#endif

#if CHECK_SEGMENTATION_FINAL
static void errDetectWithinSegmentationFinal(H_HCR_INFO pHcr);
#endif

/*---------------------------------------------------------------------------------------------
     description:   Check if codebook and numSect are within allowed range (short only)
-------------------------------------------------------------------------------------------- */
static void errDetectorInHcrSideinfoShrt(SCHAR cb, SHORT numLine,UINT* errorWord)
{



  if ( cb < ZERO_HCB || cb >= MAX_CB_CHECK || cb == BOOKSCL ) {
    *errorWord |= CB_OUT_OF_RANGE_SHORT_BLOCK;
  }
  if ( numLine < 0 || numLine > 1024 ) {
    *errorWord |= LINE_IN_SECT_OUT_OF_RANGE_SHORT_BLOCK;
  }
}

/*---------------------------------------------------------------------------------------------
     description:   Check both HCR lengths
-------------------------------------------------------------------------------------------- */
static void errDetectorInHcrLengths(SCHAR  lengthOfLongestCodeword,
                                    SHORT  lengthOfReorderedSpectralData,
                                    UINT  *errorWord)
{
  if ( lengthOfReorderedSpectralData < lengthOfLongestCodeword ) {
    *errorWord |= HCR_SI_LENGTHS_FAILURE;
  }
}

/*---------------------------------------------------------------------------------------------
     description:   Decode (and adapt if necessary) the two HCR sideinfo components:
                    'reordered_spectral_data_length' and 'longest_codeword_length'
-------------------------------------------------------------------------------------------- */

void CHcr_Read(HANDLE_FDK_BITSTREAM    bs,
               CAacDecoderChannelInfo *pAacDecoderChannelInfo)
{
  INT    globalHcrType = getHcrType(&pAacDecoderChannelInfo->pComData->overlay.aac.erHcrInfo);
  SHORT  lengOfReorderedSpectralData;
  SCHAR  lengOfLongestCodeword;

  pAacDecoderChannelInfo->pDynData->specificTo.aac.lenOfReorderedSpectralData = 0;
  pAacDecoderChannelInfo->pDynData->specificTo.aac.lenOfLongestCodeword       = 0;



    /* ------- SI-Value No 1 ------- */
    lengOfReorderedSpectralData = FDKreadBits(bs,14) + ERROR_LORSD;
    if ( globalHcrType == ID_CPE ) {
      if ((lengOfReorderedSpectralData >= 0) && (lengOfReorderedSpectralData <= CPE_TOP_LENGTH)) {
        pAacDecoderChannelInfo->pDynData->specificTo.aac.lenOfReorderedSpectralData = lengOfReorderedSpectralData; /* the decoded value is within range */
      }
      else {
        if (lengOfReorderedSpectralData > CPE_TOP_LENGTH) {
          pAacDecoderChannelInfo->pDynData->specificTo.aac.lenOfReorderedSpectralData = CPE_TOP_LENGTH;            /* use valid maximum */
        }
      }
    }
    else if (globalHcrType == ID_SCE || globalHcrType == ID_LFE || globalHcrType == ID_CCE ) {
      if ((lengOfReorderedSpectralData >= 0) && (lengOfReorderedSpectralData <= SCE_TOP_LENGTH)) {
        pAacDecoderChannelInfo->pDynData->specificTo.aac.lenOfReorderedSpectralData = lengOfReorderedSpectralData; /* the decoded value is within range */
      }
      else {
        if (lengOfReorderedSpectralData > SCE_TOP_LENGTH) {
          pAacDecoderChannelInfo->pDynData->specificTo.aac.lenOfReorderedSpectralData = SCE_TOP_LENGTH;            /* use valid maximum */
        }
      }
    }

    /* ------- SI-Value No 2 ------- */
    lengOfLongestCodeword = FDKreadBits(bs,6) + ERROR_LOLC;
    if ((lengOfLongestCodeword >= 0) && (lengOfLongestCodeword <= LEN_OF_LONGEST_CW_TOP_LENGTH)) {
      pAacDecoderChannelInfo->pDynData->specificTo.aac.lenOfLongestCodeword = lengOfLongestCodeword;                /* the decoded value is within range */
    }
    else {
      if (lengOfLongestCodeword > LEN_OF_LONGEST_CW_TOP_LENGTH) {
        pAacDecoderChannelInfo->pDynData->specificTo.aac.lenOfLongestCodeword = LEN_OF_LONGEST_CW_TOP_LENGTH;       /* use valid maximum */
      }
    }
}


/*---------------------------------------------------------------------------------------------
     description:   Sets up HCR ROM-Tables
-------------------------------------------------------------------------------------------- */

void HcrInitRom(H_HCR_INFO pHcr)
{
  pHcr->cbPairs.pMinOfCbPair     = aMinOfCbPair;
  pHcr->cbPairs.pMaxOfCbPair     = aMaxOfCbPair;

  pHcr->tableInfo.pMaxCwLength   = aMaxCwLen;
  pHcr->tableInfo.pCbDimension   = aDimCb;
  pHcr->tableInfo.pCbDimShift    = aDimCbShift;
  pHcr->tableInfo.pCbSign        = aSignCb;
  pHcr->tableInfo.pCbPriority    = aCbPriority;
  pHcr->tableInfo.pLargestAbsVal = aLargestAbsoluteValue;
}

/*---------------------------------------------------------------------------------------------
     description:   Set up HCR - must be called before every call to HcrDecoder().
                    For short block a sorting algorithm is applied to get the SI in the order
                    that HCR could assemble the qsc's as if it is a long block.
-----------------------------------------------------------------------------------------------
        return:     error log
-------------------------------------------------------------------------------------------- */

UINT HcrInit(H_HCR_INFO              pHcr,
             CAacDecoderChannelInfo *pAacDecoderChannelInfo,
             const SamplingRateInfo *pSamplingRateInfo,
             HANDLE_FDK_BITSTREAM    bs)
{
  CIcsInfo *pIcsInfo = &pAacDecoderChannelInfo->icsInfo;
  SHORT *pNumLinesInSec;
  UCHAR *pCodeBk;
  SHORT  numSection;
  SCHAR  cb;
  int  numLine;
  int  i;

  pHcr->decInOut.lengthOfReorderedSpectralData      = pAacDecoderChannelInfo->pDynData->specificTo.aac.lenOfReorderedSpectralData;
  pHcr->decInOut.lengthOfLongestCodeword            = pAacDecoderChannelInfo->pDynData->specificTo.aac.lenOfLongestCodeword;
  pHcr->decInOut.pQuantizedSpectralCoefficientsBase = pAacDecoderChannelInfo->pSpectralCoefficient;
  pHcr->decInOut.quantizedSpectralCoefficientsIdx   = 0;
  pHcr->decInOut.pCodebook                          = pAacDecoderChannelInfo->pDynData->specificTo.aac.aCodeBooks4Hcr;
  pHcr->decInOut.pNumLineInSect                     = pAacDecoderChannelInfo->pDynData->specificTo.aac.aNumLineInSec4Hcr;
  pHcr->decInOut.numSection                         = pAacDecoderChannelInfo->pDynData->specificTo.aac.numberSection;
  pHcr->decInOut.errorLog = 0;
  pHcr->nonPcwSideinfo.pResultBase                  = SPEC_LONG(pAacDecoderChannelInfo->pSpectralCoefficient);

  FDKsyncCache(bs);
  pHcr->decInOut.bitstreamIndex                     = FDKgetBitCnt(bs);

  if (!IsLongBlock(&pAacDecoderChannelInfo->icsInfo))   /* short block */
  {
    SHORT  band;
    SHORT  maxBand;
    SCHAR  group;
    SCHAR  winGroupLen;
    SCHAR  window;
    SCHAR  numUnitInBand;
    SCHAR  cntUnitInBand;
    SCHAR  groupWin;
    SCHAR  cb_prev;

    UCHAR *pCodeBook;
    const SHORT *BandOffsets;
    SCHAR  numOfGroups;


    pCodeBook      = pAacDecoderChannelInfo->pDynData->aCodeBook;             /* in */
    pNumLinesInSec = pHcr->decInOut.pNumLineInSect;                               /* out */
    pCodeBk        = pHcr->decInOut.pCodebook;                                    /* out */
    BandOffsets    = GetScaleFactorBandOffsets(pIcsInfo, pSamplingRateInfo); /* aux */
    numOfGroups    = GetWindowGroups(pIcsInfo);

    numLine = 0;
    numSection = 0;
    cb      = pCodeBook[0];
    cb_prev = pCodeBook[0];

    /* convert HCR-sideinfo into a unitwise manner: When the cb changes, a new section starts */

    *pCodeBk++ = cb_prev;

    maxBand = GetScaleFactorBandsTransmitted(&pAacDecoderChannelInfo->icsInfo);
    for (band = 0; band < maxBand; band++) {  /* from low to high sfbs i.e. from low to high frequencies  */
      numUnitInBand = ((BandOffsets[band+1] - BandOffsets[band]) >> FOUR_LOG_DIV_TWO_LOG); /* get the number of units in current sfb */
      for (cntUnitInBand = numUnitInBand;  cntUnitInBand != 0; cntUnitInBand-- ) { /* for every unit in the band */
        for (window = 0, group = 0; group < numOfGroups; group++) {
          winGroupLen = GetWindowGroupLength(&pAacDecoderChannelInfo->icsInfo,group);
          for (groupWin = winGroupLen; groupWin != 0; groupWin--, window++) {
            cb = pCodeBook[group * 16 + band];
            if (cb != cb_prev) {
#if CHECK_VALID_HCR_INPUT /* short-block  1 of 2 */
              errDetectorInHcrSideinfoShrt(cb,numLine,&pHcr->decInOut.errorLog );
              if (pHcr->decInOut.errorLog != 0 ) {
                return ( pHcr->decInOut.errorLog );
              }
#endif
              *pCodeBk++ = cb;
              *pNumLinesInSec++ = numLine;
              numSection++;

              cb_prev = cb;
              numLine = LINES_PER_UNIT;
            }
            else {
              numLine += LINES_PER_UNIT;
            }
          }
        }
      }
    }

    numSection++;

#if CHECK_VALID_HCR_INPUT /* short-block  2 of 2 */
    errDetectorInHcrSideinfoShrt(cb,numLine,&pHcr->decInOut.errorLog );
    if ( numSection <= 0 || numSection > 1024/2 ) {
      pHcr->decInOut.errorLog |= NUM_SECT_OUT_OF_RANGE_SHORT_BLOCK;
    }
    errDetectorInHcrLengths(pHcr->decInOut.lengthOfLongestCodeword,
                            pHcr->decInOut.lengthOfReorderedSpectralData,
                           &pHcr->decInOut.errorLog);
    if (pHcr->decInOut.errorLog != 0 ) {
      return ( pHcr->decInOut.errorLog );
    }
#endif

    *pCodeBk = cb;
    *pNumLinesInSec = numLine;
    pHcr->decInOut.numSection = numSection;

  } else /* end short block prepare SI */
  {      /* long block */
#if CHECK_VALID_HCR_INPUT /* long-block  1 of 1 */
    errDetectorInHcrLengths(pHcr->decInOut.lengthOfLongestCodeword,
                            pHcr->decInOut.lengthOfReorderedSpectralData,
                           &pHcr->decInOut.errorLog);
    numSection     = pHcr->decInOut.numSection;
    pNumLinesInSec = pHcr->decInOut.pNumLineInSect;
    pCodeBk        = pHcr->decInOut.pCodebook;
    if ( numSection <= 0 || numSection > 64 ) {
      pHcr->decInOut.errorLog |= NUM_SECT_OUT_OF_RANGE_LONG_BLOCK;
      numSection = 0;
    }

    for ( i = numSection; i != 0; i-- )
    {
      cb = *pCodeBk++;

      if ( cb < ZERO_HCB || cb >= MAX_CB_CHECK || cb == BOOKSCL ) {
        pHcr->decInOut.errorLog |= CB_OUT_OF_RANGE_LONG_BLOCK;
      }

      numLine = *pNumLinesInSec++;
      /* FDK_ASSERT(numLine > 0); */

      if ( (numLine <= 0) || (numLine > 1024) ) {
        pHcr->decInOut.errorLog |= LINE_IN_SECT_OUT_OF_RANGE_LONG_BLOCK;
      }
    }
    if (pHcr->decInOut.errorLog != 0 ) {
      return ( pHcr->decInOut.errorLog );
    }
#endif  /* CHECK_VALID_HCR_INPUT */
  }

  pCodeBk = pHcr->decInOut.pCodebook;
  for ( i = 0; i < numSection; i++ ) {
    if (
         (*pCodeBk == NOISE_HCB)      ||
         (*pCodeBk == INTENSITY_HCB2) ||
         (*pCodeBk == INTENSITY_HCB))
    {
      *pCodeBk = 0;
    }
    pCodeBk++;
  }

  /* HCR-sideinfo-input is complete and seems to be valid */



  return ( pHcr->decInOut.errorLog );
}




#if USE_HCR_DUMMY

/*---------------------------------------------------------------------------------------------

     description:   This HCR - dummy  - function writes only a dirac-sequence in output buffer

-------------------------------------------------------------------------------------------- */
UINT HcrDecoder(H_HCR_INFO              pHcr,
                const CAacDecoderChannelInfo *pAacDecoderChannelInfo,
                HANDLE_FDK_BITSTREAM    bs)
{
  for (SHORT i=0; i < 1024; i++ ) {
    pHcr->decInOut.pQuantizedSpectralCoefficients->Long[i] = FL2FXCONST_DBL(0.0f);
    if ( i % 30 == 0) {
      pHcr->decInOut.pQuantizedSpectralCoefficients->Long[i] = (FIXP_DBL)HCR_DIRAC;
    }
  }
  return 0;
}

#else /* USE_HCR_DUMMY */

/*---------------------------------------------------------------------------------------------
     description:   This function decodes the codewords of the spectral coefficients from the
                    bitstream according to the HCR algorithm and stores the quantized spectral
                    coefficients in correct order in the output buffer.
-------------------------------------------------------------------------------------------- */

UINT HcrDecoder(H_HCR_INFO              pHcr,
                CAacDecoderChannelInfo *pAacDecoderChannelInfo,
                const SamplingRateInfo       *pSamplingRateInfo,
                HANDLE_FDK_BITSTREAM    bs)
{
  int pTmp1, pTmp2, pTmp3, pTmp4;
#if DETECT_TOO_LONG_CW_READS
  int        pTmp5;
#endif

  INT        bitCntOffst;
  UINT       saveBitCnt = FDKgetBitCnt(bs);   /* save bitstream position */

  HcrCalcNumCodeword(pHcr);

  HcrSortCodebookAndNumCodewordInSection(pHcr);

  HcrPrepareSegmentationGrid(pHcr);

  HcrExtendedSectionInfo(pHcr);

  if (( pHcr->decInOut.errorLog & HCR_FATAL_PCW_ERROR_MASK ) != 0 ) {
    return ( pHcr->decInOut.errorLog );  /* sideinfo is massively corrupt, return from HCR without having decoded anything */
  }

  DeriveNumberOfExtendedSortedSectionsInSets(pHcr->segmentInfo.numSegment,
                                             pHcr->sectionInfo.pNumExtendedSortedCodewordInSection,
                                             pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx,
                                             pHcr->sectionInfo.pNumExtendedSortedSectionsInSets,
                                             pHcr->sectionInfo.numExtendedSortedSectionsInSetsIdx);

  /* store */
  pTmp1 = pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx;
  pTmp2 = pHcr->sectionInfo.extendedSortedCodebookIdx;
  pTmp3 = pHcr->sectionInfo.numExtendedSortedSectionsInSetsIdx;
  pTmp4 = pHcr->decInOut.quantizedSpectralCoefficientsIdx;
#if DETECT_TOO_LONG_CW_READS
  pTmp5 = pHcr->sectionInfo.maxLenOfCbInExtSrtSecIdx;
#endif

  /* ------- decode meaningful PCWs ------ */
  DecodePCWs(bs, pHcr);

  if (( pHcr->decInOut.errorLog & HCR_FATAL_PCW_ERROR_MASK ) == 0 ) {
    /* ------ decode the non-PCWs -------- */
    DecodeNonPCWs(bs, pHcr);
  }


#if CHECK_SEGMENTATION_FINAL
  errDetectWithinSegmentationFinal(pHcr);
#endif

  /* restore */
  pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx = pTmp1;
  pHcr->sectionInfo.extendedSortedCodebookIdx             = pTmp2;
  pHcr->sectionInfo.numExtendedSortedSectionsInSetsIdx    = pTmp3;
  pHcr->decInOut.quantizedSpectralCoefficientsIdx         = pTmp4;
#if DETECT_TOO_LONG_CW_READS
  pHcr->sectionInfo.maxLenOfCbInExtSrtSecIdx              = pTmp5;
#endif

  HcrReorderQuantizedSpectralCoefficients(pHcr, pAacDecoderChannelInfo, pSamplingRateInfo);

  /* restore bitstream position */
  bitCntOffst = saveBitCnt - FDKgetBitCnt(bs);
  if( bitCntOffst ) {
    FDKpushBiDirectional(bs, bitCntOffst);
  }

  return ( pHcr->decInOut.errorLog );
}


#endif  /* USE_HCR_DUMMY */




/*---------------------------------------------------------------------------------------------
     description:   This function reorders the quantized spectral coefficients sectionwise for
                    long- and short-blocks and compares to the LAV (Largest Absolute Value of
                    the current codebook) -- a counter is incremented if there is an error
                    detected.
                    Additional for short-blocks a unit-based-deinterleaving is applied.
                    Moreover (for short blocks) the scaling is derived (compare plain huffman
                    decoder).
-------------------------------------------------------------------------------------------- */

static void HcrReorderQuantizedSpectralCoefficients(
        H_HCR_INFO pHcr, CAacDecoderChannelInfo *pAacDecoderChannelInfo,
        const SamplingRateInfo *pSamplingRateInfo
        )
{
  INT       qsc;
  UINT      abs_qsc;
  UINT      i,j;
  USHORT    numSpectralValuesInSection;
  FIXP_DBL *pTeVa;
  USHORT    lavErrorCnt = 0;

  UINT      numSection                         = pHcr->decInOut.numSection;
  SPECTRAL_PTR  pQuantizedSpectralCoefficientsBase = pHcr->decInOut.pQuantizedSpectralCoefficientsBase;
  FIXP_DBL *pQuantizedSpectralCoefficients     = SPEC_LONG(pHcr->decInOut.pQuantizedSpectralCoefficientsBase);
  const UCHAR    *pCbDimShift                  = pHcr->tableInfo.pCbDimShift;
  const USHORT   *pLargestAbsVal               = pHcr->tableInfo.pLargestAbsVal;
  UCHAR    *pSortedCodebook                    = pHcr->sectionInfo.pSortedCodebook;
  USHORT   *pNumSortedCodewordInSection        = pHcr->sectionInfo.pNumSortedCodewordInSection;
  USHORT   *pReorderOffset                     = pHcr->sectionInfo.pReorderOffset;
  FIXP_DBL *pTempValues                        = pHcr->segmentInfo.pTempValues;
  FIXP_DBL *pBak                               = pHcr->segmentInfo.pTempValues;

  FDKmemclear(pTempValues,1024*sizeof(FIXP_DBL));

  /* long and short: check if decoded huffman-values (quantized spectral coefficients) are within range */
  for ( i=numSection; i != 0; i-- ) {
    numSpectralValuesInSection = *pNumSortedCodewordInSection++ << pCbDimShift[*pSortedCodebook];
    pTeVa = &pTempValues[*pReorderOffset++];
    for( j = numSpectralValuesInSection; j != 0; j-- ) {
      qsc = *pQuantizedSpectralCoefficients++;
      abs_qsc = FDKabs(qsc);
#if VALID_LAV_ERROR_TRIGGER
      if ( abs_qsc <= pLargestAbsVal[*pSortedCodebook] ) {
        *pTeVa++ = (FIXP_DBL)qsc;  /* the qsc value is within range */
      }
      else { /* line is too high .. */
        if ( abs_qsc == Q_VALUE_INVALID ) { /* .. because of previous marking --> dont set LAV flag (would be confusing), just copy out the already marked value */
          *pTeVa++ = (FIXP_DBL) qsc;
        }
        else {                              /* .. because a too high value was decoded for this cb --> set LAV flag */
          *pTeVa++ = (FIXP_DBL) Q_VALUE_INVALID;
          lavErrorCnt += 1;
        }
      }
#else
      if ( abs_qsc <= pLargestAbsVal[*pSortedCodebook] ) {
        *pTeVa++ = qsc;
      }
      else {
        *pTeVa++ = Q_VALUE_INVALID;
        lavErrorCnt += 1;
      }
#endif
    }
    pSortedCodebook++;
  }

  if (!IsLongBlock(&pAacDecoderChannelInfo->icsInfo))
  {
    FIXP_DBL *pOut;
    FIXP_DBL  locMax;
    FIXP_DBL  tmp;
    SCHAR     groupoffset;
    SCHAR     group;
    SCHAR     band;
    SCHAR     groupwin;
    SCHAR     window;
    SCHAR     numWinGroup;
    SHORT     interm;
    SCHAR     numSfbTransm;
    SCHAR     winGroupLen;
    SHORT     index;
    INT       msb;
    INT       lsb;

    SHORT   *pScaleFacHcr = pAacDecoderChannelInfo->pDynData->aScaleFactor;
    SHORT   *pSfbSclHcr   = pAacDecoderChannelInfo->pDynData->aSfbScale;
    const SHORT *BandOffsets = GetScaleFactorBandOffsets(&pAacDecoderChannelInfo->icsInfo, pSamplingRateInfo);

    pBak = pHcr->segmentInfo.pTempValues;
    /* deinterleave unitwise for short blocks */
    for ( window = 0; window < (8); window++ ) {
      pOut = SPEC(pQuantizedSpectralCoefficientsBase, window, pAacDecoderChannelInfo->granuleLength);
      for ( i=0; i < (LINES_PER_UNIT_GROUP); i++ ) {
        pTeVa = pBak + (window << FOUR_LOG_DIV_TWO_LOG) + i * 32;	/* distance of lines between unit groups has to be constant for every framelength (32)!  */
        for ( j=(LINES_PER_UNIT); j != 0; j-- ) {
          *pOut++ = *pTeVa++;
        }
      }
    }

    /* short blocks only */
    /* derive global scaling-value for every sfb and every window (as it is done in plain-huffman-decoder at short blocks) */
    groupoffset = 0;

    numWinGroup = GetWindowGroups(&pAacDecoderChannelInfo->icsInfo);
    numSfbTransm = GetScaleFactorBandsTransmitted(&pAacDecoderChannelInfo->icsInfo);

    for (group = 0; group < numWinGroup; group++) {
      winGroupLen = GetWindowGroupLength(&pAacDecoderChannelInfo->icsInfo,group);
      for (band = 0; band < numSfbTransm; band++) {
        interm = group * 16 + band;
        msb = pScaleFacHcr[interm] >> 2;
        lsb = pScaleFacHcr[interm] & 3;
        for (groupwin = 0; groupwin < winGroupLen; groupwin++) {
          window = groupoffset + groupwin;
          pBak = SPEC(pQuantizedSpectralCoefficientsBase, window, pAacDecoderChannelInfo->granuleLength);
          locMax = FL2FXCONST_DBL(0.0f);
          for (index = BandOffsets[band]; index < BandOffsets[band+1]; index += LINES_PER_UNIT) {
            pTeVa = &pBak[index];
            for ( i = LINES_PER_UNIT; i != 0; i --) {
              tmp = (*pTeVa < FL2FXCONST_DBL(0.0f))? -*pTeVa++ : *pTeVa++;
              locMax = fixMax(tmp,locMax);
            }
          }
          if ( fixp_abs(locMax) > (FIXP_DBL)MAX_QUANTIZED_VALUE ) {
            locMax = (FIXP_DBL)MAX_QUANTIZED_VALUE;
          }
          pSfbSclHcr[window*16+band] = msb - GetScaleFromValue(locMax, lsb);  /* save global scale maxima in this sfb */
        }
      }
      groupoffset += GetWindowGroupLength(&pAacDecoderChannelInfo->icsInfo,group);
    }
  } else
  {
    /* copy straight for long-blocks */
    pQuantizedSpectralCoefficients = SPEC_LONG(pQuantizedSpectralCoefficientsBase);
    for ( i = 1024; i != 0; i-- ) {
      *pQuantizedSpectralCoefficients++ = *pBak++;
    }
  }

  if ( lavErrorCnt != 0 ) {
    pHcr->decInOut.errorLog |= LAV_VIOLATION;
  }
}


/*---------------------------------------------------------------------------------------------
     description:   This function calculates the number of codewords
                    for each section (numCodewordInSection) and the number of codewords
                    for all sections (numCodeword).
                    For zero and intensity codebooks a entry is also done in the variable
                    numCodewordInSection. It is assumed that the codebook is a two tuples
                    codebook. This is needed later for the calculation of the base addresses
                    for the reordering of the quantize spectral coefficients at the end of the
                    hcr tool.
                    The variable numCodeword contain the number of codewords which are really
                    in the bitstream. Zero or intensity codebooks does not increase the
                    variable numCodewords.
-----------------------------------------------------------------------------------------------
        return:   -
-------------------------------------------------------------------------------------------- */

static void HcrCalcNumCodeword(H_HCR_INFO pHcr)
{
  int     hcrSection;
  UINT    numCodeword;

  UINT    numSection            =   pHcr->decInOut.numSection;
  UCHAR  *pCodebook             =   pHcr->decInOut.pCodebook;
  SHORT  *pNumLineInSection     =   pHcr->decInOut.pNumLineInSect;
  const UCHAR  *pCbDimShift     =   pHcr->tableInfo.pCbDimShift;
  USHORT *pNumCodewordInSection =   pHcr->sectionInfo.pNumCodewordInSection;

  numCodeword = 0;
  for ( hcrSection = numSection; hcrSection != 0; hcrSection-- ) {
    *pNumCodewordInSection = *pNumLineInSection++ >> pCbDimShift[*pCodebook];
    if ( *pCodebook != 0 ) {
      numCodeword += *pNumCodewordInSection;
    }
    pNumCodewordInSection++;
    pCodebook++;
  }
  pHcr->sectionInfo.numCodeword = numCodeword;
}


/*---------------------------------------------------------------------------------------------
     description:   This function calculates the number
                    of sorted codebooks and sorts the codebooks and the numCodewordInSection
                    according to the priority.
-------------------------------------------------------------------------------------------- */

static void HcrSortCodebookAndNumCodewordInSection(H_HCR_INFO pHcr)
{

  UINT    i,j,k;
  UCHAR   temp;
  UINT    counter;
  UINT    startOffset;
  UINT    numZeroSection;
  UCHAR  *pDest;
  UINT    numSectionDec;

  UINT    numSection                  =   pHcr->decInOut.numSection;
  UCHAR  *pCodebook                   =   pHcr->decInOut.pCodebook;
  UCHAR  *pSortedCodebook             =   pHcr->sectionInfo.pSortedCodebook;
  USHORT *pNumCodewordInSection       =   pHcr->sectionInfo.pNumCodewordInSection;
  USHORT *pNumSortedCodewordInSection =   pHcr->sectionInfo.pNumSortedCodewordInSection;
  UCHAR  *pCodebookSwitch             =   pHcr->sectionInfo.pCodebookSwitch;
  USHORT *pReorderOffset              =   pHcr->sectionInfo.pReorderOffset;
  const UCHAR   *pCbPriority          =   pHcr->tableInfo.pCbPriority;
  const UCHAR   *pMinOfCbPair         =   pHcr->cbPairs.pMinOfCbPair;
  const UCHAR   *pMaxOfCbPair         =   pHcr->cbPairs.pMaxOfCbPair;
  const UCHAR   *pCbDimShift          =   pHcr->tableInfo.pCbDimShift;

  UINT searchStart = 0;

  /* calculate *pNumSortedSection and store the priorities in array pSortedCdebook */
  pDest = pSortedCodebook;
  numZeroSection = 0;
  for ( i=numSection; i != 0; i-- ) {
    if ( pCbPriority[*pCodebook] == 0 ) {
      numZeroSection += 1;
    }
    *pDest++ = pCbPriority[*pCodebook++];
  }
  pHcr->sectionInfo.numSortedSection = numSection - numZeroSection;    /* numSortedSection contains no zero or intensity section */
  pCodebook = pHcr->decInOut.pCodebook;

  /* sort priorities of the codebooks in array pSortedCdebook[] */
  numSectionDec = numSection - 1;
  if ( numSectionDec > 0 ) {
    counter = numSectionDec;
    for ( j=numSectionDec; j != 0; j-- ) {
      for ( i=0; i < counter; i++ ) {
        /* swap priorities */
        if ( pSortedCodebook[i+1] > pSortedCodebook[i] ) {
          temp                 = pSortedCodebook[i];
          pSortedCodebook[i]   = pSortedCodebook[i+1];
          pSortedCodebook[i+1] = temp;
        }
      }
      counter -= 1;
    }
  }

  /* clear codebookSwitch array */
  for ( i = numSection; i != 0; i--) {
    *pCodebookSwitch++ = 0;
  }
  pCodebookSwitch = pHcr->sectionInfo.pCodebookSwitch;

  /* sort sectionCodebooks and numCodwordsInSection and calculate pReorderOffst[j] */
  for ( j = 0; j < numSection; j++ ) {
    for ( i = searchStart; i < numSection; i++ ) {
      if ( pCodebookSwitch[i] == 0 && ( pMinOfCbPair[pSortedCodebook[j]] == pCodebook[i]  ||  pMaxOfCbPair[pSortedCodebook[j]] == pCodebook[i] )) {
        pCodebookSwitch[i] = 1;
        pSortedCodebook[j] = pCodebook[i];                              /* sort codebook */
        pNumSortedCodewordInSection[j] = pNumCodewordInSection[i];      /* sort NumCodewordInSection */

        startOffset = 0;
        for ( k = 0; k < i; k++ ) {                                     /* make entry in pReorderOffst */
          startOffset += pNumCodewordInSection[k] << pCbDimShift[pCodebook[k]];
        }
        pReorderOffset[j] = startOffset;                                /* offset for reordering the codewords */

        if(i == searchStart) {
          UINT k = i;
          while(pCodebookSwitch[k++] == 1) searchStart++;
        }
        break;
      }
    }
  }
}


/*---------------------------------------------------------------------------------------------
     description:   This function calculates the segmentation, which includes numSegment,
                    leftStartOfSegment, rightStartOfSegment and remainingBitsInSegment.
                    The segmentation could be visualized a as kind of 'overlay-grid' for the
                    bitstream-block holding the HCR-encoded quantized-spectral-coefficients.
-------------------------------------------------------------------------------------------- */

static void HcrPrepareSegmentationGrid(H_HCR_INFO pHcr)
{
  USHORT   i,j;
  USHORT   numSegment = 0;
  USHORT   segmentStart = 0;
  UCHAR    segmentWidth;
  UCHAR    lastSegmentWidth;
  UCHAR    sortedCodebook;
  UCHAR    endFlag = 0;
  USHORT   intermediateResult;

  SCHAR    lengthOfLongestCodeword       =   pHcr->decInOut.lengthOfLongestCodeword;
  SHORT    lengthOfReorderedSpectralData =   pHcr->decInOut.lengthOfReorderedSpectralData;
  UINT     numSortedSection              =   pHcr->sectionInfo.numSortedSection;
  UCHAR   *pSortedCodebook               =   pHcr->sectionInfo.pSortedCodebook;
  USHORT  *pNumSortedCodewordInSection   =   pHcr->sectionInfo.pNumSortedCodewordInSection;
  USHORT  *pLeftStartOfSegment           =   pHcr->segmentInfo.pLeftStartOfSegment;
  USHORT  *pRightStartOfSegment          =   pHcr->segmentInfo.pRightStartOfSegment;
  SCHAR   *pRemainingBitsInSegment       =   pHcr->segmentInfo.pRemainingBitsInSegment;
  USHORT   bitstreamIndex                =   pHcr->decInOut.bitstreamIndex;
  const UCHAR *pMaxCwLength              =   pHcr->tableInfo.pMaxCwLength;

  for ( i=numSortedSection; i != 0; i-- ) {
    sortedCodebook = *pSortedCodebook++;
    segmentWidth = FDKmin(pMaxCwLength[sortedCodebook],lengthOfLongestCodeword);

    for ( j = *pNumSortedCodewordInSection; j != 0 ; j-- ) {
      /* width allows a new segment */
      intermediateResult = bitstreamIndex + segmentStart;
      if ( (segmentStart + segmentWidth) <= lengthOfReorderedSpectralData ) {
        /* store segment start, segment length and increment the number of segments */
        *pLeftStartOfSegment++ = intermediateResult;
        *pRightStartOfSegment++ = intermediateResult + segmentWidth - 1;
        *pRemainingBitsInSegment++ = segmentWidth;
        segmentStart += segmentWidth;
        numSegment += 1;
      }
      /* width does not allow a new segment */
      else {
        /* correct the last segment length */
        pLeftStartOfSegment--;
        pRightStartOfSegment--;
        pRemainingBitsInSegment--;
        segmentStart = *pLeftStartOfSegment - bitstreamIndex;

        lastSegmentWidth = lengthOfReorderedSpectralData - segmentStart;
        *pRemainingBitsInSegment = lastSegmentWidth;
        *pRightStartOfSegment = bitstreamIndex + segmentStart + lastSegmentWidth - 1;
        endFlag = 1;
        break;
      }
    }
    pNumSortedCodewordInSection++;
    if (endFlag != 0) {
      break;
    }
  }
  pHcr->segmentInfo.numSegment = numSegment;

}


/*---------------------------------------------------------------------------------------------
     description:   This function adapts the sorted section boundaries to the boundaries of
                    segmentation. If the section lengths does not fit completely into the
                    current segment, the section is spitted into two so called 'extended
                    sections'. The extended-section-info (pNumExtendedSortedCodewordInSectin
                    and pExtendedSortedCodebook) is updated in this case.

-------------------------------------------------------------------------------------------- */

static void HcrExtendedSectionInfo(H_HCR_INFO pHcr)
{
  UINT    srtSecCnt = 0;         /* counter for sorted sections */
  UINT    xSrtScCnt = 0;         /* counter for extended sorted sections */
  UINT    remainNumCwInSortSec;
  UINT    inSegmentRemainNumCW;

  UINT    numSortedSection            = pHcr->sectionInfo.numSortedSection;
  UCHAR  *pSortedCodebook             = pHcr->sectionInfo.pSortedCodebook;
  USHORT *pNumSortedCodewordInSection = pHcr->sectionInfo.pNumSortedCodewordInSection;
  UCHAR  *pExtendedSortedCoBo         = pHcr->sectionInfo.pExtendedSortedCodebook;
  USHORT *pNumExtSortCwInSect         = pHcr->sectionInfo.pNumExtendedSortedCodewordInSection;
  UINT    numSegment                  = pHcr->segmentInfo.numSegment;
#if DETECT_TOO_LONG_CW_READS
  UCHAR  *pMaxLenOfCbInExtSrtSec      = pHcr->sectionInfo.pMaxLenOfCbInExtSrtSec;
  SCHAR   lengthOfLongestCodeword     = pHcr->decInOut.lengthOfLongestCodeword;
  const UCHAR   *pMaxCwLength         = pHcr->tableInfo.pMaxCwLength;
#endif

  remainNumCwInSortSec = pNumSortedCodewordInSection[srtSecCnt];
  inSegmentRemainNumCW = numSegment;

  while (srtSecCnt < numSortedSection) {
    if (inSegmentRemainNumCW < remainNumCwInSortSec) {

      pNumExtSortCwInSect[xSrtScCnt] = inSegmentRemainNumCW;
      pExtendedSortedCoBo[xSrtScCnt] = pSortedCodebook[srtSecCnt];

      remainNumCwInSortSec -= inSegmentRemainNumCW;
      inSegmentRemainNumCW = numSegment;
      /* data of a sorted section was not integrated in extended sorted section */
    }
    else if (inSegmentRemainNumCW == remainNumCwInSortSec) {
      pNumExtSortCwInSect[xSrtScCnt] = inSegmentRemainNumCW;
      pExtendedSortedCoBo[xSrtScCnt] = pSortedCodebook[srtSecCnt];

      srtSecCnt++;
      remainNumCwInSortSec = pNumSortedCodewordInSection[srtSecCnt];
      inSegmentRemainNumCW = numSegment;
      /* data of a sorted section was integrated in extended sorted section */
    }
    else { /* inSegmentRemainNumCW > remainNumCwInSortSec */
      pNumExtSortCwInSect[xSrtScCnt] = remainNumCwInSortSec;
      pExtendedSortedCoBo[xSrtScCnt] = pSortedCodebook[srtSecCnt];


      inSegmentRemainNumCW -= remainNumCwInSortSec;
      srtSecCnt++;
      remainNumCwInSortSec = pNumSortedCodewordInSection[srtSecCnt];
      /* data of a sorted section was integrated in extended sorted section */
    }
#if DETECT_TOO_LONG_CW_READS
    pMaxLenOfCbInExtSrtSec[xSrtScCnt] = FDKmin(pMaxCwLength[pExtendedSortedCoBo[xSrtScCnt]],lengthOfLongestCodeword);
#endif



    xSrtScCnt += 1;

    if ( xSrtScCnt >= (MAX_SFB_HCR + MAX_HCR_SETS) ) {
      pHcr->decInOut.errorLog |= EXTENDED_SORTED_COUNTER_OVERFLOW;
      return;
    }

  }
  pNumExtSortCwInSect[xSrtScCnt] = 0;

}


/*---------------------------------------------------------------------------------------------
     description:   This function calculates the number of extended sorted sections which
                    belong to the sets. Each set from set 0 (one and only set for the PCWs)
                    till to the last set gets a entry in the array to which
                    'pNumExtendedSortedSectinsInSets' points to.

                    Calculation: The entrys in pNumExtendedSortedCodewordInSectin are added
                    untill the value numSegment is reached. Then the sum_variable is cleared
                    and the calculation starts from the beginning. As much extended sorted
                    Sections are summed up to reach the value numSegment, as much is the
                    current entry in *pNumExtendedSortedCodewordInSectin.
-------------------------------------------------------------------------------------------- */
static void DeriveNumberOfExtendedSortedSectionsInSets(UINT    numSegment,
                                                       USHORT *pNumExtendedSortedCodewordInSection,
                                                       int     numExtendedSortedCodewordInSectionIdx,
                                                       USHORT *pNumExtendedSortedSectionsInSets,
                                                       int     numExtendedSortedSectionsInSetsIdx)
{
  USHORT  counter = 0;
  UINT    cwSum   = 0;
  USHORT *pNumExSortCwInSec   = pNumExtendedSortedCodewordInSection;
  USHORT *pNumExSortSecInSets = pNumExtendedSortedSectionsInSets;

  while (pNumExSortCwInSec[numExtendedSortedCodewordInSectionIdx] != 0)
  {
    cwSum += pNumExSortCwInSec[numExtendedSortedCodewordInSectionIdx];
    numExtendedSortedCodewordInSectionIdx++;
    if (numExtendedSortedCodewordInSectionIdx >= (MAX_SFB_HCR+MAX_HCR_SETS)) {
      return;
    }
    if (cwSum > numSegment) {
      return;
    }
    counter++;
    if (counter > 1024/4) {
      return;
    }
    if ( cwSum == numSegment ) {
      pNumExSortSecInSets[numExtendedSortedSectionsInSetsIdx] = counter;
      numExtendedSortedSectionsInSetsIdx++;
      if (numExtendedSortedSectionsInSetsIdx >= MAX_HCR_SETS) {
        return;
      }
      counter = 0;
      cwSum = 0;
    }
  }
  pNumExSortSecInSets[numExtendedSortedSectionsInSetsIdx] = counter;   /* save last entry for the last - probably shorter - set */
}


/*---------------------------------------------------------------------------------------------
     description:   This function decodes all priority codewords (PCWs) in a spectrum (within
                    set 0). The calculation of the PCWs is managed in two loops. The
                    loopcounter of the outer loop is set to the first value pointer
                    pNumExtendedSortedSectionsInSets points to. This value represents the
                    number of extended sorted sections within set 0.
                    The loopcounter of the inner loop is set to the first value pointer
                    pNumExtendedSortedCodewordInSectin points to. The value represents the
                    number of extended sorted codewords in sections (the original sections have
                    been splitted to go along with the borders of the sets).
                    Each time the number of the extended sorted codewords in sections are de-
                    coded, the pointer 'pNumExtendedSortedCodewordInSectin' is incremented by
                    one.
-------------------------------------------------------------------------------------------- */
static void DecodePCWs(HANDLE_FDK_BITSTREAM bs, H_HCR_INFO pHcr)
{
  UINT         i;
  USHORT       extSortSec;
  USHORT       curExtSortCwInSec;
  UCHAR        codebook;
  UCHAR        dimension;
  const UINT  *pCurrentTree;
  const SCHAR *pQuantValBase;
  const SCHAR *pQuantVal;

  USHORT      *pNumExtendedSortedCodewordInSection = pHcr->sectionInfo.pNumExtendedSortedCodewordInSection;
  int          numExtendedSortedCodewordInSectionIdx = pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx;
  UCHAR       *pExtendedSortedCodebook             = pHcr->sectionInfo.pExtendedSortedCodebook;
  int          extendedSortedCodebookIdx           = pHcr->sectionInfo.extendedSortedCodebookIdx;
  USHORT      *pNumExtendedSortedSectionsInSets    = pHcr->sectionInfo.pNumExtendedSortedSectionsInSets;
  int          numExtendedSortedSectionsInSetsIdx  = pHcr->sectionInfo.numExtendedSortedSectionsInSetsIdx;
  FIXP_DBL    *pQuantizedSpectralCoefficients      = SPEC_LONG(pHcr->decInOut.pQuantizedSpectralCoefficientsBase);
  int          quantizedSpectralCoefficientsIdx    = pHcr->decInOut.quantizedSpectralCoefficientsIdx;
  USHORT      *pLeftStartOfSegment                 = pHcr->segmentInfo.pLeftStartOfSegment;
  SCHAR       *pRemainingBitsInSegment             = pHcr->segmentInfo.pRemainingBitsInSegment;
#if DETECT_TOO_LONG_CW_READS
  UCHAR       *pMaxLenOfCbInExtSrtSec              = pHcr->sectionInfo.pMaxLenOfCbInExtSrtSec;
  int          maxLenOfCbInExtSrtSecIdx            = pHcr->sectionInfo.maxLenOfCbInExtSrtSecIdx;
  UCHAR        maxAllowedCwLen;
  int          numDecodedBits;
#endif
  const UCHAR *pCbDimension =  pHcr->tableInfo.pCbDimension;
  const UCHAR *pCbSign      =  pHcr->tableInfo.pCbSign;

  /* clear result array */
  //pQSC = &pQuantizedSpectralCoefficients[quantizedSpectralCoefficientsIdx];
  //pQSC = *pQuantizedSpectralCoefficients;

  FDKmemclear(pQuantizedSpectralCoefficients+quantizedSpectralCoefficientsIdx,1024*sizeof(FIXP_DBL));

  /* decode all PCWs in the extended sorted section(s) belonging to set 0 */
  for ( extSortSec = pNumExtendedSortedSectionsInSets[numExtendedSortedSectionsInSetsIdx]; extSortSec != 0; extSortSec-- ) {

    codebook        =  pExtendedSortedCodebook[extendedSortedCodebookIdx];   /* get codebook for this extended sorted section and increment ptr to cb of next ext. sort sec */
    extendedSortedCodebookIdx++;
    if (extendedSortedCodebookIdx >= (MAX_SFB_HCR+MAX_HCR_SETS)) {
      return;
    }
    dimension       =  pCbDimension[codebook];         /* get dimension of codebook of this extended sort. sec. */
    pCurrentTree    =  aHuffTable  [codebook];         /* convert codebook to pointer to QSCs */
    pQuantValBase   =  aQuantTable [codebook];         /* convert codebook to index to table of QSCs */
#if DETECT_TOO_LONG_CW_READS
    maxAllowedCwLen = pMaxLenOfCbInExtSrtSec[maxLenOfCbInExtSrtSecIdx];
    maxLenOfCbInExtSrtSecIdx++;
    if (maxLenOfCbInExtSrtSecIdx >= (MAX_SFB_HCR+MAX_HCR_SETS)) {
      return;
    }
#endif

    /* switch for decoding with different codebooks: */
    if ( pCbSign[codebook] == 0 ) {                    /* no sign bits follow after the codeword-body */
      /* PCW_BodyONLY */
      /*==============*/

      for ( curExtSortCwInSec = pNumExtendedSortedCodewordInSection[numExtendedSortedCodewordInSectionIdx] ; curExtSortCwInSec != 0; curExtSortCwInSec--) {
        numDecodedBits = 0;

        /* decode PCW_BODY */
        pQuantVal = DecodePCW_Body(bs,
                                   pCurrentTree,
                                   pQuantValBase,
                                   pLeftStartOfSegment,
                                   pRemainingBitsInSegment,
                                  &numDecodedBits
                                  );

        /* result is written out here because NO sign bits follow the body */
        for( i=dimension; i != 0 ; i-- ) {
          pQuantizedSpectralCoefficients[quantizedSpectralCoefficientsIdx] = (FIXP_DBL) *pQuantVal++;                               /* write quant. spec. coef. into spectrum; sign is already valid */
          quantizedSpectralCoefficientsIdx++;
          if (quantizedSpectralCoefficientsIdx >= 1024) {
            return;
          }
        }

        /* one more PCW should be decoded */

#if DETECT_TOO_LONG_CW_READS
        if ( maxAllowedCwLen < (numDecodedBits + ERROR_PCW_BODY_ONLY_TOO_LONG) ) {
          pHcr->decInOut.errorLog |= TOO_MANY_PCW_BODY_BITS_DECODED;
        }
#endif

#if CHECK_SEGMENTATION_IMMEDIATELY
        if (1 == errDetectPcwSegmentation(*pRemainingBitsInSegment-ERROR_PCW_BODY,pHcr,PCW_BODY,pQuantizedSpectralCoefficients+quantizedSpectralCoefficientsIdx-dimension,dimension)) {
          return;
        }
#endif
        pLeftStartOfSegment++;                                             /* update pointer for decoding the next PCW */
        pRemainingBitsInSegment++;                                         /* update pointer for decoding the next PCW */
      }
    }
    else if (( pCbSign[codebook] == 1 ) && ( codebook < 11 )) {  /* possibly there follow 1,2,3 or 4 sign bits after the codeword-body */
      /* PCW_Body and PCW_Sign */
      /*=======================*/

      for ( curExtSortCwInSec = pNumExtendedSortedCodewordInSection[numExtendedSortedCodewordInSectionIdx] ; curExtSortCwInSec != 0; curExtSortCwInSec--)
      {
        int err;
        numDecodedBits  = 0;

        pQuantVal = DecodePCW_Body(bs,
                                   pCurrentTree,
                                   pQuantValBase,
                                   pLeftStartOfSegment,
                                   pRemainingBitsInSegment,
                                  &numDecodedBits
                                  );

        err = DecodePCW_Sign( bs,
                              dimension,
                              pQuantVal,
                              pQuantizedSpectralCoefficients,
                             &quantizedSpectralCoefficientsIdx,
                              pLeftStartOfSegment,
                              pRemainingBitsInSegment,
                             &numDecodedBits
                             );
        if (err != 0) {
          return;
        }
        /* one more PCW should be decoded */

#if DETECT_TOO_LONG_CW_READS
        if ( maxAllowedCwLen < (numDecodedBits + ERROR_PCW_BODY_SIGN_TOO_LONG) ) {
          pHcr->decInOut.errorLog |= TOO_MANY_PCW_BODY_SIGN_BITS_DECODED;
        }
#endif

#if CHECK_SEGMENTATION_IMMEDIATELY
        if (1 == errDetectPcwSegmentation(*pRemainingBitsInSegment-ERROR_PCW_BODY_SIGN,pHcr,PCW_BODY_SIGN, pQuantizedSpectralCoefficients+quantizedSpectralCoefficientsIdx-dimension,dimension)) {
          return;
        }
#endif
        pLeftStartOfSegment++;
        pRemainingBitsInSegment++;
      }
    }
    else if (( pCbSign[codebook] == 1 ) && ( codebook >= 11 )) { /* possibly there follow some sign bits and maybe one or two escape sequences after the cw-body */
      /* PCW_Body, PCW_Sign and maybe PCW_Escape */
      /*=========================================*/

      for ( curExtSortCwInSec = pNumExtendedSortedCodewordInSection[numExtendedSortedCodewordInSectionIdx] ; curExtSortCwInSec != 0; curExtSortCwInSec--)
      {
        int err;
        numDecodedBits  = 0;

        /* decode PCW_BODY */
        pQuantVal = DecodePCW_Body(bs,
                                   pCurrentTree,
                                   pQuantValBase,
                                   pLeftStartOfSegment,
                                   pRemainingBitsInSegment,
                                  &numDecodedBits
                                  );

        err = DecodePCW_Sign( bs,
                              dimension,
                              pQuantVal,
                              pQuantizedSpectralCoefficients,
                             &quantizedSpectralCoefficientsIdx,
                              pLeftStartOfSegment,
                              pRemainingBitsInSegment,
                             &numDecodedBits
                             );
        if (err != 0) {
          return;
        }

        /* decode PCW_ESCAPE if present */
        quantizedSpectralCoefficientsIdx -= DIMENSION_OF_ESCAPE_CODEBOOK;

        if ( fixp_abs(pQuantizedSpectralCoefficients[quantizedSpectralCoefficientsIdx]) == (FIXP_DBL)ESCAPE_VALUE ) {
          pQuantizedSpectralCoefficients[quantizedSpectralCoefficientsIdx] = (FIXP_DBL) DecodeEscapeSequence( bs,
                                                   pQuantizedSpectralCoefficients[quantizedSpectralCoefficientsIdx],
                                                   pLeftStartOfSegment,
                                                   pRemainingBitsInSegment,
                                                  &numDecodedBits
                                                 );
        }
        quantizedSpectralCoefficientsIdx++;
        if (quantizedSpectralCoefficientsIdx >= 1024) {
          return;
        }

        if ( fixp_abs(pQuantizedSpectralCoefficients[quantizedSpectralCoefficientsIdx]) == (FIXP_DBL)ESCAPE_VALUE ) {
          pQuantizedSpectralCoefficients[quantizedSpectralCoefficientsIdx] = (FIXP_DBL) DecodeEscapeSequence( bs,
                                                   pQuantizedSpectralCoefficients[quantizedSpectralCoefficientsIdx],
                                                   pLeftStartOfSegment,
                                                   pRemainingBitsInSegment,
                                                  &numDecodedBits
                                                 );
        }
        quantizedSpectralCoefficientsIdx++;
        if (quantizedSpectralCoefficientsIdx >= 1024) {
          return;
        }

        /* one more PCW should be decoded */

#if DETECT_TOO_LONG_CW_READS
        if ( maxAllowedCwLen < (numDecodedBits + ERROR_PCW_BODY_SIGN_ESC_TOO_LONG) ) {
          pHcr->decInOut.errorLog |= TOO_MANY_PCW_BODY_SIGN_ESC_BITS_DECODED;
        }
#endif

#if CHECK_SEGMENTATION_IMMEDIATELY
        if (1 == errDetectPcwSegmentation(*pRemainingBitsInSegment-ERROR_PCW_BODY_SIGN_ESC,pHcr,PCW_BODY_SIGN_ESC,pQuantizedSpectralCoefficients+quantizedSpectralCoefficientsIdx-DIMENSION_OF_ESCAPE_CODEBOOK,DIMENSION_OF_ESCAPE_CODEBOOK)) {
          return;
        }
#endif
        pLeftStartOfSegment++;
        pRemainingBitsInSegment++;
      }
    }

    /* all PCWs belonging to this extended section should be decoded */
    numExtendedSortedCodewordInSectionIdx++;
    if (numExtendedSortedCodewordInSectionIdx >= MAX_SFB_HCR+MAX_HCR_SETS) {
      return;
    }
  }
  /* all PCWs should be decoded */

  numExtendedSortedSectionsInSetsIdx++;
  if (numExtendedSortedSectionsInSetsIdx >= MAX_HCR_SETS) {
    return;
  }

  /* Write back indexes into structure */
  pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx = numExtendedSortedCodewordInSectionIdx;
  pHcr->sectionInfo.extendedSortedCodebookIdx = extendedSortedCodebookIdx;
  pHcr->sectionInfo.numExtendedSortedSectionsInSetsIdx = numExtendedSortedSectionsInSetsIdx;
  pHcr->decInOut.quantizedSpectralCoefficientsIdx = quantizedSpectralCoefficientsIdx;
  pHcr->sectionInfo.maxLenOfCbInExtSrtSecIdx = maxLenOfCbInExtSrtSecIdx;
}

#if CHECK_SEGMENTATION_IMMEDIATELY
/*---------------------------------------------------------------------------------------------
     description:   This function checks immediately after every decoded PCW, whether out of
                    the current segment too many bits have been read or not. If an error occurrs,
                    probably the sideinfo or the HCR-bitstream block holding the huffman
                    encoded quantized spectral coefficients is distorted. In this case the two
                    or four quantized spectral coefficients belonging to the current codeword
                    are marked (for being detected by concealment later).
-------------------------------------------------------------------------------------------- */
static UCHAR errDetectPcwSegmentation(SCHAR       remainingBitsInSegment,
                                      H_HCR_INFO  pHcr,
                                      PCW_TYPE    kind,
                                      FIXP_DBL   *qsc_base_of_cw,
                                      UCHAR       dimension)
{
  SCHAR i;
  if ( remainingBitsInSegment < 0 ) {
    /* log the error */
    switch (kind) {
    case PCW_BODY:
        pHcr->decInOut.errorLog |= SEGMENT_OVERRIDE_ERR_PCW_BODY;
        break;
    case PCW_BODY_SIGN:
        pHcr->decInOut.errorLog |= SEGMENT_OVERRIDE_ERR_PCW_BODY_SIGN;
        break;
    case PCW_BODY_SIGN_ESC:
        pHcr->decInOut.errorLog |= SEGMENT_OVERRIDE_ERR_PCW_BODY_SIGN_ESC;
        break;
    }
    /* mark the erred lines */
    for ( i = dimension; i != 0; i-- ) {
      *qsc_base_of_cw++ = (FIXP_DBL) Q_VALUE_INVALID;
    }
    return 1;
  }
  return 0;
}
#endif

#if CHECK_SEGMENTATION_FINAL
/*---------------------------------------------------------------------------------------------
     description:   This function checks if all segments are empty after decoding. There
                    are _no lines markded_ as invalid because it could not be traced back
                    where from the remaining bits are.
-------------------------------------------------------------------------------------------- */
static void errDetectWithinSegmentationFinal(H_HCR_INFO pHcr)
{
  UCHAR   segmentationErrorFlag   = 0;
  USHORT  i;
  SCHAR  *pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
  UINT    numSegment              = pHcr->segmentInfo.numSegment;

  for ( i=numSegment; i != 0 ; i--) {
    if (*pRemainingBitsInSegment++ != 0) {
      segmentationErrorFlag = 1;
    }
  }
  if (segmentationErrorFlag == 1) {
    pHcr->decInOut.errorLog |= BIT_IN_SEGMENTATION_ERROR;
  }
}
#endif

/*---------------------------------------------------------------------------------------------
     description:   This function walks one step within the decoding tree. Which branch is
                    taken depends on the decoded carryBit input parameter.
-------------------------------------------------------------------------------------------- */
void  CarryBitToBranchValue(UCHAR  carryBit,
                            UINT   treeNode,
                            UINT  *branchValue,
                            UINT  *branchNode)
{
  if (carryBit == 0) {
    *branchNode = (treeNode & MASK_LEFT) >> LEFT_OFFSET; /* MASK_LEFT:  00FFF000 */
  }
  else {
    *branchNode = treeNode & MASK_RIGHT;                 /* MASK_RIGHT: 00000FFF */
  }

  *branchValue = *branchNode & CLR_BIT_10;               /* clear bit 10 (if set) */
}


/*---------------------------------------------------------------------------------------------
     description:   Decodes the body of a priority codeword (PCW)
-----------------------------------------------------------------------------------------------
        return:   - return value is pointer to first of two or four quantized spectral
                    coefficients
-------------------------------------------------------------------------------------------- */
static const SCHAR *DecodePCW_Body(HANDLE_FDK_BITSTREAM  bs,
                                   const UINT           *pCurrentTree,
                                   const SCHAR          *pQuantValBase,
                                         USHORT         *pLeftStartOfSegment,
                                         SCHAR          *pRemainingBitsInSegment,
                                         int            *pNumDecodedBits
                                  )
{
  UCHAR carryBit;
  UINT  branchNode;
  UINT  treeNode;
  UINT  branchValue;
  const  SCHAR *pQuantVal;

  /* decode PCW_BODY */
  treeNode = *pCurrentTree;                                                 /* get first node of current tree belonging to current codebook */

  /* decode whole PCW-codeword-body */
  while (1) {

    carryBit = HcrGetABitFromBitstream(bs,
                                       pLeftStartOfSegment,
                                       pLeftStartOfSegment,                 /* dummy */
                                       FROM_LEFT_TO_RIGHT);
    *pRemainingBitsInSegment -= 1;
    *pNumDecodedBits += 1;

    CarryBitToBranchValue(carryBit,
                          treeNode,
                          &branchValue,
                          &branchNode);

    if ((branchNode & TEST_BIT_10) == TEST_BIT_10) {                        /* test bit 10 ; if set --> codeword-body is complete */
      break;                                                                /* end of branch in tree reached  i.e. a whole PCW-Body is decoded */
    }
    else {
      treeNode = *(pCurrentTree + branchValue);                             /* update treeNode for further step in decoding tree */
    }

  }

  pQuantVal = pQuantValBase + branchValue;                                  /* update pointer to valid first of 2 or 4 quantized values */

  return pQuantVal;
}


/*---------------------------------------------------------------------------------------------
     description:   This function decodes one escape sequence. In case of a escape codebook
                    and in case of the absolute value of the quantized spectral value == 16,
                    a escapeSequence is decoded in two steps:
                      1. escape prefix
                      2. escape word
-------------------------------------------------------------------------------------------- */

static INT  DecodeEscapeSequence(HANDLE_FDK_BITSTREAM  bs,
                                 INT                   quantSpecCoef,
                                 USHORT               *pLeftStartOfSegment,
                                 SCHAR                *pRemainingBitsInSegment,
                                 int                  *pNumDecodedBits
                                )
{
  UINT  i;
  INT   sign;
  UINT  escapeOnesCounter = 0;
  UINT  carryBit;
  INT   escape_word = 0;

  /* decode escape prefix */
  while (1) {
    carryBit = HcrGetABitFromBitstream(bs,
                                       pLeftStartOfSegment,
                                       pLeftStartOfSegment,                /* dummy */
                                       FROM_LEFT_TO_RIGHT);
    *pRemainingBitsInSegment -= 1;
    *pNumDecodedBits += 1;

    if (carryBit != 0) {
      escapeOnesCounter += 1;
    }
    else {
      escapeOnesCounter += 4;
      break;
    }
  }

  /* decode escape word */
  for( i=escapeOnesCounter; i != 0 ; i-- ) {
    carryBit = HcrGetABitFromBitstream(bs,
                                       pLeftStartOfSegment,
                                       pLeftStartOfSegment,                /* dummy */
                                       FROM_LEFT_TO_RIGHT);
    *pRemainingBitsInSegment -= 1;
    *pNumDecodedBits += 1;

    escape_word <<= 1;
    escape_word = escape_word | carryBit;
  }

  sign = (quantSpecCoef >= 0) ? 1 : -1;

  quantSpecCoef = sign * (((INT ) 1 << escapeOnesCounter) + escape_word);

  return quantSpecCoef;
}


/*---------------------------------------------------------------------------------------------
     description:   Decodes the Signbits of a priority codeword (PCW) and writes out the
                    resulting quantized spectral values into unsorted sections
-----------------------------------------------------------------------------------------------
        output:   - two or four lines at position in corresponding section (which are not
                    located at the desired position, i.e. they must be reordered in the last
                    of eight function of HCR)
-----------------------------------------------------------------------------------------------
        return:   - updated pQuantSpecCoef pointer (to next empty storage for a line)
-------------------------------------------------------------------------------------------- */
static int DecodePCW_Sign(HANDLE_FDK_BITSTREAM  bs,
                          UINT                  codebookDim,
                          const SCHAR          *pQuantVal,
                          FIXP_DBL             *pQuantSpecCoef,
                          int                  *quantSpecCoefIdx,
                          USHORT               *pLeftStartOfSegment,
                          SCHAR                *pRemainingBitsInSegment,
                          int                  *pNumDecodedBits
                         )
{
  UINT     i;
  UINT     carryBit;
  INT      quantSpecCoef;

  for( i=codebookDim; i != 0 ; i-- ) {
    quantSpecCoef = *pQuantVal++;
    if (quantSpecCoef != 0) {
      carryBit = HcrGetABitFromBitstream(bs,
                                         pLeftStartOfSegment,
                                         pLeftStartOfSegment,    /* dummy */
                                         FROM_LEFT_TO_RIGHT);
      *pRemainingBitsInSegment -= 1;
      *pNumDecodedBits += 1;
      if (*pRemainingBitsInSegment < 0 || *pNumDecodedBits >= (1024>>1)) {
        return -1;
      }

      /* adapt sign of values according to the decoded sign bit */
      if (carryBit != 0) {
        pQuantSpecCoef[*quantSpecCoefIdx] = -(FIXP_DBL)quantSpecCoef;
      }
      else {
        pQuantSpecCoef[*quantSpecCoefIdx] =  (FIXP_DBL)quantSpecCoef;
      }
    }
    else {
      pQuantSpecCoef[*quantSpecCoefIdx] = FL2FXCONST_DBL(0.0f);
    }
    *quantSpecCoefIdx += 1 ;
    if (*quantSpecCoefIdx >= 1024) {
      return -1;
    }
  }
  return 0;
}


/*---------------------------------------------------------------------------------------------
     description:   Mutes spectral lines which have been marked as erroneous (Q_VALUE_INVALID)
-------------------------------------------------------------------------------------------- */
void HcrMuteErroneousLines(H_HCR_INFO hHcr)
{
  int c;
  FIXP_DBL *RESTRICT pLong = SPEC_LONG(hHcr->decInOut.pQuantizedSpectralCoefficientsBase);

  /* if there is a line with value Q_VALUE_INVALID mute it */
  for (c = 0; c < 1024; c++) {
    if (pLong[c] == (FIXP_DBL)Q_VALUE_INVALID) {
#if HCR_LISTEN_TO_MUTED_LINES
      pLong[c] = (FIXP_DBL)HCR_DIRAC;   /* marking */
#else
      pLong[c] = FL2FXCONST_DBL(0.0f);  /* muting */
#endif
    }
  }
}


/*---------------------------------------------------------------------------------------------
     description:   Sets global HCR type
-------------------------------------------------------------------------------------------- */
void setHcrType(H_HCR_INFO hHcr, MP4_ELEMENT_ID type)
{
  switch (type) {
    case ID_SCE:
      hHcr->globalHcrType = 0;
      break;
    case ID_CPE:
      hHcr->globalHcrType = 1;
      break;
    default:
      break;
  }
}


/*---------------------------------------------------------------------------------------------
     description:   Gets HCR type from the HCR data structure
-----------------------------------------------------------------------------------------------
        return:   - global HCR type
-------------------------------------------------------------------------------------------- */
INT getHcrType(H_HCR_INFO hHcr)
{
  return hHcr->globalHcrType;
}