/* ----------------------------------------------------------------------------- Software License for The Fraunhofer FDK AAC Codec Library for Android © Copyright 1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. All rights reserved. 1. INTRODUCTION The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. This FDK AAC Codec software is intended to be used on a wide variety of Android devices. AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part of the MPEG specifications. Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners individually for the purpose of encoding or decoding bit streams in products that are compliant with the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec software may already be covered under those patent licenses when it is used for those licensed purposes only. Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional applications information and documentation. 2. COPYRIGHT LICENSE Redistribution and use in source and binary forms, with or without modification, are permitted without payment of copyright license fees provided that you satisfy the following conditions: You must retain the complete text of this software license in redistributions of the FDK AAC Codec or your modifications thereto in source code form. You must retain the complete text of this software license in the documentation and/or other materials provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. You must make available free of charge copies of the complete source code of the FDK AAC Codec and your modifications thereto to recipients of copies in binary form. The name of Fraunhofer may not be used to endorse or promote products derived from this library without prior written permission. You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec software or your modifications thereto. Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software and the date of any change. For modified versions of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." 3. NO PATENT LICENSE NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with respect to this software. You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized by appropriate patent licenses. 4. DISCLAIMER This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, including but not limited to procurement of substitute goods or services; loss of use, data, or profits, or business interruption, however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence), arising in any way out of the use of this software, even if advised of the possibility of such damage. 5. CONTACT INFORMATION Fraunhofer Institute for Integrated Circuits IIS Attention: Audio and Multimedia Departments - FDK AAC LL Am Wolfsmantel 33 91058 Erlangen, Germany www.iis.fraunhofer.de/amm amm-info@iis.fraunhofer.de ----------------------------------------------------------------------------- */ /******************* Library for basic calculation routines ******************** Author(s): M. Lohwasser Description: common bitbuffer read/write routines *******************************************************************************/ #include "FDK_bitbuffer.h" #include "genericStds.h" #include "common_fix.h" #include "fixminmax.h" const UINT BitMask[32 + 1] = { 0x0, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff, 0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff, 0xffff, 0x1ffff, 0x3ffff, 0x7ffff, 0xfffff, 0x1fffff, 0x3fffff, 0x7fffff, 0xffffff, 0x1ffffff, 0x3ffffff, 0x7ffffff, 0xfffffff, 0x1fffffff, 0x3fffffff, 0x7fffffff, 0xffffffff}; void FDK_CreateBitBuffer(HANDLE_FDK_BITBUF *hBitBuf, UCHAR *pBuffer, UINT bufSize) { FDK_InitBitBuffer(*hBitBuf, pBuffer, bufSize, 0); FDKmemclear((*hBitBuf)->Buffer, bufSize * sizeof(UCHAR)); } void FDK_DeleteBitBuffer(HANDLE_FDK_BITBUF hBitBuf) { ; } void FDK_InitBitBuffer(HANDLE_FDK_BITBUF hBitBuf, UCHAR *pBuffer, UINT bufSize, UINT validBits) { hBitBuf->ValidBits = validBits; hBitBuf->ReadOffset = 0; hBitBuf->WriteOffset = 0; hBitBuf->BitNdx = 0; hBitBuf->Buffer = pBuffer; hBitBuf->bufSize = bufSize; hBitBuf->bufBits = (bufSize << 3); /*assure bufsize (2^n) */ FDK_ASSERT(hBitBuf->ValidBits <= hBitBuf->bufBits); FDK_ASSERT((bufSize > 0) && (bufSize <= MAX_BUFSIZE_BYTES)); { UINT x = 0, n = bufSize; for (x = 0; n > 0; x++, n >>= 1) { } if (bufSize != ((UINT)1 << (x - 1))) { FDK_ASSERT(0); } } } void FDK_ResetBitBuffer(HANDLE_FDK_BITBUF hBitBuf) { hBitBuf->ValidBits = 0; hBitBuf->ReadOffset = 0; hBitBuf->WriteOffset = 0; hBitBuf->BitNdx = 0; } #ifndef FUNCTION_FDK_get INT FDK_get(HANDLE_FDK_BITBUF hBitBuf, const UINT numberOfBits) { UINT byteOffset = hBitBuf->BitNdx >> 3; UINT bitOffset = hBitBuf->BitNdx & 0x07; hBitBuf->BitNdx = (hBitBuf->BitNdx + numberOfBits) & (hBitBuf->bufBits - 1); hBitBuf->ValidBits -= numberOfBits; UINT byteMask = hBitBuf->bufSize - 1; UINT tx = (hBitBuf->Buffer[byteOffset & byteMask] << 24) | (hBitBuf->Buffer[(byteOffset + 1) & byteMask] << 16) | (hBitBuf->Buffer[(byteOffset + 2) & byteMask] << 8) | hBitBuf->Buffer[(byteOffset + 3) & byteMask]; if (bitOffset) { tx <<= bitOffset; tx |= hBitBuf->Buffer[(byteOffset + 4) & byteMask] >> (8 - bitOffset); } return (tx >> (32 - numberOfBits)); } #endif /* #ifndef FUNCTION_FDK_get */ #ifndef FUNCTION_FDK_get32 INT FDK_get32(HANDLE_FDK_BITBUF hBitBuf) { UINT BitNdx = hBitBuf->BitNdx + 32; hBitBuf->BitNdx = BitNdx & (hBitBuf->bufBits - 1); hBitBuf->ValidBits = (UINT)((INT)hBitBuf->ValidBits - (INT)32); UINT byteOffset = (BitNdx - 1) >> 3; if (BitNdx <= hBitBuf->bufBits) { UINT cache = (hBitBuf->Buffer[(byteOffset - 3)] << 24) | (hBitBuf->Buffer[(byteOffset - 2)] << 16) | (hBitBuf->Buffer[(byteOffset - 1)] << 8) | hBitBuf->Buffer[(byteOffset - 0)]; if ((BitNdx = (BitNdx & 7)) != 0) { cache = (cache >> (8 - BitNdx)) | ((UINT)hBitBuf->Buffer[byteOffset - 4] << (24 + BitNdx)); } return (cache); } else { UINT byte_mask = hBitBuf->bufSize - 1; UINT cache = (hBitBuf->Buffer[(byteOffset - 3) & byte_mask] << 24) | (hBitBuf->Buffer[(byteOffset - 2) & byte_mask] << 16) | (hBitBuf->Buffer[(byteOffset - 1) & byte_mask] << 8) | hBitBuf->Buffer[(byteOffset - 0) & byte_mask]; if ((BitNdx = (BitNdx & 7)) != 0) { cache = (cache >> (8 - BitNdx)) | ((UINT)hBitBuf->Buffer[(byteOffset - 4) & byte_mask] << (24 + BitNdx)); } return (cache); } } #endif INT FDK_getBwd(HANDLE_FDK_BITBUF hBitBuf, const UINT numberOfBits) { UINT byteOffset = hBitBuf->BitNdx >> 3; UINT bitOffset = hBitBuf->BitNdx & 0x07; UINT byteMask = hBitBuf->bufSize - 1; int i; hBitBuf->BitNdx = (hBitBuf->BitNdx - numberOfBits) & (hBitBuf->bufBits - 1); hBitBuf->ValidBits += numberOfBits; UINT tx = hBitBuf->Buffer[(byteOffset - 3) & byteMask] << 24 | hBitBuf->Buffer[(byteOffset - 2) & byteMask] << 16 | hBitBuf->Buffer[(byteOffset - 1) & byteMask] << 8 | hBitBuf->Buffer[byteOffset & byteMask]; UINT txa = 0x0; tx >>= (8 - bitOffset); if (bitOffset && numberOfBits > 24) { tx |= hBitBuf->Buffer[(byteOffset - 4) & byteMask] << (24 + bitOffset); } /* in place turn around */ for (i = 0; i < 16; i++) { UINT bitMaskR = 0x00000001 << i; UINT bitMaskL = 0x80000000 >> i; txa |= (tx & bitMaskR) << (31 - (i << 1)); txa |= (tx & bitMaskL) >> (31 - (i << 1)); } return (txa >> (32 - numberOfBits)); } void FDK_put(HANDLE_FDK_BITBUF hBitBuf, UINT value, const UINT numberOfBits) { if (numberOfBits != 0) { UINT byteOffset0 = hBitBuf->BitNdx >> 3; UINT bitOffset = hBitBuf->BitNdx & 0x7; hBitBuf->BitNdx = (hBitBuf->BitNdx + numberOfBits) & (hBitBuf->bufBits - 1); hBitBuf->ValidBits += numberOfBits; UINT byteMask = hBitBuf->bufSize - 1; UINT byteOffset1 = (byteOffset0 + 1) & byteMask; UINT byteOffset2 = (byteOffset0 + 2) & byteMask; UINT byteOffset3 = (byteOffset0 + 3) & byteMask; // Create tmp containing free bits at the left border followed by bits to // write, LSB's are cleared, if available Create mask to apply upon all // buffer bytes UINT tmp = (value << (32 - numberOfBits)) >> bitOffset; UINT mask = ~((BitMask[numberOfBits] << (32 - numberOfBits)) >> bitOffset); // read all 4 bytes from buffer and create a 32-bit cache UINT cache = (((UINT)hBitBuf->Buffer[byteOffset0]) << 24) | (((UINT)hBitBuf->Buffer[byteOffset1]) << 16) | (((UINT)hBitBuf->Buffer[byteOffset2]) << 8) | (((UINT)hBitBuf->Buffer[byteOffset3]) << 0); cache = (cache & mask) | tmp; hBitBuf->Buffer[byteOffset0] = (UCHAR)(cache >> 24); hBitBuf->Buffer[byteOffset1] = (UCHAR)(cache >> 16); hBitBuf->Buffer[byteOffset2] = (UCHAR)(cache >> 8); hBitBuf->Buffer[byteOffset3] = (UCHAR)(cache >> 0); if ((bitOffset + numberOfBits) > 32) { UINT byteOffset4 = (byteOffset0 + 4) & byteMask; // remaining bits: in range 1..7 // replace MSBits of next byte in buffer by LSBits of "value" int bits = (bitOffset + numberOfBits) & 7; cache = (UINT)hBitBuf->Buffer[byteOffset4] & (~(BitMask[bits] << (8 - bits))); cache |= value << (8 - bits); hBitBuf->Buffer[byteOffset4] = (UCHAR)cache; } } } void FDK_putBwd(HANDLE_FDK_BITBUF hBitBuf, UINT value, const UINT numberOfBits) { UINT byteOffset = hBitBuf->BitNdx >> 3; UINT bitOffset = 7 - (hBitBuf->BitNdx & 0x07); UINT byteMask = hBitBuf->bufSize - 1; UINT mask = ~(BitMask[numberOfBits] << bitOffset); UINT tmp = 0x0000; int i; hBitBuf->BitNdx = (hBitBuf->BitNdx - numberOfBits) & (hBitBuf->bufBits - 1); hBitBuf->ValidBits -= numberOfBits; /* in place turn around */ for (i = 0; i < 16; i++) { UINT bitMaskR = 0x00000001 << i; UINT bitMaskL = 0x80000000 >> i; tmp |= (value & bitMaskR) << (31 - (i << 1)); tmp |= (value & bitMaskL) >> (31 - (i << 1)); } value = tmp; tmp = value >> (32 - numberOfBits) << bitOffset; hBitBuf->Buffer[byteOffset & byteMask] = (hBitBuf->Buffer[byteOffset & byteMask] & (mask)) | (UCHAR)(tmp); hBitBuf->Buffer[(byteOffset - 1) & byteMask] = (hBitBuf->Buffer[(byteOffset - 1) & byteMask] & (mask >> 8)) | (UCHAR)(tmp >> 8); hBitBuf->Buffer[(byteOffset - 2) & byteMask] = (hBitBuf->Buffer[(byteOffset - 2) & byteMask] & (mask >> 16)) | (UCHAR)(tmp >> 16); hBitBuf->Buffer[(byteOffset - 3) & byteMask] = (hBitBuf->Buffer[(byteOffset - 3) & byteMask] & (mask >> 24)) | (UCHAR)(tmp >> 24); if ((bitOffset + numberOfBits) > 32) { hBitBuf->Buffer[(byteOffset - 4) & byteMask] = (UCHAR)(value >> (64 - numberOfBits - bitOffset)) | (hBitBuf->Buffer[(byteOffset - 4) & byteMask] & ~(BitMask[bitOffset] >> (32 - numberOfBits))); } } #ifndef FUNCTION_FDK_pushBack void FDK_pushBack(HANDLE_FDK_BITBUF hBitBuf, const UINT numberOfBits, UCHAR config) { hBitBuf->ValidBits = (config == 0) ? (UINT)((INT)hBitBuf->ValidBits + (INT)numberOfBits) : ((UINT)((INT)hBitBuf->ValidBits - (INT)numberOfBits)); hBitBuf->BitNdx = ((UINT)((INT)hBitBuf->BitNdx - (INT)numberOfBits)) & (hBitBuf->bufBits - 1); } #endif void FDK_pushForward(HANDLE_FDK_BITBUF hBitBuf, const UINT numberOfBits, UCHAR config) { hBitBuf->ValidBits = (config == 0) ? ((UINT)((INT)hBitBuf->ValidBits - (INT)numberOfBits)) : (UINT)((INT)hBitBuf->ValidBits + (INT)numberOfBits); hBitBuf->BitNdx = (UINT)((INT)hBitBuf->BitNdx + (INT)numberOfBits) & (hBitBuf->bufBits - 1); } #ifndef FUNCTION_FDK_getValidBits UINT FDK_getValidBits(HANDLE_FDK_BITBUF hBitBuf) { return hBitBuf->ValidBits; } #endif /* #ifndef FUNCTION_FDK_getValidBits */ INT FDK_getFreeBits(HANDLE_FDK_BITBUF hBitBuf) { return (hBitBuf->bufBits - hBitBuf->ValidBits); } void FDK_Feed(HANDLE_FDK_BITBUF hBitBuf, const UCHAR *RESTRICT inputBuffer, const UINT bufferSize, UINT *bytesValid) { inputBuffer = &inputBuffer[bufferSize - *bytesValid]; UINT bTotal = 0; UINT bToRead = fMin(hBitBuf->bufBits, (UINT)fMax(0, ((INT)hBitBuf->bufBits - (INT)hBitBuf->ValidBits))) >> 3; UINT noOfBytes = fMin(bToRead, *bytesValid); //(bToRead < *bytesValid) ? bToRead : *bytesValid ; while (noOfBytes > 0) { /* split read to buffer size */ bToRead = hBitBuf->bufSize - hBitBuf->ReadOffset; bToRead = fMin(bToRead, noOfBytes); //(bToRead < noOfBytes) ? bToRead : noOfBytes ; /* copy 'bToRead' bytes from 'ptr' to inputbuffer */ FDKmemcpy(&hBitBuf->Buffer[hBitBuf->ReadOffset], inputBuffer, bToRead * sizeof(UCHAR)); /* add noOfBits to number of valid bits in buffer */ hBitBuf->ValidBits = (UINT)((INT)hBitBuf->ValidBits + (INT)(bToRead << 3)); bTotal += bToRead; inputBuffer += bToRead; hBitBuf->ReadOffset = (hBitBuf->ReadOffset + bToRead) & (hBitBuf->bufSize - 1); noOfBytes -= bToRead; } *bytesValid -= bTotal; } void CopyAlignedBlock(HANDLE_FDK_BITBUF h_BitBufSrc, UCHAR *RESTRICT dstBuffer, UINT bToRead) { UINT byteOffset = h_BitBufSrc->BitNdx >> 3; const UINT byteMask = h_BitBufSrc->bufSize - 1; UCHAR *RESTRICT pBBB = h_BitBufSrc->Buffer; for (UINT i = 0; i < bToRead; i++) { dstBuffer[i] = pBBB[(byteOffset + i) & byteMask]; } bToRead <<= 3; h_BitBufSrc->BitNdx = (h_BitBufSrc->BitNdx + bToRead) & (h_BitBufSrc->bufBits - 1); h_BitBufSrc->ValidBits -= bToRead; } void FDK_Copy(HANDLE_FDK_BITBUF h_BitBufDst, HANDLE_FDK_BITBUF h_BitBufSrc, UINT *bytesValid) { INT bTotal = 0; /* limit noOfBytes to valid bytes in src buffer and available bytes in dst * buffer */ UINT bToRead = h_BitBufSrc->ValidBits >> 3; UINT noOfBytes = fMin(bToRead, *bytesValid); //(*bytesValid < bToRead) ? *bytesValid : bToRead ; bToRead = FDK_getFreeBits(h_BitBufDst); noOfBytes = fMin(bToRead, noOfBytes); //(bToRead < noOfBytes) ? bToRead : noOfBytes; while (noOfBytes > 0) { /* Split Read to buffer size */ bToRead = h_BitBufDst->bufSize - h_BitBufDst->ReadOffset; bToRead = fMin(noOfBytes, bToRead); //(noOfBytes < bToRead) ? noOfBytes : bToRead ; /* copy 'bToRead' bytes from buffer to buffer */ if (!(h_BitBufSrc->BitNdx & 0x07)) { CopyAlignedBlock(h_BitBufSrc, h_BitBufDst->Buffer + h_BitBufDst->ReadOffset, bToRead); } else { for (UINT i = 0; i < bToRead; i++) { h_BitBufDst->Buffer[h_BitBufDst->ReadOffset + i] = (UCHAR)FDK_get(h_BitBufSrc, 8); } } /* add noOfBits to number of valid bits in buffer */ h_BitBufDst->ValidBits += bToRead << 3; bTotal += bToRead; h_BitBufDst->ReadOffset = (h_BitBufDst->ReadOffset + bToRead) & (h_BitBufDst->bufSize - 1); noOfBytes -= bToRead; } *bytesValid -= bTotal; } void FDK_Fetch(HANDLE_FDK_BITBUF hBitBuf, UCHAR *outBuf, UINT *writeBytes) { UCHAR *RESTRICT outputBuffer = outBuf; UINT bTotal = 0; UINT bToWrite = (hBitBuf->ValidBits) >> 3; UINT noOfBytes = fMin(bToWrite, *writeBytes); //(bToWrite < *writeBytes) ? bToWrite : *writeBytes ; while (noOfBytes > 0) { /* split write to buffer size */ bToWrite = hBitBuf->bufSize - hBitBuf->WriteOffset; bToWrite = fMin( bToWrite, noOfBytes); //(bToWrite < noOfBytes) ? bToWrite : noOfBytes ; /* copy 'bToWrite' bytes from bitbuffer to outputbuffer */ FDKmemcpy(outputBuffer, &hBitBuf->Buffer[hBitBuf->WriteOffset], bToWrite * sizeof(UCHAR)); /* sub noOfBits from number of valid bits in buffer */ hBitBuf->ValidBits -= bToWrite << 3; bTotal += bToWrite; outputBuffer += bToWrite; hBitBuf->WriteOffset = (hBitBuf->WriteOffset + bToWrite) & (hBitBuf->bufSize - 1); noOfBytes -= bToWrite; } *writeBytes = bTotal; }