/* ------------------------------------------------------------------ * Copyright (C) 2011 Martin Storsjo * Copyright (C) 2013 Matthias P. Braendli * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. * See the License for the specific language governing permissions * and limitations under the License. * ------------------------------------------------------------------- */ #include #include #include #include #include #include #include #include #include #include #include "libAACenc/include/aacenc_lib.h" #include #include #include #include static struct { snd_pcm_format_t format; unsigned int channels; unsigned int rate; } hwparams; void usage(const char* name) { fprintf(stderr, "%s [OPTION...]\n", name); fprintf(stderr, " -b, --bitrate={ 8, 16, ..., 192 } Output bitrate in kbps. Must be 8 multiple.\n" //" -d, --data=FILENAME Set data filename.\n" //" -g, --fs-bug Turn on FS bug mitigation.\n" //" -i, --input=FILENAME Input filename (default: stdin).\n" " -o, --output=URI Output zmq uri. (e.g. 'tcp://*:9000')\n" " -a, --afterburner Turn on AAC encoder quality increaser.\n" //" -m, --message Turn on AAC frame messages.\n" //" -p, --pad=BYTES Set PAD size in bytes.\n" //" -f, --format={ wav, raw } Set input file format (default: wav).\n" " -d, --device=alsa_device Set ALSA input device (default: \"default\").\n" " -c, --channels={ 1, 2 } Nb of input channels for raw input (default: 2).\n" " -r, --rate={ 32000, 48000 } Sample rate for raw input (default: 48000).\n" //" -t, --type=TYPE Set data type (dls|pad|packet|dg).\n" //" -v, --verbose=LEVEL Set verbosity level.\n" //" -V, --version Print version and exit.\n" //" --mi=[ 0, ... ] Set AAC frame messages interval in milliseconds.\n" //" --ma=[ 0, ... ] Set AAC frame messages attack time in milliseconds.\n" //" -l, --lp Set frame size to 1024 instead of 960.\n" "\n" "Only the tcp:// zeromq transport has been tested until now.\n" ); } static int in_aborting = 0; static snd_pcm_t *alsa_handle = NULL; static void prg_exit(int code) { if (alsa_handle) snd_pcm_close(alsa_handle); exit(code); } static void signal_handler(int sig) { if (in_aborting) return; in_aborting = 1; if (alsa_handle) snd_pcm_abort(alsa_handle); if (sig == SIGABRT) { /* do not call snd_pcm_close() and abort immediately */ alsa_handle = NULL; exit(EXIT_FAILURE); } signal(sig, signal_handler); } const static int dump_hw_params = 0; // Set Alsa hardware parameters static void set_params(void) { snd_pcm_hw_params_t *params; snd_pcm_sw_params_t *swparams; snd_pcm_uframes_t buffer_size; int err; size_t n; unsigned int rate; snd_pcm_uframes_t start_threshold, stop_threshold; snd_pcm_hw_params_alloca(¶ms); snd_pcm_sw_params_alloca(&swparams); err = snd_pcm_hw_params_any(alsa_handle, params); if (err < 0) { fprintf(stderr, "Broken configuration for this PCM: no configurations available"); prg_exit(EXIT_FAILURE); } if (dump_hw_params) { fprintf(stderr, "HW Params of device \"%s\":\n", snd_pcm_name(alsa_handle)); fprintf(stderr, "--------------------\n"); // TODO log should be a snd_output_t *log; snd_pcm_hw_params_dump(params, log); fprintf(stderr, "--------------------\n"); } err = snd_pcm_hw_params_set_access(alsa_handle, params, SND_PCM_ACCESS_RW_INTERLEAVED); if (err < 0) { fprintf(stderr, "Access type not available"); prg_exit(EXIT_FAILURE); } err = snd_pcm_hw_params_set_format(alsa_handle, params, hwparams.format); if (err < 0) { fprintf(stderr, "Sample format non available"); snd_pcm_format_t format; fprintf(stderr, "Available formats:\n"); for (format = 0; format <= SND_PCM_FORMAT_LAST; format++) { if (snd_pcm_hw_params_test_format(alsa_handle, params, format) == 0) fprintf(stderr, "- %s\n", snd_pcm_format_name(format)); } prg_exit(EXIT_FAILURE); } err = snd_pcm_hw_params_set_channels(alsa_handle, params, hwparams.channels); if (err < 0) { fprintf(stderr, "Channels count non available"); prg_exit(EXIT_FAILURE); } #if 0 err = snd_pcm_hw_params_set_periods_min(alsa_handle, params, 2); assert(err >= 0); #endif rate = hwparams.rate; err = snd_pcm_hw_params_set_rate_near(alsa_handle, params, &hwparams.rate, 0); assert(err >= 0); if ((float)rate * 1.05 < hwparams.rate || (float)rate * 0.95 > hwparams.rate) { char plugex[64]; const char *pcmname = snd_pcm_name(alsa_handle); fprintf(stderr, "Warning: rate is not accurate (requested = %iHz, got = %iHz)\n", rate, hwparams.rate); if (! pcmname || strchr(snd_pcm_name(alsa_handle), ':')) { *plugex = 0; } else { snprintf(plugex, sizeof(plugex), "(-Dplug:%s)", snd_pcm_name(alsa_handle)); } fprintf(stderr, " please, try the plug plugin %s\n", plugex); } rate = hwparams.rate; if (buffer_time == 0 && buffer_frames == 0) { err = snd_pcm_hw_params_get_buffer_time_max(params, &buffer_time, 0); assert(err >= 0); if (buffer_time > 500000) buffer_time = 500000; } if (period_time == 0 && period_frames == 0) { if (buffer_time > 0) period_time = buffer_time / 4; else period_frames = buffer_frames / 4; } if (period_time > 0) err = snd_pcm_hw_params_set_period_time_near(alsa_handle, params, &period_time, 0); else err = snd_pcm_hw_params_set_period_size_near(alsa_handle, params, &period_frames, 0); assert(err >= 0); if (buffer_time > 0) { err = snd_pcm_hw_params_set_buffer_time_near(alsa_handle, params, &buffer_time, 0); } else { err = snd_pcm_hw_params_set_buffer_size_near(alsa_handle, params, &buffer_frames); } assert(err >= 0); monotonic = snd_pcm_hw_params_is_monotonic(params); can_pause = snd_pcm_hw_params_can_pause(params); err = snd_pcm_hw_params(alsa_handle, params); if (err < 0) { fprintf(stderr, "Unable to install hw params:"); snd_pcm_hw_params_dump(params, log); prg_exit(EXIT_FAILURE); } snd_pcm_hw_params_get_period_size(params, &chunk_size, 0); snd_pcm_hw_params_get_buffer_size(params, &buffer_size); if (chunk_size == buffer_size) { fprintf(stderr, "Can't use period equal to buffer size (%lu == %lu)", chunk_size, buffer_size); prg_exit(EXIT_FAILURE); } snd_pcm_sw_params_current(alsa_handle, swparams); if (avail_min < 0) n = chunk_size; else n = (double) rate * avail_min / 1000000; err = snd_pcm_sw_params_set_avail_min(alsa_handle, swparams, n); /* round up to closest transfer boundary */ n = buffer_size; if (start_delay <= 0) { start_threshold = n + (double) rate * start_delay / 1000000; } else start_threshold = (double) rate * start_delay / 1000000; if (start_threshold < 1) start_threshold = 1; if (start_threshold > n) start_threshold = n; err = snd_pcm_sw_params_set_start_threshold(alsa_handle, swparams, start_threshold); assert(err >= 0); if (stop_delay <= 0) stop_threshold = buffer_size + (double) rate * stop_delay / 1000000; else stop_threshold = (double) rate * stop_delay / 1000000; err = snd_pcm_sw_params_set_stop_threshold(alsa_handle, swparams, stop_threshold); assert(err >= 0); if (snd_pcm_sw_params(alsa_handle, swparams) < 0) { fprintf(stderr, "unable to install sw params:"); snd_pcm_sw_params_dump(swparams, log); prg_exit(EXIT_FAILURE); } if (setup_chmap()) prg_exit(EXIT_FAILURE); if (verbose) snd_pcm_dump(alsa_handle, log); bits_per_sample = snd_pcm_format_physical_width(hwparams.format); bits_per_frame = bits_per_sample * hwparams.channels; chunk_bytes = chunk_size * bits_per_frame / 8; audiobuf = realloc(audiobuf, chunk_bytes); if (audiobuf == NULL) { fprintf(stderr, "not enough memory"); prg_exit(EXIT_FAILURE); } // fprintf(stderr, "real chunk_size = %i, frags = %i, total = %i\n", chunk_size, setup.buf.block.frags, setup.buf.block.frags * chunk_size); /* stereo VU-meter isn't always available... */ if (vumeter == VUMETER_STEREO) { if (hwparams.channels != 2 || !interleaved || verbose > 2) vumeter = VUMETER_MONO; } /* show mmap buffer arragment */ if (mmap_flag && verbose) { const snd_pcm_channel_area_t *areas; snd_pcm_uframes_t offset, size = chunk_size; int i; err = snd_pcm_mmap_begin(alsa_handle, &areas, &offset, &size); if (err < 0) { fprintf(stderr, "snd_pcm_mmap_begin problem: %s", snd_strerror(err)); prg_exit(EXIT_FAILURE); } for (i = 0; i < hwparams.channels; i++) fprintf(stderr, "mmap_area[%i] = %p,%u,%u (%u)\n", i, areas[i].addr, areas[i].first, areas[i].step, snd_pcm_format_physical_width(hwparams.format)); /* not required, but for sure */ snd_pcm_mmap_commit(alsa_handle, offset, 0); } buffer_frames = buffer_size; /* for position test */ } #define no_argument 0 #define required_argument 1 #define optional_argument 2 int main(int argc, char *argv[]) { int subchannel_index = 8; //64kbps subchannel int ch=0; int err; const char *alsa_device = "default"; const char *outuri = NULL; int sample_rate=48000, channels=2; const int bits_per_sample = 16; uint8_t* input_buf; int16_t* convert_buf; void *rs_handler = NULL; int aot = AOT_DABPLUS_AAC_LC; int afterburner = 0; HANDLE_AACENCODER handle; CHANNEL_MODE mode; AACENC_InfoStruct info = { 0 }; void *zmq_context = zmq_ctx_new(); void *zmq_sock = NULL; const struct option longopts[] = { {"bitrate", required_argument, 0, 'b'}, {"output", required_argument, 0, 'o'}, {"device", required_argument, 0, 'd'}, {"rate", required_argument, 0, 'r'}, {"channels", required_argument, 0, 'c'}, //{"lp", no_argument, 0, 'l'}, {"afterburner", no_argument, 0, 'a'}, {"help", no_argument, 0, 'h'}, {0,0,0,0}, }; int index; while(ch != -1) { ch = getopt_long(argc, argv, "lhab:c:o:r:d:", longopts, &index); switch (ch) { case 'd': alsa_device = optarg; break; case 'a': afterburner = 1; break; case 'b': subchannel_index = atoi(optarg) / 8; break; case 'c': channels = atoi(optarg); break; case 'r': sample_rate = atoi(optarg); break; case 'o': outuri = optarg; break; case '?': case 'h': usage(argv[0]); return 1; } } if(subchannel_index < 1 || subchannel_index > 24) { fprintf(stderr, "Bad subchannels number: %d, try other bitrate.\n", subchannel_index); return 1; } if (outuri) { zmq_sock = zmq_socket(zmq_context, ZMQ_PUB); if (zmq_sock == NULL) { fprintf(stderr, "Error occurred during zmq_socket: %s\n", zmq_strerror(errno)); return 2; } if (zmq_connect(zmq_sock, outuri) != 0) { fprintf(stderr, "Error occurred during zmq_connect: %s\n", zmq_strerror(errno)); return 2; } } else { fprintf(stderr, "Output URI not defined\n"); return 1; } const int open_mode = 0; //|= SND_PCM_NONBLOCK; const snd_pcm_stream_t stream = SND_PCM_STREAM_CAPTURE; const int nonblock = 0; snd_pcm_info_t *alsa_info; err = snd_pcm_open(&alsa_handle, alsa_device, stream, open_mode); if (err < 0) { fprintf(stderr, "audio open error: %s", snd_strerror(err)); return 1; } if ((err = snd_pcm_info(alsa_handle, alsa_info)) < 0) { fprintf(stderr, "info error: %s", snd_strerror(err)); prg_exit(1); } if (nonblock) { err = snd_pcm_nonblock(alsa_handle, 1); if (err < 0) { fprintf(stderr, "nonblock setting error: %s", snd_strerror(err)); prg_exit(1); } } signal(SIGINT, signal_handler); signal(SIGTERM, signal_handler); signal(SIGABRT, signal_handler); switch (channels) { case 1: mode = MODE_1; break; case 2: mode = MODE_2; break; default: fprintf(stderr, "Unsupported channels number %d\n", channels); prg_exit(1); } if (aacEncOpen(&handle, 0x01|0x02|0x04, channels) != AACENC_OK) { fprintf(stderr, "Unable to open encoder\n"); prg_exit(1); } if(channels == 2 && subchannel_index <= 6) aot = AOT_DABPLUS_PS; else if((channels == 1 && subchannel_index <= 8) || subchannel_index <= 10) aot = AOT_DABPLUS_SBR; fprintf(stderr, "Using %d subchannels. AAC type: %s%s%s. channels=%d, sample_rate=%d\n", subchannel_index, aot == AOT_DABPLUS_PS ? "HE-AAC v2" : "", aot == AOT_DABPLUS_SBR ? "HE-AAC" : "", aot == AOT_DABPLUS_AAC_LC ? "AAC-LC" : "", channels, sample_rate); if (aacEncoder_SetParam(handle, AACENC_AOT, aot) != AACENC_OK) { fprintf(stderr, "Unable to set the AOT\n"); prg_exit(1); } if (aacEncoder_SetParam(handle, AACENC_SAMPLERATE, sample_rate) != AACENC_OK) { fprintf(stderr, "Unable to set the AOT\n"); prg_exit(1); } if (aacEncoder_SetParam(handle, AACENC_CHANNELMODE, mode) != AACENC_OK) { fprintf(stderr, "Unable to set the channel mode\n"); prg_exit(1); } if (aacEncoder_SetParam(handle, AACENC_CHANNELORDER, 1) != AACENC_OK) { fprintf(stderr, "Unable to set the wav channel order\n"); prg_exit(1); } if (aacEncoder_SetParam(handle, AACENC_GRANULE_LENGTH, 960) != AACENC_OK) { fprintf(stderr, "Unable to set the AOT\n"); prg_exit(1); } if (aacEncoder_SetParam(handle, AACENC_TRANSMUX, TT_DABPLUS) != AACENC_OK) { fprintf(stderr, "Unable to set the RAW transmux\n"); prg_exit(1); } /*if (aacEncoder_SetParam(handle, AACENC_BITRATEMODE, 7 *AACENC_BR_MODE_SFR*) != AACENC_OK) { fprintf(stderr, "Unable to set the bitrate mode\n"); prg_exit(1); }*/ fprintf(stderr, "AAC bitrate set to: %d\n", subchannel_index*8000); if (aacEncoder_SetParam(handle, AACENC_BITRATE, subchannel_index*8000) != AACENC_OK) { fprintf(stderr, "Unable to set the bitrate\n"); prg_exit(1); } if (aacEncoder_SetParam(handle, AACENC_AFTERBURNER, afterburner) != AACENC_OK) { fprintf(stderr, "Unable to set the afterburner mode\n"); prg_exit(1); } if (aacEncEncode(handle, NULL, NULL, NULL, NULL) != AACENC_OK) { fprintf(stderr, "Unable to initialize the encoder\n"); prg_exit(1); } if (aacEncInfo(handle, &info) != AACENC_OK) { fprintf(stderr, "Unable to get the encoder info\n"); prg_exit(1); } fprintf(stderr, "DAB+ Encoding: framelen=%d\n", info.frameLength); int input_size = channels*2*info.frameLength; input_buf = (uint8_t*) malloc(input_size); convert_buf = (int16_t*) malloc(input_size); /* symsize=8, gfpoly=0x11d, fcr=0, prim=1, nroots=10, pad=135 */ rs_handler = init_rs_char(8, 0x11d, 0, 1, 10, 135); if (rs_handler == NULL) { perror("init_rs_char failed"); prg_exit(1); } int loops = 0; int outbuf_size = subchannel_index*120; uint8_t outbuf[20480]; if(outbuf_size % 5 != 0) { fprintf(stderr, "(outbuf_size mod 5) = %d\n", outbuf_size % 5); } fprintf(stderr, "outbuf_size: %d\n", outbuf_size); //outbuf_size += (4 * subchannel_index * (8*8)/8) - outbuf_size/5; fprintf(stderr, "outbuf_size: %d\n", outbuf_size); int frame=0; int send_error_count = 0; while (1) { memset(outbuf, 0x00, outbuf_size); AACENC_BufDesc in_buf = { 0 }, out_buf = { 0 }; AACENC_InArgs in_args = { 0 }; AACENC_OutArgs out_args = { 0 }; int in_identifier = IN_AUDIO_DATA; int in_size, in_elem_size; int out_identifier = OUT_BITSTREAM_DATA; int out_size, out_elem_size; int read=0, i; int send_error; void *in_ptr, *out_ptr; AACENC_ERROR err; // raw input if(fread(input_buf, input_size, 1, in_fh) == 1) { read = input_size; } else { fprintf(stderr, "Unable to read from input!\n"); break; } for (i = 0; i < read/2; i++) { const uint8_t* in = &input_buf[2*i]; convert_buf[i] = in[0] | (in[1] << 8); } if (read <= 0) { in_args.numInSamples = -1; } else { in_ptr = convert_buf; in_size = read; in_elem_size = 2; in_args.numInSamples = read/2; in_buf.numBufs = 1; in_buf.bufs = &in_ptr; in_buf.bufferIdentifiers = &in_identifier; in_buf.bufSizes = &in_size; in_buf.bufElSizes = &in_elem_size; } out_ptr = outbuf; out_size = sizeof(outbuf); out_elem_size = 1; out_buf.numBufs = 1; out_buf.bufs = &out_ptr; out_buf.bufferIdentifiers = &out_identifier; out_buf.bufSizes = &out_size; out_buf.bufElSizes = &out_elem_size; if ((err = aacEncEncode(handle, &in_buf, &out_buf, &in_args, &out_args)) != AACENC_OK) { if (err == AACENC_ENCODE_EOF) break; fprintf(stderr, "Encoding failed\n"); prg_exit(1); } if (out_args.numOutBytes == 0) continue; #if 0 unsigned char au_start[6]; unsigned char* sfbuf = outbuf; au_start[0] = 6; au_start[1] = (*(sfbuf + 3) << 4) + ((*(sfbuf + 4)) >> 4); au_start[2] = ((*(sfbuf + 4) & 0x0f) << 8) + *(sfbuf + 5); fprintf (stderr, "au_start[0] = %d\n", au_start[0]); fprintf (stderr, "au_start[1] = %d\n", au_start[1]); fprintf (stderr, "au_start[2] = %d\n", au_start[2]); #endif int row, col; unsigned char buf_to_rs_enc[110]; unsigned char rs_enc[10]; for(row=0; row < subchannel_index; row++) { for(col=0;col < 110; col++) { buf_to_rs_enc[col] = outbuf[subchannel_index * col + row]; } encode_rs_char(rs_handler, buf_to_rs_enc, rs_enc); for(col=110; col<120; col++) { outbuf[subchannel_index * col + row] = rs_enc[col-110]; assert(subchannel_index * col + row < outbuf_size); } } send_error = zmq_send(zmq_sock, outbuf, outbuf_size, ZMQ_DONTWAIT); if (send_error < 0) { fprintf(stderr, "ZeroMQ send failed! %s\n", zmq_strerror(errno)); send_error_count ++; } if (send_error_count > 10) { fprintf(stderr, "ZeroMQ send failed ten times, aborting!\n"); break; } //fwrite(outbuf, 1, /*out_args.numOutBytes*/ outbuf_size, out_fh); //fprintf(stderr, "Written %d/%d bytes!\n", out_args.numOutBytes + row*10, outbuf_size); if(out_args.numOutBytes + row*10 == outbuf_size) fprintf(stderr, "."); // if(frame > 10) // break; frame++; } free(input_buf); free(convert_buf); zmq_close(zmq_sock); free_rs_char(rs_handler); aacEncClose(&handle); zmq_ctx_term(zmq_context); prg_exit(0); }