From 14c7b800eaa23e9da7c92c7c4df397d0c191f097 Mon Sep 17 00:00:00 2001 From: "Matthias P. Braendli" Date: Sat, 10 Sep 2016 20:15:44 +0200 Subject: Remove FDK-AAC --- libSBRdec/src/transcendent.h | 355 ------------------------------------------- 1 file changed, 355 deletions(-) delete mode 100644 libSBRdec/src/transcendent.h (limited to 'libSBRdec/src/transcendent.h') diff --git a/libSBRdec/src/transcendent.h b/libSBRdec/src/transcendent.h deleted file mode 100644 index ad88bc9..0000000 --- a/libSBRdec/src/transcendent.h +++ /dev/null @@ -1,355 +0,0 @@ - -/* ----------------------------------------------------------------------------------------------------------- -Software License for The Fraunhofer FDK AAC Codec Library for Android - -© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. - All rights reserved. - - 1. INTRODUCTION -The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements -the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. -This FDK AAC Codec software is intended to be used on a wide variety of Android devices. - -AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual -audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by -independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part -of the MPEG specifications. - -Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) -may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners -individually for the purpose of encoding or decoding bit streams in products that are compliant with -the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license -these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec -software may already be covered under those patent licenses when it is used for those licensed purposes only. - -Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, -are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional -applications information and documentation. - -2. COPYRIGHT LICENSE - -Redistribution and use in source and binary forms, with or without modification, are permitted without -payment of copyright license fees provided that you satisfy the following conditions: - -You must retain the complete text of this software license in redistributions of the FDK AAC Codec or -your modifications thereto in source code form. - -You must retain the complete text of this software license in the documentation and/or other materials -provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. -You must make available free of charge copies of the complete source code of the FDK AAC Codec and your -modifications thereto to recipients of copies in binary form. - -The name of Fraunhofer may not be used to endorse or promote products derived from this library without -prior written permission. - -You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec -software or your modifications thereto. - -Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software -and the date of any change. For modified versions of the FDK AAC Codec, the term -"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term -"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." - -3. NO PATENT LICENSE - -NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, -ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with -respect to this software. - -You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized -by appropriate patent licenses. - -4. DISCLAIMER - -This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors -"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties -of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR -CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, -including but not limited to procurement of substitute goods or services; loss of use, data, or profits, -or business interruption, however caused and on any theory of liability, whether in contract, strict -liability, or tort (including negligence), arising in any way out of the use of this software, even if -advised of the possibility of such damage. - -5. CONTACT INFORMATION - -Fraunhofer Institute for Integrated Circuits IIS -Attention: Audio and Multimedia Departments - FDK AAC LL -Am Wolfsmantel 33 -91058 Erlangen, Germany - -www.iis.fraunhofer.de/amm -amm-info@iis.fraunhofer.de ------------------------------------------------------------------------------------------------------------ */ - -/*! - \file - \brief FDK Fixed Point Arithmetic Library Interface -*/ - -#ifndef __TRANSCENDENT_H -#define __TRANSCENDENT_H - -#include "sbrdecoder.h" -#include "sbr_rom.h" - -/************************************************************************/ -/*! - \brief Get number of octaves between frequencies a and b - - The Result is scaled with 1/8. - The valid range for a and b is 1 to LOG_DUALIS_TABLE_SIZE. - - \return ld(a/b) / 8 -*/ -/************************************************************************/ -static inline FIXP_SGL FDK_getNumOctavesDiv8(INT a, /*!< lower band */ - INT b) /*!< upper band */ -{ - return ( (SHORT)((LONG)(CalcLdInt(b) - CalcLdInt(a))>>(FRACT_BITS-3)) ); -} - - -/************************************************************************/ -/*! - \brief Add two values given by mantissa and exponent. - - Mantissas are in fract format with values between 0 and 1.
- The base for exponents is 2. Example: \f$ a = a\_m * 2^{a\_e} \f$
-*/ -/************************************************************************/ -inline void FDK_add_MantExp(FIXP_SGL a_m, /*!< Mantissa of 1st operand a */ - SCHAR a_e, /*!< Exponent of 1st operand a */ - FIXP_SGL b_m, /*!< Mantissa of 2nd operand b */ - SCHAR b_e, /*!< Exponent of 2nd operand b */ - FIXP_SGL *ptrSum_m, /*!< Mantissa of result */ - SCHAR *ptrSum_e) /*!< Exponent of result */ -{ - FIXP_DBL accu; - int shift; - int shiftAbs; - - FIXP_DBL shiftedMantissa; - FIXP_DBL otherMantissa; - - /* Equalize exponents of the summands. - For the smaller summand, the exponent is adapted and - for compensation, the mantissa is shifted right. */ - - shift = (int)(a_e - b_e); - - shiftAbs = (shift>0)? shift : -shift; - shiftAbs = (shiftAbs < DFRACT_BITS-1)? shiftAbs : DFRACT_BITS-1; - shiftedMantissa = (shift>0)? (FX_SGL2FX_DBL(b_m) >> shiftAbs) : (FX_SGL2FX_DBL(a_m) >> shiftAbs); - otherMantissa = (shift>0)? FX_SGL2FX_DBL(a_m) : FX_SGL2FX_DBL(b_m); - *ptrSum_e = (shift>0)? a_e : b_e; - - accu = (shiftedMantissa >> 1) + (otherMantissa >> 1); - /* shift by 1 bit to avoid overflow */ - - if ( (accu >= (FL2FXCONST_DBL(0.5f) - (FIXP_DBL)1)) || (accu <= FL2FXCONST_DBL(-0.5f)) ) - *ptrSum_e += 1; - else - accu = (shiftedMantissa + otherMantissa); - - *ptrSum_m = FX_DBL2FX_SGL(accu); - -} - -inline void FDK_add_MantExp(FIXP_DBL a, /*!< Mantissa of 1st operand a */ - SCHAR a_e, /*!< Exponent of 1st operand a */ - FIXP_DBL b, /*!< Mantissa of 2nd operand b */ - SCHAR b_e, /*!< Exponent of 2nd operand b */ - FIXP_DBL *ptrSum, /*!< Mantissa of result */ - SCHAR *ptrSum_e) /*!< Exponent of result */ -{ - FIXP_DBL accu; - int shift; - int shiftAbs; - - FIXP_DBL shiftedMantissa; - FIXP_DBL otherMantissa; - - /* Equalize exponents of the summands. - For the smaller summand, the exponent is adapted and - for compensation, the mantissa is shifted right. */ - - shift = (int)(a_e - b_e); - - shiftAbs = (shift>0)? shift : -shift; - shiftAbs = (shiftAbs < DFRACT_BITS-1)? shiftAbs : DFRACT_BITS-1; - shiftedMantissa = (shift>0)? (b >> shiftAbs) : (a >> shiftAbs); - otherMantissa = (shift>0)? a : b; - *ptrSum_e = (shift>0)? a_e : b_e; - - accu = (shiftedMantissa >> 1) + (otherMantissa >> 1); - /* shift by 1 bit to avoid overflow */ - - if ( (accu >= (FL2FXCONST_DBL(0.5f) - (FIXP_DBL)1)) || (accu <= FL2FXCONST_DBL(-0.5f)) ) - *ptrSum_e += 1; - else - accu = (shiftedMantissa + otherMantissa); - - *ptrSum = accu; - -} - -/************************************************************************/ -/*! - \brief Divide two values given by mantissa and exponent. - - Mantissas are in fract format with values between 0 and 1.
- The base for exponents is 2. Example: \f$ a = a\_m * 2^{a\_e} \f$
- - For performance reasons, the division is based on a table lookup - which limits accuracy. -*/ -/************************************************************************/ -static inline void FDK_divide_MantExp(FIXP_SGL a_m, /*!< Mantissa of dividend a */ - SCHAR a_e, /*!< Exponent of dividend a */ - FIXP_SGL b_m, /*!< Mantissa of divisor b */ - SCHAR b_e, /*!< Exponent of divisor b */ - FIXP_SGL *ptrResult_m, /*!< Mantissa of quotient a/b */ - SCHAR *ptrResult_e) /*!< Exponent of quotient a/b */ - -{ - int preShift, postShift, index, shift; - FIXP_DBL ratio_m; - FIXP_SGL bInv_m = FL2FXCONST_SGL(0.0f); - - preShift = CntLeadingZeros(FX_SGL2FX_DBL(b_m)); - - /* - Shift b into the range from 0..INV_TABLE_SIZE-1, - - E.g. 10 bits must be skipped for INV_TABLE_BITS 8: - - leave 8 bits as index for table - - skip sign bit, - - skip first bit of mantissa, because this is always the same (>0.5) - - We are dealing with energies, so we need not care - about negative numbers - */ - - /* - The first interval has half width so the lowest bit of the index is - needed for a doubled resolution. - */ - shift = (FRACT_BITS - 2 - INV_TABLE_BITS - preShift); - - index = (shift<0)? (LONG)b_m << (-shift) : (LONG)b_m >> shift; - - - /* The index has INV_TABLE_BITS +1 valid bits here. Clear the other bits. */ - index &= (1 << (INV_TABLE_BITS+1)) - 1; - - /* Remove offset of half an interval */ - index--; - - /* Now the lowest bit is shifted out */ - index = index >> 1; - - /* Fetch inversed mantissa from table: */ - bInv_m = (index<0)? bInv_m : FDK_sbrDecoder_invTable[index]; - - /* Multiply a with the inverse of b: */ - ratio_m = (index<0)? FX_SGL2FX_DBL(a_m >> 1) : fMultDiv2(bInv_m,a_m); - - postShift = CntLeadingZeros(ratio_m)-1; - - *ptrResult_m = FX_DBL2FX_SGL(ratio_m << postShift); - *ptrResult_e = a_e - b_e + 1 + preShift - postShift; -} - -static inline void FDK_divide_MantExp(FIXP_DBL a_m, /*!< Mantissa of dividend a */ - SCHAR a_e, /*!< Exponent of dividend a */ - FIXP_DBL b_m, /*!< Mantissa of divisor b */ - SCHAR b_e, /*!< Exponent of divisor b */ - FIXP_DBL *ptrResult_m, /*!< Mantissa of quotient a/b */ - SCHAR *ptrResult_e) /*!< Exponent of quotient a/b */ - -{ - int preShift, postShift, index, shift; - FIXP_DBL ratio_m; - FIXP_SGL bInv_m = FL2FXCONST_SGL(0.0f); - - preShift = CntLeadingZeros(b_m); - - /* - Shift b into the range from 0..INV_TABLE_SIZE-1, - - E.g. 10 bits must be skipped for INV_TABLE_BITS 8: - - leave 8 bits as index for table - - skip sign bit, - - skip first bit of mantissa, because this is always the same (>0.5) - - We are dealing with energies, so we need not care - about negative numbers - */ - - /* - The first interval has half width so the lowest bit of the index is - needed for a doubled resolution. - */ - shift = (DFRACT_BITS - 2 - INV_TABLE_BITS - preShift); - - index = (shift<0)? (LONG)b_m << (-shift) : (LONG)b_m >> shift; - - - /* The index has INV_TABLE_BITS +1 valid bits here. Clear the other bits. */ - index &= (1 << (INV_TABLE_BITS+1)) - 1; - - /* Remove offset of half an interval */ - index--; - - /* Now the lowest bit is shifted out */ - index = index >> 1; - - /* Fetch inversed mantissa from table: */ - bInv_m = (index<0)? bInv_m : FDK_sbrDecoder_invTable[index]; - - /* Multiply a with the inverse of b: */ - ratio_m = (index<0)? (a_m >> 1) : fMultDiv2(bInv_m,a_m); - - postShift = CntLeadingZeros(ratio_m)-1; - - *ptrResult_m = ratio_m << postShift; - *ptrResult_e = a_e - b_e + 1 + preShift - postShift; -} - -/*! - \brief Calculate the squareroot of a number given by mantissa and exponent - - Mantissa is in fract format with values between 0 and 1.
- The base for the exponent is 2. Example: \f$ a = a\_m * 2^{a\_e} \f$
- The operand is addressed via pointers and will be overwritten with the result. - - For performance reasons, the square root is based on a table lookup - which limits accuracy. -*/ -static inline void FDK_sqrt_MantExp(FIXP_DBL *mantissa, /*!< Pointer to mantissa */ - SCHAR *exponent, - const SCHAR *destScale) -{ - FIXP_DBL input_m = *mantissa; - int input_e = (int) *exponent; - FIXP_DBL result = FL2FXCONST_DBL(0.0f); - int result_e = -FRACT_BITS; - - /* Call lookup square root, which does internally normalization. */ - result = sqrtFixp_lookup(input_m, &input_e); - result_e = input_e; - - /* Write result */ - if (exponent==destScale) { - *mantissa = result; - *exponent = result_e; - } else { - int shift = result_e - *destScale; - *mantissa = (shift>=0) ? result << (INT)fixMin(DFRACT_BITS-1,shift) - : result >> (INT)fixMin(DFRACT_BITS-1,-shift); - *exponent = *destScale; - } -} - - -#endif -- cgit v1.2.3