/* ----------------------------------------------------------------------------- Software License for The Fraunhofer FDK AAC Codec Library for Android © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. All rights reserved. 1. INTRODUCTION The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. This FDK AAC Codec software is intended to be used on a wide variety of Android devices. AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part of the MPEG specifications. Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners individually for the purpose of encoding or decoding bit streams in products that are compliant with the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec software may already be covered under those patent licenses when it is used for those licensed purposes only. Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional applications information and documentation. 2. COPYRIGHT LICENSE Redistribution and use in source and binary forms, with or without modification, are permitted without payment of copyright license fees provided that you satisfy the following conditions: You must retain the complete text of this software license in redistributions of the FDK AAC Codec or your modifications thereto in source code form. You must retain the complete text of this software license in the documentation and/or other materials provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. You must make available free of charge copies of the complete source code of the FDK AAC Codec and your modifications thereto to recipients of copies in binary form. The name of Fraunhofer may not be used to endorse or promote products derived from this library without prior written permission. You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec software or your modifications thereto. Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software and the date of any change. For modified versions of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." 3. NO PATENT LICENSE NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with respect to this software. You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized by appropriate patent licenses. 4. DISCLAIMER This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, including but not limited to procurement of substitute goods or services; loss of use, data, or profits, or business interruption, however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence), arising in any way out of the use of this software, even if advised of the possibility of such damage. 5. CONTACT INFORMATION Fraunhofer Institute for Integrated Circuits IIS Attention: Audio and Multimedia Departments - FDK AAC LL Am Wolfsmantel 33 91058 Erlangen, Germany www.iis.fraunhofer.de/amm amm-info@iis.fraunhofer.de ----------------------------------------------------------------------------- */ /*********************** MPEG surround encoder library ************************* Author(s): Max Neuendorf Description: Encoder Library Interface Detect Onset in current frame *******************************************************************************/ /**************************************************************************/ /** \file Description of file contents ******************************************************************************/ /* Includes ******************************************************************/ #include "sacenc_onsetdetect.h" #include "genericStds.h" #include "sacenc_vectorfunctions.h" /* Defines *******************************************************************/ #define SPACE_ONSET_THRESHOLD (3.0) #define SPACE_ONSET_THRESHOLD_SF (3) #define SPACE_ONSET_THRESHOLD_SQUARE \ (FL2FXCONST_DBL((1.0 / (SPACE_ONSET_THRESHOLD * SPACE_ONSET_THRESHOLD)) * \ (float)(1 << SPACE_ONSET_THRESHOLD_SF))) /* Data Types ****************************************************************/ struct ONSET_DETECT { INT maxTimeSlots; INT minTransientDistance; INT avgEnergyDistance; INT lowerBoundOnsetDetection; INT upperBoundOnsetDetection; FIXP_DBL *pEnergyHist__FDK; SCHAR *pEnergyHistScale; SCHAR avgEnergyDistanceScale; }; /* Constants *****************************************************************/ /* Function / Class Declarations *********************************************/ /* Function / Class Definition ***********************************************/ FDK_SACENC_ERROR fdk_sacenc_onsetDetect_Open(HANDLE_ONSET_DETECT *phOnset, const UINT maxTimeSlots) { FDK_SACENC_ERROR error = SACENC_OK; HANDLE_ONSET_DETECT hOnset = NULL; if (NULL == phOnset) { error = SACENC_INVALID_HANDLE; } else { /* Memory Allocation */ FDK_ALLOCATE_MEMORY_1D(hOnset, 1, struct ONSET_DETECT); FDK_ALLOCATE_MEMORY_1D(hOnset->pEnergyHist__FDK, 16 + maxTimeSlots, FIXP_DBL); FDK_ALLOCATE_MEMORY_1D(hOnset->pEnergyHistScale, 16 + maxTimeSlots, SCHAR); hOnset->maxTimeSlots = maxTimeSlots; hOnset->minTransientDistance = 8; /* minimum distance between detected transients */ hOnset->avgEnergyDistance = 16; /* average energy distance */ hOnset->avgEnergyDistanceScale = 4; *phOnset = hOnset; } return error; bail: fdk_sacenc_onsetDetect_Close(&hOnset); return ((SACENC_OK == error) ? SACENC_MEMORY_ERROR : error); } FDK_SACENC_ERROR fdk_sacenc_onsetDetect_Init( HANDLE_ONSET_DETECT hOnset, const ONSET_DETECT_CONFIG *const pOnsetDetectConfig, const UINT initFlags) { FDK_SACENC_ERROR error = SACENC_OK; if ((NULL == hOnset) || (pOnsetDetectConfig == NULL)) { error = SACENC_INVALID_HANDLE; } else { if ((pOnsetDetectConfig->maxTimeSlots > hOnset->maxTimeSlots) || (pOnsetDetectConfig->upperBoundOnsetDetection < hOnset->lowerBoundOnsetDetection)) { error = SACENC_INVALID_CONFIG; goto bail; } hOnset->maxTimeSlots = pOnsetDetectConfig->maxTimeSlots; hOnset->lowerBoundOnsetDetection = pOnsetDetectConfig->lowerBoundOnsetDetection; hOnset->upperBoundOnsetDetection = pOnsetDetectConfig->upperBoundOnsetDetection; hOnset->minTransientDistance = 8; /* minimum distance between detected transients */ hOnset->avgEnergyDistance = 16; /* average energy distance */ hOnset->avgEnergyDistanceScale = 4; /* Init / Reset */ if (initFlags) { int i; for (i = 0; i < hOnset->avgEnergyDistance + hOnset->maxTimeSlots; i++) hOnset->pEnergyHistScale[i] = -(DFRACT_BITS - 3); FDKmemset_flex( hOnset->pEnergyHist__FDK, FL2FXCONST_DBL(SACENC_FLOAT_EPSILON * (1 << (DFRACT_BITS - 3))), hOnset->avgEnergyDistance + hOnset->maxTimeSlots); } } bail: return error; } /**************************************************************************/ FDK_SACENC_ERROR fdk_sacenc_onsetDetect_Close(HANDLE_ONSET_DETECT *phOnset) { FDK_SACENC_ERROR error = SACENC_OK; if ((NULL != phOnset) && (NULL != *phOnset)) { if (NULL != (*phOnset)->pEnergyHist__FDK) { FDKfree((*phOnset)->pEnergyHist__FDK); } (*phOnset)->pEnergyHist__FDK = NULL; if (NULL != (*phOnset)->pEnergyHistScale) { FDKfree((*phOnset)->pEnergyHistScale); } (*phOnset)->pEnergyHistScale = NULL; FDKfree(*phOnset); *phOnset = NULL; } return error; } /**************************************************************************/ FDK_SACENC_ERROR fdk_sacenc_onsetDetect_Update(HANDLE_ONSET_DETECT hOnset, const INT timeSlots) { FDK_SACENC_ERROR error = SACENC_OK; if (NULL == hOnset) { error = SACENC_INVALID_HANDLE; } else { if (timeSlots > hOnset->maxTimeSlots) { error = SACENC_INVALID_CONFIG; } else { int i; /* Shift old data */ for (i = 0; i < hOnset->avgEnergyDistance; i++) { hOnset->pEnergyHist__FDK[i] = hOnset->pEnergyHist__FDK[i + timeSlots]; hOnset->pEnergyHistScale[i] = hOnset->pEnergyHistScale[i + timeSlots]; } /* Clear for new data */ FDKmemset_flex(&hOnset->pEnergyHist__FDK[hOnset->avgEnergyDistance], FL2FXCONST_DBL(SACENC_FLOAT_EPSILON), timeSlots); } } return error; } /**************************************************************************/ FDK_SACENC_ERROR fdk_sacenc_onsetDetect_Apply( HANDLE_ONSET_DETECT hOnset, const INT nTimeSlots, const INT nHybridBands, FIXP_DPK *const *const ppHybridData__FDK, const INT hybridDataScale, const INT prevPos, INT pTransientPos[MAX_NUM_TRANS]) { FDK_SACENC_ERROR error = SACENC_OK; C_ALLOC_SCRATCH_START(envs, FIXP_DBL, (16 + MAX_TIME_SLOTS)) FDKmemclear(envs, (16 + MAX_TIME_SLOTS) * sizeof(FIXP_DBL)); if ((hOnset == NULL) || (pTransientPos == NULL) || (ppHybridData__FDK == NULL)) { error = SACENC_INVALID_HANDLE; } else { int i, ts, trCnt, currPos; if ((nTimeSlots < 0) || (nTimeSlots > hOnset->maxTimeSlots) || (hOnset->lowerBoundOnsetDetection < -1) || (hOnset->upperBoundOnsetDetection > nHybridBands)) { error = SACENC_INVALID_CONFIG; goto bail; } const int lowerBoundOnsetDetection = hOnset->lowerBoundOnsetDetection; const int upperBoundOnsetDetection = hOnset->upperBoundOnsetDetection; const int M = hOnset->avgEnergyDistance; { SCHAR *envScale = hOnset->pEnergyHistScale; FIXP_DBL *env = hOnset->pEnergyHist__FDK; const FIXP_DBL threshold_square = SPACE_ONSET_THRESHOLD_SQUARE; trCnt = 0; /* reset transient array */ FDKmemset_flex(pTransientPos, -1, MAX_NUM_TRANS); /* minimum transient distance of minTransDist QMF samples */ if (prevPos > 0) { currPos = FDKmax(nTimeSlots, prevPos - nTimeSlots + hOnset->minTransientDistance); } else { currPos = nTimeSlots; } /* get energy and scalefactor for each time slot */ int outScale; int inScale = 3; /* scale factor determined empirically */ for (ts = 0; ts < nTimeSlots; ts++) { env[M + ts] = sumUpCplxPow2( &ppHybridData__FDK[ts][lowerBoundOnsetDetection + 1], SUM_UP_DYNAMIC_SCALE, inScale, &outScale, upperBoundOnsetDetection - lowerBoundOnsetDetection - 1); envScale[M + ts] = outScale + (hybridDataScale << 1); } /* calculate common scale for all time slots */ SCHAR maxScale = -(DFRACT_BITS - 1); for (i = 0; i < (nTimeSlots + M); i++) { maxScale = fixMax(maxScale, envScale[i]); } /* apply common scale and store energy in temporary buffer */ for (i = 0; i < (nTimeSlots + M); i++) { envs[i] = env[i] >> fixMin((maxScale - envScale[i]), (DFRACT_BITS - 1)); } FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f); for (i = 0; i < (nTimeSlots + M); i++) { maxVal |= fAbs(envs[i]); } int s = fixMax(0, CntLeadingZeros(maxVal) - 1); for (i = 0; i < (nTimeSlots + M); i++) { envs[i] = envs[i] << s; } int currPosPrev = currPos; FIXP_DBL p1, p2; p2 = FL2FXCONST_DBL(0.0f); for (; (currPos < (nTimeSlots << 1)) && (trCnt < MAX_NUM_TRANS); currPos++) { p1 = fMultDiv2(envs[currPos - nTimeSlots + M], threshold_square) >> (SPACE_ONSET_THRESHOLD_SF - 1); /* Calculate average of past M energy values */ if (currPosPrev == (currPos - 1)) { /* remove last and add new element */ p2 -= (envs[currPosPrev - nTimeSlots] >> (int)hOnset->avgEnergyDistanceScale); p2 += (envs[currPos - nTimeSlots + M - 1] >> (int)hOnset->avgEnergyDistanceScale); } else { /* calculate complete vector */ p2 = FL2FXCONST_DBL(0.0f); for (ts = 0; ts < M; ts++) { p2 += (envs[currPos - nTimeSlots + ts] >> (int)hOnset->avgEnergyDistanceScale); } } currPosPrev = currPos; { /* save position if transient found */ if (p1 > p2) { pTransientPos[trCnt++] = currPos; currPos += hOnset->minTransientDistance; } } } /* for currPos */ } } /* valid handle*/ bail: C_ALLOC_SCRATCH_END(envs, FIXP_DBL, (16 + MAX_TIME_SLOTS)) return error; } /**************************************************************************/