From 22f1fce330059ef8a383cf327a023d6a9da5ad3e Mon Sep 17 00:00:00 2001 From: "Matthias P. Braendli" Date: Mon, 15 Feb 2016 02:44:20 +0100 Subject: Include toolame-dab as library --- libtoolame-dab/encode.c | 1224 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1224 insertions(+) create mode 100644 libtoolame-dab/encode.c (limited to 'libtoolame-dab/encode.c') diff --git a/libtoolame-dab/encode.c b/libtoolame-dab/encode.c new file mode 100644 index 0000000..fa9bd4a --- /dev/null +++ b/libtoolame-dab/encode.c @@ -0,0 +1,1224 @@ +#include +#include +#include +#include "common.h" +#include "encoder.h" +#include "bitstream.h" +#include "availbits.h" +#include "encode.h" + +int vbrstats[15] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; + +/* This segment contains all the core routines of the encoder, + except for the psychoacoustic models. + + The user can select either one of the two psychoacoustic + models. Model I is a simple tonal and noise masking threshold + generator, and Model II is a more sophisticated cochlear masking + threshold generator. Model I is recommended for lower complexity + applications whereas Model II gives better subjective quality at low + bit rates. */ + +/************************************************************************ +* encode_info() +* +* PURPOSE: Puts the syncword and header information on the output +* bitstream. +* +************************************************************************/ + +void encode_info (frame_info * frame, Bit_stream_struc * bs) +{ + frame_header *header = frame->header; + + putbits (bs, 0xfff, 12); /* syncword 12 bits */ + put1bit (bs, header->version); /* ID 1 bit */ + putbits (bs, 4 - header->lay, 2); /* layer 2 bits */ + put1bit (bs, !header->error_protection); /* bit set => no err prot */ + putbits (bs, header->bitrate_index, 4); + putbits (bs, header->sampling_frequency, 2); + put1bit (bs, header->padding); + put1bit (bs, header->extension); /* private_bit */ + putbits (bs, header->mode, 2); + putbits (bs, header->mode_ext, 2); + put1bit (bs, header->copyright); + put1bit (bs, header->original); + putbits (bs, header->emphasis, 2); +} + +/************************************************************************ +* +* combine_LR (Layer II) +* +* PURPOSE:Combines left and right channels into a mono channel +* +* SEMANTICS: The average of left and right subband samples is put into +* #joint_sample# +* +* +************************************************************************/ + +void combine_LR (double sb_sample[2][3][SCALE_BLOCK][SBLIMIT], + double joint_sample[3][SCALE_BLOCK][SBLIMIT], int sblimit) +{ /* make a filtered mono for joint stereo */ + int sb, smp, sufr; + + for (sb = 0; sb < sblimit; ++sb) + for (smp = 0; smp < SCALE_BLOCK; ++smp) + for (sufr = 0; sufr < 3; ++sufr) + joint_sample[sufr][smp][sb] = + .5 * (sb_sample[0][sufr][smp][sb] + sb_sample[1][sufr][smp][sb]); +} + +/************************************************************************ +* +* scale_factor_calc (Layer II) +* +* PURPOSE:For each subband, calculate the scale factor for each set +* of the 12 subband samples +* +* SEMANTICS: Pick the scalefactor #multiple[]# just larger than the +* absolute value of the peak subband sample of 12 samples, +* and store the corresponding scalefactor index in #scalar#. +* +* Layer II has three sets of 12-subband samples for a given +* subband. +* +************************************************************************/ + +#define PDS1 +#ifdef PDS1 +void scale_factor_calc (double sb_sample[][3][SCALE_BLOCK][SBLIMIT], + unsigned int scalar[][3][SBLIMIT], int nch, + int sblimit) +{ + /* Optimized to use binary search instead of linear scan through the + scalefactor table; guarantees to find scalefactor in only 5 + jumps/comparisons and not in {0 (lin. best) to 63 (lin. worst)}. + Scalefactors for subbands > sblimit are no longer computed. + Uses a single sblimit-loop. + Patrick De Smet Oct 1999. + */ + int k, t; + /* Using '--' loops to avoid possible "cmp value + bne/beq" compiler */ + /* inefficiencies. Below loops should compile to "bne/beq" only code */ + for (k = nch; k--;) + for (t = 3; t--;) { + int i; + for (i = sblimit; i--;) { + int j; + unsigned int l; + register double temp; + unsigned int scale_fac; + /* Determination of max. over each set of 12 subband samples: */ + /* PDS TODO: maybe this could/should ??!! be integrated into */ + /* the subband filtering routines? */ + register double cur_max = fabs (sb_sample[k][t][SCALE_BLOCK - 1][i]); + for (j = SCALE_BLOCK - 1; j--;) { + if ((temp = fabs (sb_sample[k][t][j][i])) > cur_max) + cur_max = temp; + } + /* PDS: binary search in the scalefactor table: */ + /* This is the real speed up: */ + for (l = 16, scale_fac = 32; l; l >>= 1) { + if (cur_max <= multiple[scale_fac]) + scale_fac += l; + else + scale_fac -= l; + } + if (cur_max > multiple[scale_fac]) + scale_fac--; + scalar[k][t][i] = scale_fac; + } + } +} +#else +void scale_factor_calc (sb_sample, scalar, nch, sblimit) + double sb_sample[][3][SCALE_BLOCK][SBLIMIT]; + unsigned int scalar[][3][SBLIMIT]; + int nch, sblimit; +{ + int i, j, k, t; + double s[SBLIMIT]; + + for (k = 0; k < nch; k++) + for (t = 0; t < 3; t++) { + for (i = 0; i < sblimit; i++) + for (j = 1, s[i] = fabs (sb_sample[k][t][0][i]); j < SCALE_BLOCK; j++) + if (fabs (sb_sample[k][t][j][i]) > s[i]) + s[i] = fabs (sb_sample[k][t][j][i]); + + for (i = 0; i < sblimit; i++) + for (j = SCALE_RANGE - 2, scalar[k][t][i] = 0; j >= 0; j--) /* $A 6/16/92 */ + if (s[i] <= multiple[j]) { + scalar[k][t][i] = j; + break; + } + for (i = sblimit; i < SBLIMIT; i++) + scalar[k][t][i] = SCALE_RANGE - 1; + } +} + +#endif +/************************************************************************ +* +* pick_scale (Layer II) +* +* PURPOSE:For each subband, puts the smallest scalefactor of the 3 +* associated with a frame into #max_sc#. This is used +* used by Psychoacoustic Model I. +* (I would recommend changin max_sc to min_sc) +* +************************************************************************/ + +void pick_scale (unsigned int scalar[2][3][SBLIMIT], frame_info * frame, + double max_sc[2][SBLIMIT]) +{ + int i, j, k, max; + int nch = frame->nch; + int sblimit = frame->sblimit; + + for (k = 0; k < nch; k++) + for (i = 0; i < sblimit; max_sc[k][i] = multiple[max], i++) + for (j = 1, max = scalar[k][0][i]; j < 3; j++) + if (max > scalar[k][j][i]) + max = scalar[k][j][i]; + for (i = sblimit; i < SBLIMIT; i++) + max_sc[0][i] = max_sc[1][i] = 1E-20; +} + +/************************************************************************ +* +* transmission_pattern (Layer II only) +* +* PURPOSE:For a given subband, determines whether to send 1, 2, or +* all 3 of the scalefactors, and fills in the scalefactor +* select information accordingly +* +* SEMANTICS: The subbands and channels are classified based on how much +* the scalefactors changes over its three values (corresponding +* to the 3 sets of 12 samples per subband). The classification +* will send 1 or 2 scalefactors instead of three if the scalefactors +* do not change much. The scalefactor select information, +* #scfsi#, is filled in accordingly. +* +************************************************************************/ + +void transmission_pattern (unsigned int scalar[2][3][SBLIMIT], + unsigned int scfsi[2][SBLIMIT], + frame_info * frame) +{ + int nch = frame->nch; + int sblimit = frame->sblimit; + int dscf[2]; + int class[2], i, j, k; + static int pattern[5][5] = { {0x123, 0x122, 0x122, 0x133, 0x123}, + {0x113, 0x111, 0x111, 0x444, 0x113}, + {0x111, 0x111, 0x111, 0x333, 0x113}, + {0x222, 0x222, 0x222, 0x333, 0x123}, + {0x123, 0x122, 0x122, 0x133, 0x123} + }; + + for (k = 0; k < nch; k++) + for (i = 0; i < sblimit; i++) { + dscf[0] = (scalar[k][0][i] - scalar[k][1][i]); + dscf[1] = (scalar[k][1][i] - scalar[k][2][i]); + for (j = 0; j < 2; j++) { + if (dscf[j] <= -3) + class[j] = 0; + else if (dscf[j] > -3 && dscf[j] < 0) + class[j] = 1; + else if (dscf[j] == 0) + class[j] = 2; + else if (dscf[j] > 0 && dscf[j] < 3) + class[j] = 3; + else + class[j] = 4; + } + switch (pattern[class[0]][class[1]]) { + case 0x123: + scfsi[k][i] = 0; + break; + case 0x122: + scfsi[k][i] = 3; + scalar[k][2][i] = scalar[k][1][i]; + break; + case 0x133: + scfsi[k][i] = 3; + scalar[k][1][i] = scalar[k][2][i]; + break; + case 0x113: + scfsi[k][i] = 1; + scalar[k][1][i] = scalar[k][0][i]; + break; + case 0x111: + scfsi[k][i] = 2; + scalar[k][1][i] = scalar[k][2][i] = scalar[k][0][i]; + break; + case 0x222: + scfsi[k][i] = 2; + scalar[k][0][i] = scalar[k][2][i] = scalar[k][1][i]; + break; + case 0x333: + scfsi[k][i] = 2; + scalar[k][0][i] = scalar[k][1][i] = scalar[k][2][i]; + break; + case 0x444: + scfsi[k][i] = 2; + if (scalar[k][0][i] > scalar[k][2][i]) + scalar[k][0][i] = scalar[k][2][i]; + scalar[k][1][i] = scalar[k][2][i] = scalar[k][0][i]; + } + } +} + +/************************************************************************ +* +* encode_scale (Layer II) +* +* PURPOSE:The encoded scalar factor information is arranged and +* queued into the output fifo to be transmitted. +* +* For Layer II, the three scale factors associated with +* a given subband and channel are transmitted in accordance +* with the scfsi, which is transmitted first. +* +************************************************************************/ + +void +encode_scale (unsigned int bit_alloc[2][SBLIMIT], + unsigned int scfsi[2][SBLIMIT], + unsigned int scalar[2][3][SBLIMIT], frame_info * frame, + Bit_stream_struc * bs) +{ + int nch = frame->nch; + int sblimit = frame->sblimit; + int i, j, k; + + for (i = 0; i < sblimit; i++) + for (k = 0; k < nch; k++) + if (bit_alloc[k][i]) + putbits (bs, scfsi[k][i], 2); + + for (i = 0; i < sblimit; i++) + for (k = 0; k < nch; k++) + if (bit_alloc[k][i]) /* above jsbound, bit_alloc[0][i] == ba[1][i] */ + switch (scfsi[k][i]) { + case 0: + for (j = 0; j < 3; j++) + putbits (bs, scalar[k][j][i], 6); + break; + case 1: + case 3: + putbits (bs, scalar[k][0][i], 6); + putbits (bs, scalar[k][2][i], 6); + break; + case 2: + putbits (bs, scalar[k][0][i], 6); + } +} + +/*=======================================================================\ +| | +| The following routines are done after the masking threshold | +| has been calculated by the fft analysis routines in the Psychoacoustic | +| model. Using the MNR calculated, the actual number of bits allocated | +| to each subband is found iteratively. | +| | +\=======================================================================*/ + +/************************************************************************ +* +* bits_for_nonoise (Layer II) +* +* PURPOSE:Returns the number of bits required to produce a +* mask-to-noise ratio better or equal to the noise/no_noise threshold. +* +* SEMANTICS: +* bbal = # bits needed for encoding bit allocation +* bsel = # bits needed for encoding scalefactor select information +* banc = # bits needed for ancillary data (header info included) +* +* For each subband and channel, will add bits until one of the +* following occurs: +* - Hit maximum number of bits we can allocate for that subband +* - MNR is better than or equal to the minimum masking level +* (NOISY_MIN_MNR) +* Then the bits required for scalefactors, scfsi, bit allocation, +* and the subband samples are tallied (#req_bits#) and returned. +* +* (NOISY_MIN_MNR) is the smallest MNR a subband can have before it is +* counted as 'noisy' by the logic which chooses the number of JS +* subbands. +* +* Joint stereo is supported. +* +************************************************************************/ + +static double snr[18] = { 0.00, 7.00, 11.00, 16.00, 20.84, + 25.28, 31.59, 37.75, 43.84, + 49.89, 55.93, 61.96, 67.98, 74.01, + 80.03, 86.05, 92.01, 98.01 +}; + +int bits_for_nonoise (double perm_smr[2][SBLIMIT], + unsigned int scfsi[2][SBLIMIT], frame_info * frame) +{ + int sb, ch, ba; + int nch = frame->nch; + int sblimit = frame->sblimit; + int jsbound = frame->jsbound; + al_table *alloc = frame->alloc; + int req_bits = 0, bbal = 0, berr = 0, banc = 32; + int maxAlloc, sel_bits, sc_bits, smp_bits; + static int sfsPerScfsi[] = { 3, 2, 1, 2 }; /* lookup # sfs per scfsi */ + + /* added 92-08-11 shn */ + if (frame->header->error_protection) + berr = 16; + else + berr = 0; + + for (sb = 0; sb < jsbound; ++sb) + bbal += nch * (*alloc)[sb][0].bits; + for (sb = jsbound; sb < sblimit; ++sb) + bbal += (*alloc)[sb][0].bits; + req_bits = banc + bbal + berr; + + for (sb = 0; sb < sblimit; ++sb) + for (ch = 0; ch < ((sb < jsbound) ? nch : 1); ++ch) { + maxAlloc = (1 << (*alloc)[sb][0].bits) - 1; + sel_bits = sc_bits = smp_bits = 0; + for (ba = 0; ba < maxAlloc - 1; ++ba) + if ((-perm_smr[ch][sb] + + snr[(*alloc)[sb][ba].quant + ((ba > 0) ? 1 : 0)]) >= + NOISY_MIN_MNR) + break; /* we found enough bits */ + if (nch == 2 && sb >= jsbound) /* check other JS channel */ + for (; ba < maxAlloc - 1; ++ba) + if ((-perm_smr[1 - ch][sb] + + snr[(*alloc)[sb][ba].quant + ((ba > 0) ? 1 : 0)]) >= + NOISY_MIN_MNR) + break; + if (ba > 0) { + smp_bits = + SCALE_BLOCK * ((*alloc)[sb][ba].group * (*alloc)[sb][ba].bits); + /* scale factor bits required for subband */ + sel_bits = 2; + sc_bits = 6 * sfsPerScfsi[scfsi[ch][sb]]; + if (nch == 2 && sb >= jsbound) { + /* each new js sb has L+R scfsis */ + sel_bits += 2; + sc_bits += 6 * sfsPerScfsi[scfsi[1 - ch][sb]]; + } + req_bits += smp_bits + sel_bits + sc_bits; + } + } + return req_bits; +} + +int VBR_bits_for_nonoise (double perm_smr[2][SBLIMIT], + unsigned int scfsi[2][SBLIMIT], + frame_info * frame, int vbrlevel) +{ + int sb, ch, ba; + int nch = frame->nch; + int sblimit = frame->sblimit; + int jsbound = frame->jsbound; + al_table *alloc = frame->alloc; + int req_bits = 0, bbal = 0, berr = 0, banc = 32; + int maxAlloc, sel_bits, sc_bits, smp_bits; + static int sfsPerScfsi[] = { 3, 2, 1, 2 }; /* lookup # sfs per scfsi */ + + /* added 92-08-11 shn */ + if (frame->header->error_protection) + berr = 16; + else + berr = 0; + + for (sb = 0; sb < jsbound; ++sb) + bbal += nch * (*alloc)[sb][0].bits; + for (sb = jsbound; sb < sblimit; ++sb) + bbal += (*alloc)[sb][0].bits; + req_bits = banc + bbal + berr; + + for (sb = 0; sb < sblimit; ++sb) + for (ch = 0; ch < ((sb < jsbound) ? nch : 1); ++ch) { + maxAlloc = (1 << (*alloc)[sb][0].bits) - 1; + sel_bits = sc_bits = smp_bits = 0; + for (ba = 0; ba < maxAlloc - 1; ++ba) + /* The change between this function and the normal one is that the MIN_MNR is increased by the vbrlevel */ + if ((-perm_smr[ch][sb] + + snr[(*alloc)[sb][ba].quant + ((ba > 0) ? 1 : 0)]) >= + NOISY_MIN_MNR + vbrlevel) + break; /* we found enough bits */ + if (nch == 2 && sb >= jsbound) /* check other JS channel */ + for (; ba < maxAlloc - 1; ++ba) + if ((-perm_smr[1 - ch][sb] + + snr[(*alloc)[sb][ba].quant + ((ba > 0) ? 1 : 0)]) >= + NOISY_MIN_MNR + vbrlevel) + break; + if (ba > 0) { + smp_bits = + SCALE_BLOCK * ((*alloc)[sb][ba].group * (*alloc)[sb][ba].bits); + /* scale factor bits required for subband */ + sel_bits = 2; + sc_bits = 6 * sfsPerScfsi[scfsi[ch][sb]]; + if (nch == 2 && sb >= jsbound) { + /* each new js sb has L+R scfsis */ + sel_bits += 2; + sc_bits += 6 * sfsPerScfsi[scfsi[1 - ch][sb]]; + } + req_bits += smp_bits + sel_bits + sc_bits; + } + } + return req_bits; +} + +/************************************************************************ +* +* main_bit_allocation (Layer II) +* +* PURPOSE:For joint stereo mode, determines which of the 4 joint +* stereo modes is needed. Then calls *_a_bit_allocation(), which +* allocates bits for each of the subbands until there are no more bits +* left, or the MNR is at the noise/no_noise threshold. +* +* SEMANTICS: +* +* For joint stereo mode, joint stereo is changed to stereo if +* there are enough bits to encode stereo at or better than the +* no-noise threshold (NOISY_MIN_MNR). Otherwise, the system +* iteratively allocates less bits by using joint stereo until one +* of the following occurs: +* - there are no more noisy subbands (MNR >= NOISY_MIN_MNR) +* - mode_ext has been reduced to 0, which means that all but the +* lowest 4 subbands have been converted from stereo to joint +* stereo, and no more subbands may be converted +* +* This function calls *_bits_for_nonoise() and *_a_bit_allocation(). +* +************************************************************************/ +void main_bit_allocation (double perm_smr[2][SBLIMIT], + unsigned int scfsi[2][SBLIMIT], + unsigned int bit_alloc[2][SBLIMIT], int *adb, + frame_info * frame, options * glopts) +{ + int noisy_sbs; + int mode, mode_ext, lay; + int rq_db; /* av_db = *adb; Not Used MFC Nov 99 */ + + /* these are the tables which specify the limits within which the VBR can vary + You can't vary outside these ranges, otherwise a new alloc table would have to + be loaded in the middle of encoding. This VBR hack is dodgy - the standard + says that LayerII decoders don't have to support a variable bitrate, but Layer3 + decoders must do so. Hence, it is unlikely that a compliant layer2 decoder would be + written to dynmically change allocation tables. *BUT* a layer3 encoder might handle it + by default meaning we could switch tables mid-encode and enjoy a wider range of bitrates + for the VBR encoding. + None of this needs to be done for LSF, since there is only *one* possible alloc table in LSF + MFC Feb 2003 */ + int vbrlimits[2][3][2] = { + /* MONO */ + { /* 44 */ {6, 10}, + /* 48 */ {3, 10}, + /* 32 */ {6, 10}}, + /* STEREO */ + { /* 44 */ {10, 14}, + /* 48 */ {7, 14}, + /* 32 */ {10, 14}} + }; + + static int init = 0; + static int lower = 10, upper = 10; + static int bitrateindextobits[15] = + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; + int guessindex = 0; + + if (init == 0) { + int nch = 1; + int sfreq; + frame_header *header = frame->header; + init++; + if (header->version == 0) { + /* LSF: so can use any bitrate index from 1->15 */ + lower = 1; + upper = 14; + } else { + if (frame->actual_mode == MPG_MD_MONO) + nch = 0; + sfreq = header->sampling_frequency; + lower = vbrlimits[nch][sfreq][0]; + upper = vbrlimits[nch][sfreq][1]; + } + if (glopts->verbosity > 2) + fprintf (stdout, "VBR bitrate index limits [%i -> %i]\n", lower, upper); + + { + /* set up a conversion table for bitrateindex->bits for this version/sampl freq + This will be used to find the best bitrate to cope with the number of bits that + are needed (as determined by VBR_bits_for_nonoise) */ + int brindex; + frame_header *header = frame->header; + for (brindex = lower; brindex <= upper; brindex++) { + bitrateindextobits[brindex] = + (int) (1152.0 / s_freq[header->version][header->sampling_frequency]) * + ((double) bitrate[header->version][brindex]); + } + } + + } + + if ((mode = frame->actual_mode) == MPG_MD_JOINT_STEREO) { + frame->header->mode = MPG_MD_STEREO; + frame->header->mode_ext = 0; + frame->jsbound = frame->sblimit; + if ((rq_db = bits_for_nonoise (perm_smr, scfsi, frame)) > *adb) { + frame->header->mode = MPG_MD_JOINT_STEREO; + mode_ext = 4; /* 3 is least severe reduction */ + lay = frame->header->lay; + do { + --mode_ext; + frame->jsbound = js_bound (mode_ext); + rq_db = bits_for_nonoise (perm_smr, scfsi, frame); + } + while ((rq_db > *adb) && (mode_ext > 0)); + frame->header->mode_ext = mode_ext; + } /* well we either eliminated noisy sbs or mode_ext == 0 */ + } + + /* decide on which bit allocation method to use */ + if (glopts->vbr == FALSE) { + /* Just do the old bit allocation method */ + noisy_sbs = a_bit_allocation (perm_smr, scfsi, bit_alloc, adb, frame); + } else { + /* do the VBR bit allocation method */ + frame->header->bitrate_index = lower; + *adb = available_bits (frame->header, glopts); + { + int brindex; + int found = FALSE; + + /* Work out how many bits are needed for there to be no noise (ie all MNR > 0.0 + VBRLEVEL) */ + int req = + VBR_bits_for_nonoise (perm_smr, scfsi, frame, glopts->vbrlevel); + + /* Look up this value in the bitrateindextobits table to find what bitrate we should use for + this frame */ + for (brindex = lower; brindex <= upper; brindex++) { + if (bitrateindextobits[brindex] > req) { + /* this method always *overestimates* the bits that are needed + i.e. it will usually guess right but + when it's wrong it'll guess a higher bitrate than actually required. + e.g. on "messages from earth" track 6, the guess was + wrong on 75/36341 frames. each time it guessed higher. + MFC Feb 2003 */ + guessindex = brindex; + found = TRUE; + break; + } + } + /* Just for sanity */ + if (found == FALSE) + guessindex = upper; + } + + frame->header->bitrate_index = guessindex; + *adb = available_bits (frame->header, glopts); + + /* update the statistics */ + vbrstats[frame->header->bitrate_index]++; + + if (glopts->verbosity > 2) { + /* print out the VBR stats every 1000th frame */ + static int count = 0; + int i; + if ((count++ % 1000) == 0) { + for (i = 1; i < 15; i++) + fprintf (stdout, "%4i ", vbrstats[i]); + fprintf (stdout, "\n"); + } + + /* Print out *every* frames bitrateindex, bits required, and bits available at this bitrate */ + if (glopts->verbosity > 5) + fprintf (stdout, + "> bitrate index %2i has %i bits available to encode the %i bits\n", + frame->header->bitrate_index, *adb, + VBR_bits_for_nonoise (perm_smr, scfsi, frame, + glopts->vbrlevel)); + + } + + noisy_sbs = + VBR_bit_allocation (perm_smr, scfsi, bit_alloc, adb, frame, glopts); + } +} + +void VBR_maxmnr (double mnr[2][SBLIMIT], char used[2][SBLIMIT], int sblimit, + int nch, int *min_sb, int *min_ch, options * glopts) +{ + int i, k; + double small; + + small = 999999.0; + *min_sb = -1; + *min_ch = -1; + for (k = 0; k < nch; ++k) + for (i = 0; i < sblimit; i++) + if (used[k][i] != 2 && small > mnr[k][i]) { + small = mnr[k][i]; + *min_sb = i; + *min_ch = k; + } +} +/******************** +MFC Feb 2003 +VBR_bit_allocation is different to the normal a_bit_allocation in that +it is known beforehand that there are definitely enough bits to do what we +have to - i.e. a bitrate was specificially chosen in main_bit_allocation so +that we have enough bits to encode what we have to. +This function should take that into account and just greedily assign +the bits, rather than fussing over the minimum MNR subband - we know +each subband gets its required bits, why quibble? +This function doesn't chew much CPU, so I haven't made any attempt +to do this yet. +*********************/ +int +VBR_bit_allocation (double perm_smr[2][SBLIMIT], + unsigned int scfsi[2][SBLIMIT], + unsigned int bit_alloc[2][SBLIMIT], int *adb, + frame_info * frame, options * glopts) +{ + int i, min_ch, min_sb, oth_ch, k, increment, scale, seli, ba; + int bspl, bscf, bsel, ad, bbal = 0; + double mnr[2][SBLIMIT]; + char used[2][SBLIMIT]; + int nch = frame->nch; + int sblimit = frame->sblimit; + int jsbound = frame->jsbound; + al_table *alloc = frame->alloc; + static char init = 0; + static int banc = 32, berr = 0; + static int sfsPerScfsi[] = { 3, 2, 1, 2 }; /* lookup # sfs per scfsi */ + + if (!init) { + init = 1; + if (frame->header->error_protection) + berr = 16; /* added 92-08-11 shn */ + } + + for (i = 0; i < jsbound; ++i) + bbal += nch * (*alloc)[i][0].bits; + for (i = jsbound; i < sblimit; ++i) + bbal += (*alloc)[i][0].bits; + *adb -= bbal + berr + banc; + ad = *adb; + + for (i = 0; i < sblimit; i++) + for (k = 0; k < nch; k++) { + mnr[k][i] = snr[0] - perm_smr[k][i]; + bit_alloc[k][i] = 0; + used[k][i] = 0; + } + bspl = bscf = bsel = 0; + + do { + /* locate the subband with minimum SMR */ + VBR_maxmnr (mnr, used, sblimit, nch, &min_sb, &min_ch, glopts); + + if (min_sb > -1) { /* there was something to find */ + /* find increase in bit allocation in subband [min] */ + increment = + SCALE_BLOCK * ((*alloc)[min_sb][bit_alloc[min_ch][min_sb] + 1].group * + (*alloc)[min_sb][bit_alloc[min_ch][min_sb] + 1].bits); + if (used[min_ch][min_sb]) + increment -= + SCALE_BLOCK * ((*alloc)[min_sb][bit_alloc[min_ch][min_sb]].group * + (*alloc)[min_sb][bit_alloc[min_ch][min_sb]].bits); + + /* scale factor bits required for subband [min] */ + oth_ch = 1 - min_ch; /* above js bound, need both chans */ + if (used[min_ch][min_sb]) + scale = seli = 0; + else { /* this channel had no bits or scfs before */ + seli = 2; + scale = 6 * sfsPerScfsi[scfsi[min_ch][min_sb]]; + if (nch == 2 && min_sb >= jsbound) { + /* each new js sb has L+R scfsis */ + seli += 2; + scale += 6 * sfsPerScfsi[scfsi[oth_ch][min_sb]]; + } + } + + /* check to see enough bits were available for */ + /* increasing resolution in the minimum band */ + if (ad >= bspl + bscf + bsel + seli + scale + increment) { + ba = ++bit_alloc[min_ch][min_sb]; /* next up alloc */ + bspl += increment; /* bits for subband sample */ + bscf += scale; /* bits for scale factor */ + bsel += seli; /* bits for scfsi code */ + used[min_ch][min_sb] = 1; /* subband has bits */ + mnr[min_ch][min_sb] = + -perm_smr[min_ch][min_sb] + snr[(*alloc)[min_sb][ba].quant + 1]; + /* Check if subband has been fully allocated max bits */ + if (ba >= (1 << (*alloc)[min_sb][0].bits) - 1) + used[min_ch][min_sb] = 2; /* don't let this sb get any more bits */ + } else + used[min_ch][min_sb] = 2; /* can't increase this alloc */ + + if (min_sb >= jsbound && nch == 2) { + /* above jsbound, alloc applies L+R */ + ba = bit_alloc[oth_ch][min_sb] = bit_alloc[min_ch][min_sb]; + used[oth_ch][min_sb] = used[min_ch][min_sb]; + mnr[oth_ch][min_sb] = + -perm_smr[oth_ch][min_sb] + snr[(*alloc)[min_sb][ba].quant + 1]; + } + + } + } + while (min_sb > -1); /* until could find no channel */ + + /* Calculate the number of bits left */ + ad -= bspl + bscf + bsel; + *adb = ad; + for (k = 0; k < nch; k++) + for (i = sblimit; i < SBLIMIT; i++) + bit_alloc[k][i] = 0; + + return 0; +} + +/************************************************************************ +* +* a_bit_allocation (Layer II) +* +* PURPOSE:Adds bits to the subbands with the lowest mask-to-noise +* ratios, until the maximum number of bits for the subband has +* been allocated. +* +* SEMANTICS: +* 1. Find the subband and channel with the smallest MNR (#min_sb#, +* and #min_ch#) +* 2. Calculate the increase in bits needed if we increase the bit +* allocation to the next higher level +* 3. If there are enough bits available for increasing the resolution +* in #min_sb#, #min_ch#, and the subband has not yet reached its +* maximum allocation, update the bit allocation, MNR, and bits + available accordingly +* 4. Repeat until there are no more bits left, or no more available +* subbands. (A subband is still available until the maximum +* number of bits for the subband has been allocated, or there +* aren't enough bits to go to the next higher resolution in the + subband.) +* +************************************************************************/ + +void maxmnr (double mnr[2][SBLIMIT], char used[2][SBLIMIT], int sblimit, + int nch, int *min_sb, int *min_ch) +{ + int i, k; + double small; + + small = 999999.0; + *min_sb = -1; + *min_ch = -1; + for (k = 0; k < nch; ++k) + for (i = 0; i < sblimit; i++) + if (used[k][i] != 2 && small > mnr[k][i]) { + small = mnr[k][i]; + *min_sb = i; + *min_ch = k; + } +} + +int a_bit_allocation (double perm_smr[2][SBLIMIT], + unsigned int scfsi[2][SBLIMIT], + unsigned int bit_alloc[2][SBLIMIT], int *adb, + frame_info * frame) +{ + int i, min_ch, min_sb, oth_ch, k, increment, scale, seli, ba; + int bspl, bscf, bsel, ad, bbal = 0; + double mnr[2][SBLIMIT]; + char used[2][SBLIMIT]; + int nch = frame->nch; + int sblimit = frame->sblimit; + int jsbound = frame->jsbound; + al_table *alloc = frame->alloc; + static char init = 0; + static int banc = 32, berr = 0; + static int sfsPerScfsi[] = { 3, 2, 1, 2 }; /* lookup # sfs per scfsi */ + +#define CHECKITERx +#ifdef CHECKITER + int count=0; +#endif + + if (!init) { + init = 1; + if (frame->header->error_protection) + berr = 16; /* added 92-08-11 shn */ + } + + for (i = 0; i < jsbound; ++i) + bbal += nch * (*alloc)[i][0].bits; + for (i = jsbound; i < sblimit; ++i) + bbal += (*alloc)[i][0].bits; + *adb -= bbal + berr + banc; + ad = *adb; + + for (i = 0; i < sblimit; i++) + for (k = 0; k < nch; k++) { + mnr[k][i] = snr[0] - perm_smr[k][i]; + bit_alloc[k][i] = 0; + used[k][i] = 0; + } + bspl = bscf = bsel = 0; + + do { +#ifdef CHECKITER + count++; +#endif + /* locate the subband with minimum SMR */ + maxmnr (mnr, used, sblimit, nch, &min_sb, &min_ch); + + if (min_sb > -1) { /* there was something to find */ + /* find increase in bit allocation in subband [min] */ + increment = + SCALE_BLOCK * ((*alloc)[min_sb][bit_alloc[min_ch][min_sb] + 1].group * + (*alloc)[min_sb][bit_alloc[min_ch][min_sb] + 1].bits); + if (used[min_ch][min_sb]) + increment -= + SCALE_BLOCK * ((*alloc)[min_sb][bit_alloc[min_ch][min_sb]].group * + (*alloc)[min_sb][bit_alloc[min_ch][min_sb]].bits); + + /* scale factor bits required for subband [min] */ + oth_ch = 1 - min_ch; /* above js bound, need both chans */ + if (used[min_ch][min_sb]) + scale = seli = 0; + else { /* this channel had no bits or scfs before */ + seli = 2; + scale = 6 * sfsPerScfsi[scfsi[min_ch][min_sb]]; + if (nch == 2 && min_sb >= jsbound) { + /* each new js sb has L+R scfsis */ + seli += 2; + scale += 6 * sfsPerScfsi[scfsi[oth_ch][min_sb]]; + } + } + + /* check to see enough bits were available for */ + /* increasing resolution in the minimum band */ + if (ad >= bspl + bscf + bsel + seli + scale + increment) { + ba = ++bit_alloc[min_ch][min_sb]; /* next up alloc */ + bspl += increment; /* bits for subband sample */ + bscf += scale; /* bits for scale factor */ + bsel += seli; /* bits for scfsi code */ + used[min_ch][min_sb] = 1; /* subband has bits */ + mnr[min_ch][min_sb] = + -perm_smr[min_ch][min_sb] + snr[(*alloc)[min_sb][ba].quant + 1]; + /* Check if subband has been fully allocated max bits */ + if (ba >= (1 << (*alloc)[min_sb][0].bits) - 1) + used[min_ch][min_sb] = 2; /* don't let this sb get any more bits */ + } else + used[min_ch][min_sb] = 2; /* can't increase this alloc */ + + if (min_sb >= jsbound && nch == 2) { + /* above jsbound, alloc applies L+R */ + ba = bit_alloc[oth_ch][min_sb] = bit_alloc[min_ch][min_sb]; + used[oth_ch][min_sb] = used[min_ch][min_sb]; + mnr[oth_ch][min_sb] = + -perm_smr[oth_ch][min_sb] + snr[(*alloc)[min_sb][ba].quant + 1]; + } + + } + } + while (min_sb > -1); /* until could find no channel */ + + /* Calculate the number of bits left */ + ad -= bspl + bscf + bsel; + *adb = ad; + for (k = 0; k < nch; k++) + for (i = sblimit; i < SBLIMIT; i++) + bit_alloc[k][i] = 0; + +#ifdef USELESSCODE + /* this function is declared to return an INT, which is meant to be a count + of the subbands which are still noisy. But, the return value is ignored, + so why bother? Is the count of noisy_sbs useful as any sort of + quality measure? Leave this in, until I'm sure that noisy_sbs couldn't + be used for something + MFC Feb 2003 */ + + noisy_sbs = 0; /* calc worst noise in case */ + for (k = 0; k < nch; ++k) { + for (i = 0; i < sblimit; i++) { + if (mnr[k][i] < NOISY_MIN_MNR) + ++noisy_sbs; /* noise is not masked */ + } + } + return noisy_sbs; +#endif +#ifdef CHECKITER + fprintf(stdout,"a bit alloc %i\n", count); +#endif + return 0; +} + +/************************************************************************ +* +* subband_quantization (Layer II) +* +* PURPOSE:Quantizes subband samples to appropriate number of bits +* +* SEMANTICS: Subband samples are divided by their scalefactors, which + makes the quantization more efficient. The scaled samples are +* quantized by the function a*x+b, where a and b are functions of +* the number of quantization levels. The result is then truncated +* to the appropriate number of bits and the MSB is inverted. +* +* Note that for fractional 2's complement, inverting the MSB for a + negative number x is equivalent to adding 1 to it. +* +************************************************************************/ +#define PDS3 +#ifdef PDS3 +static double a[17] = { + 0.750000000, 0.625000000, 0.875000000, 0.562500000, 0.937500000, + 0.968750000, 0.984375000, 0.992187500, 0.996093750, 0.998046875, + 0.999023438, 0.999511719, 0.999755859, 0.999877930, 0.999938965, + 0.999969482, 0.999984741 +}; + +static double b[17] = { + -0.250000000, -0.375000000, -0.125000000, -0.437500000, -0.062500000, + -0.031250000, -0.015625000, -0.007812500, -0.003906250, -0.001953125, + -0.000976563, -0.000488281, -0.000244141, -0.000122070, -0.000061035, + -0.000030518, -0.000015259 +}; + +static unsigned int pds_quant_bits[17] = { + /* for a number of quantization steps; */ + /* 3, 5, 7, 9, 15, + 31, 63, 127, 255, 511, + 1023, 2047, 4095, 8191, 16383, + 32767, 65535 + */ + /* below we need : */ + 2, 4, 4, 8, 8, + 16, 32, 64, 128, 256, + 512, 1024, 2048, 4096, 8192, + 16384, 32768 +}; +/* to retain succesfull quant */ +/* This is only a quick and dirty tric to speed up ISO code */ +/* In below quant routine : also rewrote loops to decrement */ +/* Added/changed by Patrick De Smet, Nov. 1999 */ + +/* PDS TODO: maybe it is faster not to store pds_quant_bits */ +/* but rather store (char) n, and use (1L shift left n) ; */ +/* is a shift faster than loading unsigned int from array ? */ + +void +subband_quantization (unsigned int scalar[2][3][SBLIMIT], + double sb_samples[2][3][SCALE_BLOCK][SBLIMIT], + unsigned int j_scale[3][SBLIMIT], + double j_samps[3][SCALE_BLOCK][SBLIMIT], + unsigned int bit_alloc[2][SBLIMIT], + unsigned int sbband[2][3][SCALE_BLOCK][SBLIMIT], + frame_info * frame) +{ + int i, j, k, s, qnt, sig; + int nch = frame->nch; + int sblimit = frame->sblimit; + int jsbound = frame->jsbound; + double d; + al_table *alloc = frame->alloc; + + for (s = 3; s--;) + for (j = SCALE_BLOCK; j--;) + for (i = sblimit; i--;) + for (k = ((i < jsbound) ? nch : 1); k--;) + if (bit_alloc[k][i]) { + /* scale and quantize FLOATing point sample */ + if (nch == 2 && i >= jsbound) /* use j-stereo samples */ + d = j_samps[s][j][i] / multiple[j_scale[s][i]]; + else + d = sb_samples[k][s][j][i] / multiple[scalar[k][s][i]]; + if (fabs(d) > 1.0) + fprintf (stderr, "Not scaled properly %d %d %d %d\n", k, s, j, + i); + qnt = (*alloc)[i][bit_alloc[k][i]].quant; + d = d * a[qnt] + b[qnt]; + /* extract MSB N-1 bits from the FLOATing point sample */ + if (d >= 0) + sig = 1; + else { + sig = 0; + d += 1.0; + } + sbband[k][s][j][i] = + (unsigned int) (d * (double) (pds_quant_bits[qnt])); + /* tag the inverted sign bit to sbband at position N */ + /* The bit inversion is a must for grouping with 3,5,9 steps + so it is done for all subbands */ + if (sig) + sbband[k][s][j][i] |= (pds_quant_bits[qnt]); + } + for (s = 3; s--;) + for (j = sblimit; j < SBLIMIT; j++) + for (i = SCALE_BLOCK; i--;) + for (k = nch; k--;) + sbband[k][s][i][j] = 0; +} +#else + +static double a[17] = { + 0.750000000, 0.625000000, 0.875000000, 0.562500000, 0.937500000, + 0.968750000, 0.984375000, 0.992187500, 0.996093750, 0.998046875, + 0.999023438, 0.999511719, 0.999755859, 0.999877930, 0.999938965, + 0.999969482, 0.999984741 +}; + +static double b[17] = { + -0.250000000, -0.375000000, -0.125000000, -0.437500000, -0.062500000, + -0.031250000, -0.015625000, -0.007812500, -0.003906250, -0.001953125, + -0.000976563, -0.000488281, -0.000244141, -0.000122070, -0.000061035, + -0.000030518, -0.000015259 +}; + +void +subband_quantization (unsigned int scalar[2][3][SBLIMIT], + double sb_samples[2][3][SCALE_BLOCK][SBLIMIT], + unsigned int j_scale[3][SBLIMIT], + double j_samps[3][SCALE_BLOCK][SBLIMIT], + unsigned int bit_alloc[2][SBLIMIT], + unsigned int sbband[2][3][SCALE_BLOCK][SBLIMIT], + frame_info * frame) +{ + int i, j, k, s, n, qnt, sig; + int nch = frame->nch; + int sblimit = frame->sblimit; + int jsbound = frame->jsbound; + unsigned int stps; + double d; + al_table *alloc = frame->alloc; + + for (s = 0; s < 3; s++) + for (j = 0; j < SCALE_BLOCK; j++) + for (i = 0; i < sblimit; i++) + for (k = 0; k < ((i < jsbound) ? nch : 1); k++) + if (bit_alloc[k][i]) { + /* scale and quantize FLOATing point sample */ + if (nch == 2 && i >= jsbound) /* use j-stereo samples */ + d = j_samps[s][j][i] / multiple[j_scale[s][i]]; + else + d = sb_samples[k][s][j][i] / multiple[scalar[k][s][i]]; + if (mod (d) > 1.0) + fprintf (stderr, "Not scaled properly %d %d %d %d\n", k, s, j, + i); + qnt = (*alloc)[i][bit_alloc[k][i]].quant; + d = d * a[qnt] + b[qnt]; + /* extract MSB N-1 bits from the FLOATing point sample */ + if (d >= 0) + sig = 1; + else { + sig = 0; + d += 1.0; + } + n = 0; + stps = (*alloc)[i][bit_alloc[k][i]].steps; + while ((1L << n) < stps) + n++; + n--; + sbband[k][s][j][i] = (unsigned int) (d * (double) (1L << n)); + /* tag the inverted sign bit to sbband at position N */ + /* The bit inversion is a must for grouping with 3,5,9 steps + so it is done for all subbands */ + if (sig) + sbband[k][s][j][i] |= 1 << n; + } + + for (k = 0; k < nch; k++) + for (s = 0; s < 3; s++) + for (i = 0; i < SCALE_BLOCK; i++) + for (j = sblimit; j < SBLIMIT; j++) + sbband[k][s][i][j] = 0; +} +#endif + +/************************************************************************* +* encode_bit_alloc (Layer II) +* +* PURPOSE:Writes bit allocation information onto bitstream +* +* Layer II uses 4,3,2, or 0 bits depending on the +* quantization table used. +* +************************************************************************/ + +void encode_bit_alloc (unsigned int bit_alloc[2][SBLIMIT], + frame_info * frame, Bit_stream_struc * bs) +{ + int i, k; + int nch = frame->nch; + int sblimit = frame->sblimit; + int jsbound = frame->jsbound; + al_table *alloc = frame->alloc; + + for (i = 0; i < sblimit; i++) + for (k = 0; k < ((i < jsbound) ? nch : 1); k++) + putbits (bs, bit_alloc[k][i], (*alloc)[i][0].bits); +} + +/************************************************************************ +* +* sample_encoding (Layer II) +* +* PURPOSE:Put one frame of subband samples on to the bitstream +* +* SEMANTICS: The number of bits allocated per sample is read from +* the bit allocation information #bit_alloc#. Layer 2 +* supports writing grouped samples for quantization steps +* that are not a power of 2. +* +************************************************************************/ + +void sample_encoding (unsigned int sbband[2][3][SCALE_BLOCK][SBLIMIT], + unsigned int bit_alloc[2][SBLIMIT], + frame_info * frame, Bit_stream_struc * bs) +{ + unsigned int temp; + unsigned int i, j, k, s, x, y; + int nch = frame->nch; + int sblimit = frame->sblimit; + int jsbound = frame->jsbound; + al_table *alloc = frame->alloc; + + for (s = 0; s < 3; s++) + for (j = 0; j < SCALE_BLOCK; j += 3) + for (i = 0; i < sblimit; i++) + for (k = 0; k < ((i < jsbound) ? nch : 1); k++) + if (bit_alloc[k][i]) { + if ((*alloc)[i][bit_alloc[k][i]].group == 3) { + for (x = 0; x < 3; x++) + putbits (bs, sbband[k][s][j + x][i], + (*alloc)[i][bit_alloc[k][i]].bits); + } else { + y = (*alloc)[i][bit_alloc[k][i]].steps; + temp = + sbband[k][s][j][i] + sbband[k][s][j + 1][i] * y + + sbband[k][s][j + 2][i] * y * y; + putbits (bs, temp, (*alloc)[i][bit_alloc[k][i]].bits); + } + } +} + +/************************************************************************ +* +* encode_CRC +* +************************************************************************/ + +void encode_CRC (unsigned int crc, Bit_stream_struc * bs) +{ + putbits (bs, crc, 16); +} -- cgit v1.2.3