From 0e5af65c467b2423a0b857ae3ad98c91acc1e190 Mon Sep 17 00:00:00 2001 From: "Matthias P. Braendli" Date: Mon, 11 Nov 2019 11:38:02 +0100 Subject: Include patched FDK-AAC in the repository The initial idea was to get the DAB+ patch into upstream, but since that follows the android source releases, there is no place for a custom DAB+ patch there. So instead of having to maintain a patched fdk-aac that has to have the same .so version as the distribution package on which it is installed, we prefer having a separate fdk-aac-dab library to avoid collision. At that point, there's no reason to keep fdk-aac in a separate repository, as odr-audioenc is the only tool that needs DAB+ encoding support. Including it here simplifies installation, and makes it consistent with toolame-dab, also shipped in this repository. DAB+ decoding support (needed by ODR-SourceCompanion, dablin, etisnoop, welle.io and others) can be done using upstream FDK-AAC. --- fdk-aac/libPCMutils/src/pcmdmx_lib.cpp | 2662 ++++++++++++++++++++++++++++++++ 1 file changed, 2662 insertions(+) create mode 100644 fdk-aac/libPCMutils/src/pcmdmx_lib.cpp (limited to 'fdk-aac/libPCMutils/src/pcmdmx_lib.cpp') diff --git a/fdk-aac/libPCMutils/src/pcmdmx_lib.cpp b/fdk-aac/libPCMutils/src/pcmdmx_lib.cpp new file mode 100644 index 0000000..2070dbc --- /dev/null +++ b/fdk-aac/libPCMutils/src/pcmdmx_lib.cpp @@ -0,0 +1,2662 @@ +/* ----------------------------------------------------------------------------- +Software License for The Fraunhofer FDK AAC Codec Library for Android + +© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten +Forschung e.V. All rights reserved. + + 1. INTRODUCTION +The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software +that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding +scheme for digital audio. This FDK AAC Codec software is intended to be used on +a wide variety of Android devices. + +AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient +general perceptual audio codecs. AAC-ELD is considered the best-performing +full-bandwidth communications codec by independent studies and is widely +deployed. AAC has been standardized by ISO and IEC as part of the MPEG +specifications. + +Patent licenses for necessary patent claims for the FDK AAC Codec (including +those of Fraunhofer) may be obtained through Via Licensing +(www.vialicensing.com) or through the respective patent owners individually for +the purpose of encoding or decoding bit streams in products that are compliant +with the ISO/IEC MPEG audio standards. Please note that most manufacturers of +Android devices already license these patent claims through Via Licensing or +directly from the patent owners, and therefore FDK AAC Codec software may +already be covered under those patent licenses when it is used for those +licensed purposes only. + +Commercially-licensed AAC software libraries, including floating-point versions +with enhanced sound quality, are also available from Fraunhofer. Users are +encouraged to check the Fraunhofer website for additional applications +information and documentation. + +2. COPYRIGHT LICENSE + +Redistribution and use in source and binary forms, with or without modification, +are permitted without payment of copyright license fees provided that you +satisfy the following conditions: + +You must retain the complete text of this software license in redistributions of +the FDK AAC Codec or your modifications thereto in source code form. + +You must retain the complete text of this software license in the documentation +and/or other materials provided with redistributions of the FDK AAC Codec or +your modifications thereto in binary form. You must make available free of +charge copies of the complete source code of the FDK AAC Codec and your +modifications thereto to recipients of copies in binary form. + +The name of Fraunhofer may not be used to endorse or promote products derived +from this library without prior written permission. + +You may not charge copyright license fees for anyone to use, copy or distribute +the FDK AAC Codec software or your modifications thereto. + +Your modified versions of the FDK AAC Codec must carry prominent notices stating +that you changed the software and the date of any change. For modified versions +of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" +must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK +AAC Codec Library for Android." + +3. NO PATENT LICENSE + +NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without +limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. +Fraunhofer provides no warranty of patent non-infringement with respect to this +software. + +You may use this FDK AAC Codec software or modifications thereto only for +purposes that are authorized by appropriate patent licenses. + +4. DISCLAIMER + +This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright +holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, +including but not limited to the implied warranties of merchantability and +fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR +CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, +or consequential damages, including but not limited to procurement of substitute +goods or services; loss of use, data, or profits, or business interruption, +however caused and on any theory of liability, whether in contract, strict +liability, or tort (including negligence), arising in any way out of the use of +this software, even if advised of the possibility of such damage. + +5. CONTACT INFORMATION + +Fraunhofer Institute for Integrated Circuits IIS +Attention: Audio and Multimedia Departments - FDK AAC LL +Am Wolfsmantel 33 +91058 Erlangen, Germany + +www.iis.fraunhofer.de/amm +amm-info@iis.fraunhofer.de +----------------------------------------------------------------------------- */ + +/**************************** PCM utility library ****************************** + + Author(s): Christian Griebel + + Description: Defines functions that perform downmixing or a simple channel + expansion in the PCM time domain. + +*******************************************************************************/ + +#include "pcmdmx_lib.h" + +#include "genericStds.h" +#include "fixpoint_math.h" +#include "FDK_core.h" + +/* library version */ +#include "version.h" +/* library title */ +#define PCMDMX_LIB_TITLE "PCM Downmix Lib" + +#define FALSE 0 +#define TRUE 1 +#define IN 0 +#define OUT 1 + +/* Type definitions: */ +#define FIXP_DMX FIXP_SGL +#define FX_DMX2FX_DBL(x) FX_SGL2FX_DBL((FIXP_SGL)(x)) +#define FX_DBL2FX_DMX(x) FX_DBL2FX_SGL(x) +#define FL2FXCONST_DMX(x) FL2FXCONST_SGL(x) +#define MAXVAL_DMX MAXVAL_SGL +#define FX_DMX2SHRT(x) ((SHORT)(x)) +#define FX_DMX2FL(x) FX_DBL2FL(FX_DMX2FX_DBL(x)) + +/* Fixed and unique channel group indices. + * The last group index has to be smaller than ( 4 ). */ +#define CH_GROUP_FRONT (0) +#define CH_GROUP_SIDE (1) +#define CH_GROUP_REAR (2) +#define CH_GROUP_LFE (3) + +/* Fixed and unique channel plain indices. */ +#define CH_PLAIN_NORMAL (0) +#define CH_PLAIN_TOP (1) +#define CH_PLAIN_BOTTOM (2) + +/* The ordering of the following fixed channel labels has to be in MPEG-4 style. + * From the center to the back with left and right channel interleaved (starting + * with left). The last channel label index has to be smaller than ( 8 ). */ +#define CENTER_FRONT_CHANNEL (0) /* C */ +#define LEFT_FRONT_CHANNEL (1) /* L */ +#define RIGHT_FRONT_CHANNEL (2) /* R */ +#define LEFT_REAR_CHANNEL \ + (3) /* Lr (aka left back channel) or center back channel */ +#define RIGHT_REAR_CHANNEL (4) /* Rr (aka right back channel) */ +#define LOW_FREQUENCY_CHANNEL (5) /* Lf */ +#define LEFT_MULTIPRPS_CHANNEL (6) /* Left multipurpose channel */ +#define RIGHT_MULTIPRPS_CHANNEL (7) /* Right multipurpose channel */ + +/* 22.2 channel specific fixed channel lables: */ +#define LEFT_SIDE_CHANNEL (8) /* Lss */ +#define RIGHT_SIDE_CHANNEL (9) /* Rss */ +#define CENTER_REAR_CHANNEL (10) /* Cs */ +#define CENTER_FRONT_CHANNEL_TOP (11) /* Cv */ +#define LEFT_FRONT_CHANNEL_TOP (12) /* Lv */ +#define RIGHT_FRONT_CHANNEL_TOP (13) /* Rv */ +#define LEFT_SIDE_CHANNEL_TOP (14) /* Lvss */ +#define RIGHT_SIDE_CHANNEL_TOP (15) /* Rvss */ +#define CENTER_SIDE_CHANNEL_TOP (16) /* Ts */ +#define LEFT_REAR_CHANNEL_TOP (17) /* Lvr */ +#define RIGHT_REAR_CHANNEL_TOP (18) /* Rvr */ +#define CENTER_REAR_CHANNEL_TOP (19) /* Cvr */ +#define CENTER_FRONT_CHANNEL_BOTTOM (20) /* Cb */ +#define LEFT_FRONT_CHANNEL_BOTTOM (21) /* Lb */ +#define RIGHT_FRONT_CHANNEL_BOTTOM (22) /* Rb */ +#define LOW_FREQUENCY_CHANNEL_2 (23) /* LFE2 */ + +/* More constants */ +#define ONE_CHANNEL (1) +#define TWO_CHANNEL (2) +#define SIX_CHANNEL (6) +#define EIGHT_CHANNEL (8) +#define TWENTY_FOUR_CHANNEL (24) + +#define PCMDMX_THRESHOLD_MAP_HEAT_1 (0) /* Store only exact matches */ +#define PCMDMX_THRESHOLD_MAP_HEAT_2 (20) +#define PCMDMX_THRESHOLD_MAP_HEAT_3 \ + (256) /* Do not assign normal channels to LFE */ + +#define SP_Z_NRM (0) +#define SP_Z_TOP (2) +#define SP_Z_BOT (-2) +#define SP_Z_LFE (-18) +#define SP_Z_MUL (8) /* Should be smaller than SP_Z_LFE */ + +typedef struct { + SCHAR x; /* horizontal position: center (0), left (-), right (+) */ + SCHAR y; /* deepth position: front, side, back, position */ + SCHAR z; /* heigth positions: normal, top, bottom, lfe */ +} PCM_DMX_SPEAKER_POSITION; + +/* CAUTION: The maximum x-value should be less or equal to + * PCMDMX_SPKR_POS_X_MAX_WIDTH. */ +static const PCM_DMX_SPEAKER_POSITION spkrSlotPos[] = { + /* x, y, z */ + {0, 0, SP_Z_NRM}, /* 0 CENTER_FRONT_CHANNEL */ + {-2, 0, SP_Z_NRM}, /* 1 LEFT_FRONT_CHANNEL */ + {2, 0, SP_Z_NRM}, /* 2 RIGHT_FRONT_CHANNEL */ + {-3, 4, SP_Z_NRM}, /* 3 LEFT_REAR_CHANNEL */ + {3, 4, SP_Z_NRM}, /* 4 RIGHT_REAR_CHANNEL */ + {0, 0, SP_Z_LFE}, /* 5 LOW_FREQUENCY_CHANNEL */ + {-2, 2, SP_Z_MUL}, /* 6 LEFT_MULTIPRPS_CHANNEL */ + {2, 2, SP_Z_MUL} /* 7 RIGHT_MULTIPRPS_CHANNEL */ +}; + +/* List of packed channel modes */ +typedef enum { /* CH_MODE____ */ + CH_MODE_UNDEFINED = 0x0000, + /* 1 channel */ + CH_MODE_1_0_0_0 = 0x0001, /* chCfg 1 */ + /* 2 channels */ + CH_MODE_2_0_0_0 = 0x0002 /* chCfg 2 */ + /* 3 channels */ + , + CH_MODE_3_0_0_0 = 0x0003, /* chCfg 3 */ + CH_MODE_2_0_1_0 = 0x0102, + CH_MODE_2_0_0_1 = 0x1002, + /* 4 channels */ + CH_MODE_3_0_1_0 = 0x0103, /* chCfg 4 */ + CH_MODE_2_0_2_0 = 0x0202, + CH_MODE_2_0_1_1 = 0x1102, + CH_MODE_4_0_0_0 = 0x0004, + /* 5 channels */ + CH_MODE_3_0_2_0 = 0x0203, /* chCfg 5 */ + CH_MODE_2_0_2_1 = 0x1202, + CH_MODE_3_0_1_1 = 0x1103, + CH_MODE_3_2_0_0 = 0x0023, + CH_MODE_5_0_0_0 = 0x0005, + /* 6 channels */ + CH_MODE_3_0_2_1 = 0x1203, /* chCfg 6 */ + CH_MODE_3_2_0_1 = 0x1023, + CH_MODE_3_2_1_0 = 0x0123, + CH_MODE_5_0_1_0 = 0x0105, + CH_MODE_6_0_0_0 = 0x0006, + /* 7 channels */ + CH_MODE_2_2_2_1 = 0x1222, + CH_MODE_3_0_3_1 = 0x1303, /* chCfg 11 */ + CH_MODE_3_2_1_1 = 0x1123, + CH_MODE_3_2_2_0 = 0x0223, + CH_MODE_3_0_2_2 = 0x2203, + CH_MODE_5_0_2_0 = 0x0205, + CH_MODE_5_0_1_1 = 0x1105, + CH_MODE_7_0_0_0 = 0x0007, + /* 8 channels */ + CH_MODE_3_2_2_1 = 0x1223, + CH_MODE_3_0_4_1 = 0x1403, /* chCfg 12 */ + CH_MODE_5_0_2_1 = 0x1205, /* chCfg 7 + 14 */ + CH_MODE_5_2_1_0 = 0x0125, + CH_MODE_3_2_1_2 = 0x2123, + CH_MODE_2_2_2_2 = 0x2222, + CH_MODE_3_0_3_2 = 0x2303, + CH_MODE_8_0_0_0 = 0x0008 + +} PCM_DMX_CHANNEL_MODE; + +/* These are the channel configurations linked to + the number of output channels give by the user: */ +static const PCM_DMX_CHANNEL_MODE outChModeTable[(8) + 1] = { + CH_MODE_UNDEFINED, + CH_MODE_1_0_0_0, /* 1 channel */ + CH_MODE_2_0_0_0 /* 2 channels */ + , + CH_MODE_3_0_0_0, /* 3 channels */ + CH_MODE_3_0_1_0, /* 4 channels */ + CH_MODE_3_0_2_0, /* 5 channels */ + CH_MODE_3_0_2_1 /* 6 channels */ + , + CH_MODE_3_0_3_1, /* 7 channels */ + CH_MODE_3_0_4_1 /* 8 channels */ +}; + +static const FIXP_DMX abMixLvlValueTab[8] = { + FL2FXCONST_DMX(0.500f), /* scaled by 1 */ + FL2FXCONST_DMX(0.841f), FL2FXCONST_DMX(0.707f), FL2FXCONST_DMX(0.596f), + FL2FXCONST_DMX(0.500f), FL2FXCONST_DMX(0.422f), FL2FXCONST_DMX(0.355f), + FL2FXCONST_DMX(0.0f)}; + +static const FIXP_DMX lfeMixLvlValueTab[16] = { + /* value, scale */ + FL2FXCONST_DMX(0.7905f), /* 2 */ + FL2FXCONST_DMX(0.5000f), /* 2 */ + FL2FXCONST_DMX(0.8395f), /* 1 */ + FL2FXCONST_DMX(0.7065f), /* 1 */ + FL2FXCONST_DMX(0.5945f), /* 1 */ + FL2FXCONST_DMX(0.500f), /* 1 */ + FL2FXCONST_DMX(0.841f), /* 0 */ + FL2FXCONST_DMX(0.707f), /* 0 */ + FL2FXCONST_DMX(0.596f), /* 0 */ + FL2FXCONST_DMX(0.500f), /* 0 */ + FL2FXCONST_DMX(0.316f), /* 0 */ + FL2FXCONST_DMX(0.178f), /* 0 */ + FL2FXCONST_DMX(0.100f), /* 0 */ + FL2FXCONST_DMX(0.032f), /* 0 */ + FL2FXCONST_DMX(0.010f), /* 0 */ + FL2FXCONST_DMX(0.000f) /* 0 */ +}; + +/* MPEG matrix mixdown: + Set 1: L' = (1 + 2^-0.5 + A )^-1 * [L + C * 2^-0.5 + A * Ls]; + R' = (1 + 2^-0.5 + A )^-1 * [R + C * 2^-0.5 + A * Rs]; + + Set 2: L' = (1 + 2^-0.5 + 2A )^-1 * [L + C * 2^-0.5 - A * (Ls + Rs)]; + R' = (1 + 2^-0.5 + 2A )^-1 * [R + C * 2^-0.5 + A * (Ls + Rs)]; + + M = (3 + 2A)^-1 * [L + C + R + A*(Ls + Rs)]; +*/ +static const FIXP_DMX mpegMixDownIdx2Coef[4] = { + FL2FXCONST_DMX(0.70710678f), FL2FXCONST_DMX(0.5f), + FL2FXCONST_DMX(0.35355339f), FL2FXCONST_DMX(0.0f)}; + +static const FIXP_DMX mpegMixDownIdx2PreFact[3][4] = { + {/* Set 1: */ + FL2FXCONST_DMX(0.4142135623730950f), FL2FXCONST_DMX(0.4530818393219728f), + FL2FXCONST_DMX(0.4852813742385703f), FL2FXCONST_DMX(0.5857864376269050f)}, + {/* Set 2: */ + FL2FXCONST_DMX(0.3203772410170407f), FL2FXCONST_DMX(0.3693980625181293f), + FL2FXCONST_DMX(0.4142135623730950f), FL2FXCONST_DMX(0.5857864376269050f)}, + {/* Mono DMX set: */ + FL2FXCONST_DMX(0.2265409196609864f), FL2FXCONST_DMX(0.25f), + FL2FXCONST_DMX(0.2697521433898179f), FL2FXCONST_DMX(0.3333333333333333f)}}; + +#define TYPE_NONE (0x00) +#define TYPE_PCE_DATA (0x01) +#define TYPE_DSE_CLEV_DATA (0x02) +#define TYPE_DSE_SLEV_DATA (0x04) +#define TYPE_DSE_DMIX_AB_DATA (0x08) +#define TYPE_DSE_DMIX_LFE_DATA (0x10) +#define TYPE_DSE_DMX_GAIN_DATA (0x20) +#define TYPE_DSE_DMX_CGL_DATA (0x40) +#define TYPE_DSE_DATA (0x7E) + +typedef struct { + UINT typeFlags; + /* From DSE */ + UCHAR cLevIdx; + UCHAR sLevIdx; + UCHAR dmixIdxA; + UCHAR dmixIdxB; + UCHAR dmixIdxLfe; + UCHAR dmxGainIdx2; + UCHAR dmxGainIdx5; + /* From PCE */ + UCHAR matrixMixdownIdx; + /* Attributes: */ + SCHAR pseudoSurround; /*!< If set to 1 the signal is pseudo surround + compatible. The value 0 tells that it is not. If the + value is -1 the information is not available. */ + UINT expiryCount; /*!< Counter to monitor the life time of a meta data set. */ + +} DMX_BS_META_DATA; + +/* Default metadata */ +static const DMX_BS_META_DATA dfltMetaData = {0, 2, 2, 2, 2, 15, + 0, 0, 0, -1, 0}; + +/* Dynamic (user) params: + See the definition of PCMDMX_PARAM for details on the specific fields. */ +typedef struct { + DMX_PROFILE_TYPE dmxProfile; /*!< Linked to DMX_PRFL_STANDARD */ + UINT expiryFrame; /*!< Linked to DMX_BS_DATA_EXPIRY_FRAME */ + DUAL_CHANNEL_MODE dualChannelMode; /*!< Linked to DMX_DUAL_CHANNEL_MODE */ + PSEUDO_SURROUND_MODE + pseudoSurrMode; /*!< Linked to DMX_PSEUDO_SURROUND_MODE */ + SHORT numOutChannelsMin; /*!< Linked to MIN_NUMBER_OF_OUTPUT_CHANNELS */ + SHORT numOutChannelsMax; /*!< Linked to MAX_NUMBER_OF_OUTPUT_CHANNELS */ + UCHAR frameDelay; /*!< Linked to DMX_BS_DATA_DELAY */ + +} PCM_DMX_USER_PARAMS; + +/* Modules main data structure: */ +struct PCM_DMX_INSTANCE { + /* Metadata */ + DMX_BS_META_DATA bsMetaData[(1) + 1]; + PCM_DMX_USER_PARAMS userParams; + + UCHAR applyProcessing; /*!< Flag to en-/disable modules processing. + The max channel limiting is done independently. */ +}; + +/* Memory allocation macro */ +C_ALLOC_MEM(PcmDmxInstance, struct PCM_DMX_INSTANCE, 1) + +static UINT getSpeakerDistance(PCM_DMX_SPEAKER_POSITION posA, + PCM_DMX_SPEAKER_POSITION posB) { + PCM_DMX_SPEAKER_POSITION diff; + + diff.x = posA.x - posB.x; + diff.y = posA.y - posB.y; + diff.z = posA.z - posB.z; + + return ((diff.x * diff.x) + (diff.y * diff.y) + (diff.z * diff.z)); +} + +static PCM_DMX_SPEAKER_POSITION getSpeakerPos(AUDIO_CHANNEL_TYPE chType, + UCHAR chIndex, UCHAR numChInGrp) { +#define PCMDMX_SPKR_POS_X_MAX_WIDTH (3) +#define PCMDMX_SPKR_POS_Y_SPREAD (2) +#define PCMDMX_SPKR_POS_Z_SPREAD (2) + + PCM_DMX_SPEAKER_POSITION spkrPos = {0, 0, 0}; + AUDIO_CHANNEL_TYPE chGrp = (AUDIO_CHANNEL_TYPE)(chType & 0x0F); + unsigned fHasCenter = numChInGrp & 0x1; + unsigned chGrpWidth = numChInGrp >> 1; + unsigned fIsCenter = 0; + unsigned fIsLfe = (chType == ACT_LFE) ? 1 : 0; + int offset = 0; + + FDK_ASSERT(chIndex < numChInGrp); + + if ((chGrp == ACT_FRONT) && fHasCenter) { + if (chIndex == 0) fIsCenter = 1; + chIndex = (UCHAR)fMax(0, chIndex - 1); + } else if (fHasCenter && (chIndex == numChInGrp - 1)) { + fIsCenter = 1; + } + /* now all even indices are left (-) */ + if (!fIsCenter) { + offset = chIndex >> 1; + if ((chGrp > ACT_FRONT) && (chType != ACT_SIDE) && !fIsLfe) { + /* the higher the index the lower the distance to the center position */ + offset = chGrpWidth - fHasCenter - offset; + } + if ((chIndex & 0x1) == 0) { /* even */ + offset = -(offset + 1); + } else { + offset += 1; + } + } + /* apply the offset */ + if (chType == ACT_SIDE) { + spkrPos.x = (offset < 0) ? -PCMDMX_SPKR_POS_X_MAX_WIDTH + : PCMDMX_SPKR_POS_X_MAX_WIDTH; + spkrPos.y = /* 1x */ PCMDMX_SPKR_POS_Y_SPREAD + (SCHAR)fAbs(offset) - 1; + spkrPos.z = 0; + } else { + unsigned spread = + ((chGrpWidth == 1) && (!fIsLfe)) ? PCMDMX_SPKR_POS_X_MAX_WIDTH - 1 : 1; + spkrPos.x = (SCHAR)offset * (SCHAR)spread; + if (fIsLfe) { + spkrPos.y = 0; + spkrPos.z = SP_Z_LFE; + } else { + spkrPos.y = (SCHAR)fMax((SCHAR)chGrp - 1, 0) * PCMDMX_SPKR_POS_Y_SPREAD; + spkrPos.z = (SCHAR)chType >> 4; + if (spkrPos.z == 2) { /* ACT_BOTTOM */ + spkrPos.z = -1; + } + spkrPos.z *= PCMDMX_SPKR_POS_Z_SPREAD; + } + } + return spkrPos; +} + +/** Return the channel mode of a given horizontal channel plain (normal, top, + *bottom) for a given channel configuration. NOTE: This function shall get + *obsolete once the channel mode has been changed to be nonambiguous. + * @param [in] Index of the requested channel plain. + * @param [in] The packed channel mode for the complete channel configuration + *(all plains). + * @param [in] The MPEG-4 channel configuration index which is necessary in + *cases where the (packed) channel mode is ambiguous. + * @returns Returns the packed channel mode of the requested channel plain. + **/ +static PCM_DMX_CHANNEL_MODE getChMode4Plain( + const int plainIndex, const PCM_DMX_CHANNEL_MODE totChMode, + const int chCfg) { + PCM_DMX_CHANNEL_MODE plainChMode = totChMode; + + switch (totChMode) { + case CH_MODE_5_0_2_1: + if (chCfg == 14) { + switch (plainIndex) { + case CH_PLAIN_BOTTOM: + plainChMode = (PCM_DMX_CHANNEL_MODE)0x0000; + break; + case CH_PLAIN_TOP: + plainChMode = CH_MODE_2_0_0_0; + break; + case CH_PLAIN_NORMAL: + default: + plainChMode = CH_MODE_3_0_2_1; + break; + } + } + break; + default: + break; + } + + return plainChMode; +} + +static inline UINT getIdxSum(UCHAR numCh) { + UINT result = 0; + int i; + for (i = 1; i < numCh; i += 1) { + result += i; + } + return result; +} + +/** Evaluate a given channel configuration and extract a packed channel mode. In + *addition the function generates a channel offset table for the mapping to the + *internal representation. This function is the inverse to the + *getChannelDescription() routine. + * @param [in] The total number of channels of the given configuration. + * @param [in] Array holding the corresponding channel types for each channel. + * @param [in] Array holding the corresponding channel type indices for each + *channel. + * @param [out] Array where the buffer offsets for each channel are stored into. + * @param [out] The generated packed channel mode that represents the given + *input configuration. + * @returns Returns an error code. + **/ +static PCMDMX_ERROR getChannelMode( + const UINT numChannels, /* in */ + const AUDIO_CHANNEL_TYPE channelType[], /* in */ + UCHAR channelIndices[], /* in */ + UCHAR offsetTable[(8)], /* out */ + PCM_DMX_CHANNEL_MODE *chMode /* out */ +) { + UINT idxSum[(3)][(4)]; + UCHAR numCh[(3)][(4)]; + UCHAR mapped[(8)]; + PCM_DMX_SPEAKER_POSITION spkrPos[(8)]; + PCMDMX_ERROR err = PCMDMX_OK; + unsigned ch, numMappedInChs = 0; + unsigned startSlot; + unsigned stopSlot = LOW_FREQUENCY_CHANNEL; + + FDK_ASSERT(channelType != NULL); + FDK_ASSERT(channelIndices != NULL); + FDK_ASSERT(offsetTable != NULL); + FDK_ASSERT(chMode != NULL); + + /* For details see ISO/IEC 13818-7:2005(E), 8.5.3 Channel configuration */ + FDKmemclear(idxSum, (3) * (4) * sizeof(UINT)); + FDKmemclear(numCh, (3) * (4) * sizeof(UCHAR)); + FDKmemclear(mapped, (8) * sizeof(UCHAR)); + FDKmemclear(spkrPos, (8) * sizeof(PCM_DMX_SPEAKER_POSITION)); + /* Init output */ + FDKmemset(offsetTable, 255, (8) * sizeof(UCHAR)); + *chMode = CH_MODE_UNDEFINED; + + /* Determine how many channels are assigned to each channels each group: */ + for (ch = 0; ch < numChannels; ch += 1) { + unsigned chGrp = fMax( + (channelType[ch] & 0x0F) - 1, + 0); /* Assign all undefined channels (ACT_NONE) to front channels. */ + numCh[channelType[ch] >> 4][chGrp] += 1; + idxSum[channelType[ch] >> 4][chGrp] += channelIndices[ch]; + } + if (numChannels > TWO_CHANNEL) { + int chGrp; + /* Sanity check on the indices */ + for (chGrp = 0; chGrp < (4); chGrp += 1) { + int plane; + for (plane = 0; plane < (3); plane += 1) { + if (idxSum[plane][chGrp] != getIdxSum(numCh[plane][chGrp])) { + unsigned idxCnt = 0; + for (ch = 0; ch < numChannels; ch += 1) { + if (channelType[ch] == + (AUDIO_CHANNEL_TYPE)((plane << 4) | ((chGrp + 1) & 0xF))) { + channelIndices[ch] = idxCnt++; + } + } + err = PCMDMX_INVALID_CH_CONFIG; + } + } + } + } + /* Mapping HEAT 1: + * Determine the speaker position of each input channel and map it to a + * internal slot if it matches exactly (with zero distance). */ + for (ch = 0; ch < numChannels; ch += 1) { + UINT mapDist = (unsigned)-1; + unsigned mapCh, mapPos = (unsigned)-1; + unsigned chGrp = fMax( + (channelType[ch] & 0x0F) - 1, + 0); /* Assign all undefined channels (ACT_NONE) to front channels. */ + + spkrPos[ch] = getSpeakerPos(channelType[ch], channelIndices[ch], + numCh[channelType[ch] >> 4][chGrp]); + + for (mapCh = 0; mapCh <= stopSlot; mapCh += 1) { + if (offsetTable[mapCh] == 255) { + UINT dist = getSpeakerDistance(spkrPos[ch], spkrSlotPos[mapCh]); + if (dist < mapDist) { + mapPos = mapCh; + mapDist = dist; + } + } + } + if (mapDist <= PCMDMX_THRESHOLD_MAP_HEAT_1) { + offsetTable[mapPos] = (UCHAR)ch; + mapped[ch] = 1; + numMappedInChs += 1; + } + } + + /* Mapping HEAT 2: + * Go through the unmapped input channels and assign them to the internal + * slots that matches best (least distance). But assign center channels to + * center slots only. */ + startSlot = + ((numCh[CH_PLAIN_NORMAL][CH_GROUP_FRONT] & 0x1) || (numChannels >= (8))) + ? 0 + : 1; + for (ch = 0; ch < (unsigned)numChannels; ch += 1) { + if (!mapped[ch]) { + UINT mapDist = (unsigned)-1; + unsigned mapCh, mapPos = (unsigned)-1; + + for (mapCh = startSlot; mapCh <= stopSlot; mapCh += 1) { + if (offsetTable[mapCh] == 255) { + UINT dist = getSpeakerDistance(spkrPos[ch], spkrSlotPos[mapCh]); + if (dist < mapDist) { + mapPos = mapCh; + mapDist = dist; + } + } + } + if ((mapPos <= stopSlot) && (mapDist < PCMDMX_THRESHOLD_MAP_HEAT_2) && + (((spkrPos[ch].x != 0) && (spkrSlotPos[mapPos].x != 0)) /* XOR */ + || ((spkrPos[ch].x == 0) && + (spkrSlotPos[mapPos].x == + 0)))) { /* Assign center channels to center slots only. */ + offsetTable[mapPos] = (UCHAR)ch; + mapped[ch] = 1; + numMappedInChs += 1; + } + } + } + + /* Mapping HEAT 3: + * Assign the rest by searching for the nearest input channel for each + * internal slot. */ + for (ch = startSlot; (ch < (8)) && (numMappedInChs < numChannels); ch += 1) { + if (offsetTable[ch] == 255) { + UINT mapDist = (unsigned)-1; + unsigned mapCh, mapPos = (unsigned)-1; + + for (mapCh = 0; mapCh < (unsigned)numChannels; mapCh += 1) { + if (!mapped[mapCh]) { + UINT dist = getSpeakerDistance(spkrPos[mapCh], spkrSlotPos[ch]); + if (dist < mapDist) { + mapPos = mapCh; + mapDist = dist; + } + } + } + if (mapDist < PCMDMX_THRESHOLD_MAP_HEAT_3) { + offsetTable[ch] = (UCHAR)mapPos; + mapped[mapPos] = 1; + numMappedInChs += 1; + if ((spkrPos[mapPos].x == 0) && (spkrSlotPos[ch].x != 0) && + (numChannels < + (8))) { /* Skip the paired slot if we assigned a center channel. */ + ch += 1; + } + } + } + } + + /* Finaly compose the channel mode */ + for (ch = 0; ch < (4); ch += 1) { + int plane, numChInGrp = 0; + for (plane = 0; plane < (3); plane += 1) { + numChInGrp += numCh[plane][ch]; + } + *chMode = (PCM_DMX_CHANNEL_MODE)(*chMode | (numChInGrp << (ch * 4))); + } + + return err; +} + +/** Generate a channel offset table and complete channel description for a given + *(packed) channel mode. This function is the inverse to the getChannelMode() + *routine but does not support weird channel configurations. + * @param [in] The packed channel mode of the configuration to be processed. + * @param [in] Array containing the channel mapping to be used (From MPEG PCE + *ordering to whatever is required). + * @param [out] Array where corresponding channel types for each channels are + *stored into. + * @param [out] Array where corresponding channel type indices for each output + *channel are stored into. + * @param [out] Array where the buffer offsets for each channel are stored into. + * @returns None. + **/ +static void getChannelDescription( + const PCM_DMX_CHANNEL_MODE chMode, /* in */ + const FDK_channelMapDescr *const mapDescr, /* in */ + AUDIO_CHANNEL_TYPE channelType[], /* out */ + UCHAR channelIndices[], /* out */ + UCHAR offsetTable[(8)] /* out */ +) { + int grpIdx, plainIdx, numPlains = 1, numTotalChannels = 0; + int chCfg, ch = 0; + + FDK_ASSERT(channelType != NULL); + FDK_ASSERT(channelIndices != NULL); + FDK_ASSERT(mapDescr != NULL); + FDK_ASSERT(offsetTable != NULL); + + /* Init output arrays */ + FDKmemclear(channelType, (8) * sizeof(AUDIO_CHANNEL_TYPE)); + FDKmemclear(channelIndices, (8) * sizeof(UCHAR)); + FDKmemset(offsetTable, 255, (8) * sizeof(UCHAR)); + + /* Summerize to get the total number of channels */ + for (grpIdx = 0; grpIdx < (4); grpIdx += 1) { + numTotalChannels += (chMode >> (grpIdx * 4)) & 0xF; + } + + /* Get the appropriate channel map */ + switch (chMode) { + case CH_MODE_1_0_0_0: + case CH_MODE_2_0_0_0: + case CH_MODE_3_0_0_0: + case CH_MODE_3_0_1_0: + case CH_MODE_3_0_2_0: + case CH_MODE_3_0_2_1: + chCfg = numTotalChannels; + break; + case CH_MODE_3_0_3_1: + chCfg = 11; + break; + case CH_MODE_3_0_4_1: + chCfg = 12; + break; + case CH_MODE_5_0_2_1: + chCfg = 7; + break; + default: + /* fallback */ + chCfg = 0; + break; + } + + /* Compose channel offset table */ + + for (plainIdx = 0; plainIdx < numPlains; plainIdx += 1) { + PCM_DMX_CHANNEL_MODE plainChMode; + UCHAR numChInGrp[(4)]; + + plainChMode = getChMode4Plain(plainIdx, chMode, chCfg); + + /* Extract the number of channels per group */ + numChInGrp[CH_GROUP_FRONT] = plainChMode & 0xF; + numChInGrp[CH_GROUP_SIDE] = (plainChMode >> 4) & 0xF; + numChInGrp[CH_GROUP_REAR] = (plainChMode >> 8) & 0xF; + numChInGrp[CH_GROUP_LFE] = (plainChMode >> 12) & 0xF; + + /* Non-symmetric channels */ + if ((numChInGrp[CH_GROUP_FRONT] & 0x1) && (plainIdx == CH_PLAIN_NORMAL)) { + /* Odd number of front channels -> we have a center channel. + In MPEG-4 the center has the index 0. */ + int mappedIdx = FDK_chMapDescr_getMapValue(mapDescr, (UCHAR)ch, chCfg); + offsetTable[CENTER_FRONT_CHANNEL] = (UCHAR)mappedIdx; + channelType[mappedIdx] = ACT_FRONT; + channelIndices[mappedIdx] = 0; + ch += 1; + } + + for (grpIdx = 0; grpIdx < (4); grpIdx += 1) { + AUDIO_CHANNEL_TYPE type = ACT_NONE; + int chMapPos = 0, maxChannels = 0; + int chIdx = 0; /* Index of channel within the specific group */ + + switch (grpIdx) { + case CH_GROUP_FRONT: + type = (AUDIO_CHANNEL_TYPE)((plainIdx << 4) | ACT_FRONT); + switch (plainIdx) { + default: + chMapPos = LEFT_FRONT_CHANNEL; + chIdx = numChInGrp[grpIdx] & 0x1; + break; + } + maxChannels = 3; + break; + case CH_GROUP_SIDE: + /* Always map side channels to the multipurpose group. */ + type = (AUDIO_CHANNEL_TYPE)((plainIdx << 4) | ACT_SIDE); + if (plainIdx == CH_PLAIN_TOP) { + chMapPos = LEFT_SIDE_CHANNEL_TOP; + maxChannels = 3; + } else { + chMapPos = LEFT_MULTIPRPS_CHANNEL; + maxChannels = 2; + } + break; + case CH_GROUP_REAR: + type = (AUDIO_CHANNEL_TYPE)((plainIdx << 4) | ACT_BACK); + if (plainIdx == CH_PLAIN_TOP) { + chMapPos = LEFT_REAR_CHANNEL_TOP; + maxChannels = 3; + } else { + chMapPos = LEFT_REAR_CHANNEL; + maxChannels = 2; + } + break; + case CH_GROUP_LFE: + if (plainIdx == CH_PLAIN_NORMAL) { + type = ACT_LFE; + chMapPos = LOW_FREQUENCY_CHANNEL; + maxChannels = 1; + } + break; + default: + break; + } + + /* Map all channels in this group */ + for (; chIdx < numChInGrp[grpIdx]; chIdx += 1) { + int mappedIdx = FDK_chMapDescr_getMapValue(mapDescr, (UCHAR)ch, chCfg); + if ((chIdx == maxChannels) || (offsetTable[chMapPos] < 255)) { + /* No space left in this channel group! */ + if (offsetTable[LEFT_MULTIPRPS_CHANNEL] == + 255) { /* Use the multipurpose group: */ + chMapPos = LEFT_MULTIPRPS_CHANNEL; + } else { + FDK_ASSERT(0); + } + } + offsetTable[chMapPos] = (UCHAR)mappedIdx; + channelType[mappedIdx] = type; + channelIndices[mappedIdx] = (UCHAR)chIdx; + chMapPos += 1; + ch += 1; + } + } + } +} + +/** Private helper function for downmix matrix manipulation that initializes + * one row in a given downmix matrix (corresponding to one output channel). + * @param [inout] Pointer to fixed-point parts of the downmix matrix. + * @param [inout] Pointer to scale factor matrix associated to the downmix + *factors. + * @param [in] Index of channel (row) to be initialized. + * @returns Nothing to return. + **/ +static void dmxInitChannel(FIXP_DMX mixFactors[(8)][(8)], + INT mixScales[(8)][(8)], const unsigned int outCh) { + unsigned int inCh; + for (inCh = 0; inCh < (8); inCh += 1) { + if (inCh == outCh) { + mixFactors[outCh][inCh] = FL2FXCONST_DMX(0.5f); + mixScales[outCh][inCh] = 1; + } else { + mixFactors[outCh][inCh] = FL2FXCONST_DMX(0.0f); + mixScales[outCh][inCh] = 0; + } + } +} + +/** Private helper function for downmix matrix manipulation that does a reset + * of one row in a given downmix matrix (corresponding to one output channel). + * @param [inout] Pointer to fixed-point parts of the downmix matrix. + * @param [inout] Pointer to scale factor matrix associated to the downmix + *factors. + * @param [in] Index of channel (row) to be cleared/reset. + * @returns Nothing to return. + **/ +static void dmxClearChannel(FIXP_DMX mixFactors[(8)][(8)], + INT mixScales[(8)][(8)], const unsigned int outCh) { + FDK_ASSERT((outCh >= 0) && (outCh < (8))); + FDKmemclear(&mixFactors[outCh], (8) * sizeof(FIXP_DMX)); + FDKmemclear(&mixScales[outCh], (8) * sizeof(INT)); +} + +/** Private helper function for downmix matrix manipulation that applies a + *source channel (row) scaled by a given mix factor to a destination channel + *(row) in a given downmix matrix. Existing mix factors of the destination + *channel (row) will get overwritten. + * @param [inout] Pointer to fixed-point parts of the downmix matrix. + * @param [inout] Pointer to scale factor matrix associated to the downmix + *factors. + * @param [in] Index of source channel (row). + * @param [in] Index of destination channel (row). + * @param [in] Fixed-point part of mix factor to be applied. + * @param [in] Scale factor of mix factor to be applied. + * @returns Nothing to return. + **/ +static void dmxSetChannel(FIXP_DMX mixFactors[(8)][(8)], + INT mixScales[(8)][(8)], const unsigned int dstCh, + const unsigned int srcCh, const FIXP_DMX factor, + const INT scale) { + int ch; + for (ch = 0; ch < (8); ch += 1) { + if (mixFactors[srcCh][ch] != (FIXP_DMX)0) { + mixFactors[dstCh][ch] = + FX_DBL2FX_DMX(fMult(mixFactors[srcCh][ch], factor)); + mixScales[dstCh][ch] = mixScales[srcCh][ch] + scale; + } + } +} + +/** Private helper function for downmix matrix manipulation that adds a source + *channel (row) scaled by a given mix factor to a destination channel (row) in a + *given downmix matrix. + * @param [inout] Pointer to fixed-point parts of the downmix matrix. + * @param [inout] Pointer to scale factor matrix associated to the downmix + *factors. + * @param [in] Index of source channel (row). + * @param [in] Index of destination channel (row). + * @param [in] Fixed-point part of mix factor to be applied. + * @param [in] Scale factor of mix factor to be applied. + * @returns Nothing to return. + **/ +static void dmxAddChannel(FIXP_DMX mixFactors[(8)][(8)], + INT mixScales[(8)][(8)], const unsigned int dstCh, + const unsigned int srcCh, const FIXP_DMX factor, + const INT scale) { + int ch; + for (ch = 0; ch < (8); ch += 1) { + FIXP_DBL addFact = fMult(mixFactors[srcCh][ch], factor); + if (addFact != (FIXP_DMX)0) { + INT newScale = mixScales[srcCh][ch] + scale; + if (mixFactors[dstCh][ch] != (FIXP_DMX)0) { + if (newScale > mixScales[dstCh][ch]) { + mixFactors[dstCh][ch] >>= newScale - mixScales[dstCh][ch]; + } else { + addFact >>= mixScales[dstCh][ch] - newScale; + newScale = mixScales[dstCh][ch]; + } + } + mixFactors[dstCh][ch] += FX_DBL2FX_DMX(addFact); + mixScales[dstCh][ch] = newScale; + } + } +} + +/** Private function that creates a downmix factor matrix depending on the input + and output + * configuration, the user parameters as well as the given metadata. This + function is the modules + * brain and hold all downmix algorithms. + * @param [in] Flag that indicates if inChMode holds a real (packed) channel + mode or has been converted to a MPEG-4 channel configuration index. + * @param [in] Dependent on the inModeIsCfg flag this field hands in a (packed) + channel mode or the corresponding MPEG-4 channel configuration index.of the + input configuration. + * @param [in] The (packed) channel mode of the output configuration. + * @param [in] Pointer to structure holding all current user parameter. + * @param [in] Pointer to field holding all current meta data. + * @param [out] Pointer to fixed-point parts of the downmix matrix. Normalized + to one scale factor. + * @param [out] The common scale factor of the downmix matrix. + * @returns An error code. + **/ +static PCMDMX_ERROR getMixFactors(const UCHAR inModeIsCfg, + PCM_DMX_CHANNEL_MODE inChMode, + const PCM_DMX_CHANNEL_MODE outChMode, + const PCM_DMX_USER_PARAMS *pParams, + const DMX_BS_META_DATA *pMetaData, + FIXP_DMX mixFactors[(8)][(8)], + INT *pOutScale) { + PCMDMX_ERROR err = PCMDMX_OK; + INT mixScales[(8)][(8)]; + INT maxScale = 0; + int numInChannel; + int numOutChannel; + int dmxMethod; + unsigned int outCh, inChCfg = 0; + unsigned int valid[(8)] = {0}; + + FDK_ASSERT(pMetaData != NULL); + FDK_ASSERT(mixFactors != NULL); + /* Check on a supported output configuration. + Add new one only after extensive testing! */ + if (!((outChMode == CH_MODE_1_0_0_0) || (outChMode == CH_MODE_2_0_0_0) || + (outChMode == CH_MODE_3_0_2_1) || (outChMode == CH_MODE_3_0_4_1) || + (outChMode == CH_MODE_5_0_2_1))) { + FDK_ASSERT(0); + } + + if (inModeIsCfg) { + /* Convert channel config to channel mode: */ + inChCfg = (unsigned int)inChMode; + switch (inChCfg) { + case 1: + case 2: + case 3: + case 4: + case 5: + case 6: + inChMode = outChModeTable[inChCfg]; + break; + case 11: + inChMode = CH_MODE_3_0_3_1; + break; + case 12: + inChMode = CH_MODE_3_0_4_1; + break; + case 7: + case 14: + inChMode = CH_MODE_5_0_2_1; + break; + default: + FDK_ASSERT(0); + } + } + + /* Extract the total number of input channels */ + numInChannel = (inChMode & 0xF) + ((inChMode >> 4) & 0xF) + + ((inChMode >> 8) & 0xF) + ((inChMode >> 12) & 0xF); + /* Extract the total number of output channels */ + numOutChannel = (outChMode & 0xF) + ((outChMode >> 4) & 0xF) + + ((outChMode >> 8) & 0xF) + ((outChMode >> 12) & 0xF); + + /* MPEG ammendment 4 aka ETSI metadata and fallback mode: */ + + /* Create identity DMX matrix: */ + for (outCh = 0; outCh < (8); outCh += 1) { + dmxInitChannel(mixFactors, mixScales, outCh); + } + if (((inChMode >> 12) & 0xF) == 0) { + /* Clear empty or wrongly mapped input channel */ + dmxClearChannel(mixFactors, mixScales, LOW_FREQUENCY_CHANNEL); + } + + /* FIRST STAGE: */ + if (numInChannel > SIX_CHANNEL) { /* Always use MPEG equations either with + meta data or with default values. */ + FIXP_DMX dMixFactA, dMixFactB; + INT dMixScaleA, dMixScaleB; + int isValidCfg = TRUE; + + /* Get factors from meta data */ + dMixFactA = abMixLvlValueTab[pMetaData->dmixIdxA]; + dMixScaleA = (pMetaData->dmixIdxA == 0) ? 1 : 0; + dMixFactB = abMixLvlValueTab[pMetaData->dmixIdxB]; + dMixScaleB = (pMetaData->dmixIdxB == 0) ? 1 : 0; + + /* Check if input is in the list of supported configurations */ + switch (inChMode) { + case CH_MODE_3_2_1_1: /* chCfg 11 but with side channels */ + case CH_MODE_3_2_1_0: + isValidCfg = FALSE; + err = PCMDMX_INVALID_MODE; + FDK_FALLTHROUGH; + case CH_MODE_3_0_3_1: /* chCfg 11 */ + /* 6.1ch: C' = C; L' = L; R' = R; LFE' = LFE; + Ls' = Ls*dmix_a_idx + Cs*dmix_b_idx; + Rs' = Rs*dmix_a_idx + Cs*dmix_b_idx; */ + dmxClearChannel( + mixFactors, mixScales, + RIGHT_MULTIPRPS_CHANNEL); /* clear empty input channel */ + dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL, + LEFT_REAR_CHANNEL, dMixFactA, dMixScaleA); + dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL, + LEFT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB); + dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL, + RIGHT_REAR_CHANNEL, dMixFactA, dMixScaleA); + dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL, + LEFT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB); + break; + case CH_MODE_3_0_4_1: /* chCfg 12 */ + /* 7.1ch Surround Back: C' = C; L' = L; R' = R; LFE' = LFE; + Ls' = Ls*dmix_a_idx + Lsr*dmix_b_idx; + Rs' = Rs*dmix_a_idx + Rsr*dmix_b_idx; */ + dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL, + LEFT_REAR_CHANNEL, dMixFactA, dMixScaleA); + dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL, + LEFT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB); + dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL, + RIGHT_REAR_CHANNEL, dMixFactA, dMixScaleA); + dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL, + RIGHT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB); + break; + case CH_MODE_5_0_1_0: + case CH_MODE_5_0_1_1: + dmxClearChannel(mixFactors, mixScales, + RIGHT_REAR_CHANNEL); /* clear empty input channel */ + dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL, + LEFT_REAR_CHANNEL, FL2FXCONST_DMX(0.5f), 1); + dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL, + LEFT_REAR_CHANNEL, FL2FXCONST_DMX(0.5f), 1); + FDK_FALLTHROUGH; + case CH_MODE_5_2_1_0: + isValidCfg = FALSE; + err = PCMDMX_INVALID_MODE; + FDK_FALLTHROUGH; + case CH_MODE_5_0_2_1: /* chCfg 7 || 14 */ + if (inChCfg == 14) { + /* 7.1ch Front Height: C' = C; Ls' = Ls; Rs' = Rs; LFE' = LFE; + L' = L*dmix_a_idx + Lv*dmix_b_idx; + R' = R*dmix_a_idx + Rv*dmix_b_idx; */ + dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_FRONT_CHANNEL, dMixFactA, dMixScaleA); + dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB); + dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + RIGHT_FRONT_CHANNEL, dMixFactA, dMixScaleA); + dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + RIGHT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB); + } else { + /* 7.1ch Front: Ls' = Ls; Rs' = Rs; LFE' = LFE; + C' = C + (Lc+Rc)*dmix_a_idx; + L' = L + Lc*dmix_b_idx; + R' = R + Rc*dmix_b_idx; */ + dmxSetChannel(mixFactors, mixScales, CENTER_FRONT_CHANNEL, + LEFT_MULTIPRPS_CHANNEL, dMixFactA, dMixScaleA); + dmxSetChannel(mixFactors, mixScales, CENTER_FRONT_CHANNEL, + RIGHT_MULTIPRPS_CHANNEL, dMixFactA, dMixScaleA); + dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB); + dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 1); + dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + RIGHT_MULTIPRPS_CHANNEL, dMixFactB, dMixScaleB); + dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 1); + } + break; + default: + /* Nothing to do. Just use the identity matrix. */ + isValidCfg = FALSE; + err = PCMDMX_INVALID_MODE; + break; + } + + /* Add additional DMX gain */ + if ((isValidCfg == TRUE) && + (pMetaData->dmxGainIdx5 != 0)) { /* Apply DMX gain 5 */ + FIXP_DMX dmxGain; + INT dmxScale; + INT sign = (pMetaData->dmxGainIdx5 & 0x40) ? -1 : 1; + INT val = pMetaData->dmxGainIdx5 & 0x3F; + + /* 10^(dmx_gain_5/80) */ + dmxGain = FX_DBL2FX_DMX( + fLdPow(FL2FXCONST_DBL(0.830482023721841f), 2, /* log2(10) */ + (FIXP_DBL)(sign * val * (LONG)FL2FXCONST_DBL(0.0125f)), 0, + &dmxScale)); + /* Currently only positive scale factors supported! */ + if (dmxScale < 0) { + dmxGain >>= -dmxScale; + dmxScale = 0; + } + + dmxSetChannel(mixFactors, mixScales, CENTER_FRONT_CHANNEL, + CENTER_FRONT_CHANNEL, dmxGain, dmxScale); + dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_FRONT_CHANNEL, dmxGain, dmxScale); + dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + RIGHT_FRONT_CHANNEL, dmxGain, dmxScale); + dmxSetChannel(mixFactors, mixScales, LEFT_REAR_CHANNEL, LEFT_REAR_CHANNEL, + dmxGain, dmxScale); + dmxSetChannel(mixFactors, mixScales, RIGHT_REAR_CHANNEL, + RIGHT_REAR_CHANNEL, dmxGain, dmxScale); + dmxSetChannel(mixFactors, mixScales, LOW_FREQUENCY_CHANNEL, + LOW_FREQUENCY_CHANNEL, dmxGain, dmxScale); + } + + /* Mark the output channels */ + valid[CENTER_FRONT_CHANNEL] = 1; + valid[LEFT_FRONT_CHANNEL] = 1; + valid[RIGHT_FRONT_CHANNEL] = 1; + valid[LEFT_REAR_CHANNEL] = 1; + valid[RIGHT_REAR_CHANNEL] = 1; + valid[LOW_FREQUENCY_CHANNEL] = 1; + + /* Update channel mode for the next stage */ + inChMode = CH_MODE_3_0_2_1; + } + + /* For the X (> 6) to 6 channel downmix we had no choice. + To mix from 6 to 2 (or 1) channel(s) we have several possibilities (MPEG + DSE | MPEG PCE | ITU | ARIB | DLB). Use profile and the metadata + available flags to determine which equation to use: */ + +#define DMX_METHOD_MPEG_AMD4 1 +#define DMX_METHOD_MPEG_LEGACY 2 +#define DMX_METHOD_ARIB_JAPAN 4 +#define DMX_METHOD_ITU_RECOM 8 +#define DMX_METHOD_CUSTOM 16 + + dmxMethod = DMX_METHOD_MPEG_AMD4; /* default */ + + if ((pParams->dmxProfile == DMX_PRFL_FORCE_MATRIX_MIX) && + (pMetaData->typeFlags & TYPE_PCE_DATA)) { + dmxMethod = DMX_METHOD_MPEG_LEGACY; + } else if (!(pMetaData->typeFlags & + (TYPE_DSE_CLEV_DATA | TYPE_DSE_SLEV_DATA))) { + switch (pParams->dmxProfile) { + default: + case DMX_PRFL_STANDARD: + /* dmxMethod = DMX_METHOD_MPEG_AMD4; */ + break; + case DMX_PRFL_MATRIX_MIX: + case DMX_PRFL_FORCE_MATRIX_MIX: + if (pMetaData->typeFlags & TYPE_PCE_DATA) { + dmxMethod = DMX_METHOD_MPEG_LEGACY; + } + break; + case DMX_PRFL_ARIB_JAPAN: + dmxMethod = DMX_METHOD_ARIB_JAPAN; + break; + } + } + + /* SECOND STAGE: */ + if (numOutChannel <= TWO_CHANNEL) { + /* Create DMX matrix according to input configuration */ + switch (inChMode) { + case CH_MODE_2_0_0_0: /* chCfg 2 */ + /* Apply the dual channel mode. */ + switch (pParams->dualChannelMode) { + case CH1_MODE: /* L' = 0.707 * Ch1; + R' = 0.707 * Ch1; */ + dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0); + dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0); + break; + case CH2_MODE: /* L' = 0.707 * Ch2; + R' = 0.707 * Ch2; */ + dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0); + dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0); + break; + case MIXED_MODE: /* L' = 0.5*Ch1 + 0.5*Ch2; + R' = 0.5*Ch1 + 0.5*Ch2; */ + dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 0); + dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 0); + dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 0); + dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.5f), 0); + break; + default: + case STEREO_MODE: + /* Nothing to do */ + break; + } + break; + /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + * - - - - - - - - - - - - - - - - - - - */ + case CH_MODE_2_0_1_0: { + FIXP_DMX sMixLvl; + if (dmxMethod == DMX_METHOD_ARIB_JAPAN) { + /* L' = 0.707*L + 0.5*S; R' = 0.707*R + 0.5*S; */ + dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0); + dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0); + sMixLvl = FL2FXCONST_DMX(0.5f); + } else { /* L' = L + 0.707*S; R' = R + 0.707*S; */ + sMixLvl = FL2FXCONST_DMX(0.707f); + } + dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_REAR_CHANNEL, sMixLvl, 0); + dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + LEFT_REAR_CHANNEL, sMixLvl, 0); + } break; + /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + * - - - - - - - - - - - - - - - - - - - */ + case CH_MODE_3_0_0_0: /* chCfg 3 */ + { + FIXP_DMX cMixLvl; + if (dmxMethod == DMX_METHOD_ARIB_JAPAN) { + /* L' = 0.707*L + 0.5*C; R' = 0.707*R + 0.5*C; */ + dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0); + dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0); + cMixLvl = FL2FXCONST_DMX(0.5f); + } else { /* L' = L + 0.707*C; R' = R + 0.707*C; */ + cMixLvl = FL2FXCONST_DMX(0.707f); + } + dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + CENTER_FRONT_CHANNEL, cMixLvl, 0); + dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + CENTER_FRONT_CHANNEL, cMixLvl, 0); + } break; + /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + * - - - - - - - - - - - - - - - - - - - */ + case CH_MODE_3_0_1_0: /* chCfg 4 */ + { + FIXP_DMX csMixLvl; + if (dmxMethod == DMX_METHOD_ARIB_JAPAN) { + /* L' = 0.707*L + 0.5*C + 0.5*S; R' = 0.707*R + 0.5*C + 0.5*S; */ + dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0); + dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + RIGHT_FRONT_CHANNEL, FL2FXCONST_DMX(0.707f), 0); + csMixLvl = FL2FXCONST_DMX(0.5f); + } else { /* L' = L + 0.707*C + 0.707*S; + R' = R + 0.707*C + 0.707*S; */ + csMixLvl = FL2FXCONST_DMX(0.707f); + } + dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + CENTER_FRONT_CHANNEL, csMixLvl, 0); + dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_REAR_CHANNEL, csMixLvl, 0); + dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + CENTER_FRONT_CHANNEL, csMixLvl, 0); + dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + LEFT_REAR_CHANNEL, csMixLvl, 0); + } break; + /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + * - - - - - - - - - - - - - - - - - - - */ + case CH_MODE_3_0_2_0: /* chCfg 5 */ + case CH_MODE_3_0_2_1: /* chCfg 6 */ + { + switch (dmxMethod) { + default: + case DMX_METHOD_MPEG_AMD4: { + FIXP_DMX cMixLvl, sMixLvl, lMixLvl; + INT cMixScale, sMixScale, lMixScale; + + /* Get factors from meta data */ + cMixLvl = abMixLvlValueTab[pMetaData->cLevIdx]; + cMixScale = (pMetaData->cLevIdx == 0) ? 1 : 0; + sMixLvl = abMixLvlValueTab[pMetaData->sLevIdx]; + sMixScale = (pMetaData->sLevIdx == 0) ? 1 : 0; + lMixLvl = lfeMixLvlValueTab[pMetaData->dmixIdxLfe]; + if (pMetaData->dmixIdxLfe <= 1) { + lMixScale = 2; + } else if (pMetaData->dmixIdxLfe <= 5) { + lMixScale = 1; + } else { + lMixScale = 0; + } + /* Setup the DMX matrix */ + if ((pParams->pseudoSurrMode == FORCE_PS_DMX) || + ((pParams->pseudoSurrMode == AUTO_PS_DMX) && + (pMetaData->pseudoSurround == + 1))) { /* L' = L + C*clev - (Ls+Rs)*slev + LFE*lflev; + R' = R + C*clev + (Ls+Rs)*slev + LFE*lflev; */ + dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + CENTER_FRONT_CHANNEL, cMixLvl, cMixScale); + dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_REAR_CHANNEL, -sMixLvl, sMixScale); + dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + RIGHT_REAR_CHANNEL, -sMixLvl, sMixScale); + dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LOW_FREQUENCY_CHANNEL, lMixLvl, lMixScale); + dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + CENTER_FRONT_CHANNEL, cMixLvl, cMixScale); + dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + LEFT_REAR_CHANNEL, sMixLvl, sMixScale); + dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + RIGHT_REAR_CHANNEL, sMixLvl, sMixScale); + dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + LOW_FREQUENCY_CHANNEL, lMixLvl, lMixScale); + } else { /* L' = L + C*clev + Ls*slev + LFE*llev; + R' = R + C*clev + Rs*slev + LFE*llev; */ + dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + CENTER_FRONT_CHANNEL, cMixLvl, cMixScale); + dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_REAR_CHANNEL, sMixLvl, sMixScale); + dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LOW_FREQUENCY_CHANNEL, lMixLvl, lMixScale); + dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + CENTER_FRONT_CHANNEL, cMixLvl, cMixScale); + dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + RIGHT_REAR_CHANNEL, sMixLvl, sMixScale); + dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + LOW_FREQUENCY_CHANNEL, lMixLvl, lMixScale); + } + + /* Add additional DMX gain */ + if (pMetaData->dmxGainIdx2 != 0) { /* Apply DMX gain 2 */ + FIXP_DMX dmxGain; + INT dmxScale; + INT sign = (pMetaData->dmxGainIdx2 & 0x40) ? -1 : 1; + INT val = pMetaData->dmxGainIdx2 & 0x3F; + + /* 10^(dmx_gain_2/80) */ + dmxGain = FX_DBL2FX_DMX( + fLdPow(FL2FXCONST_DBL(0.830482023721841f), 2, /* log2(10) */ + (FIXP_DBL)(sign * val * (LONG)FL2FXCONST_DBL(0.0125f)), + 0, &dmxScale)); + /* Currently only positive scale factors supported! */ + if (dmxScale < 0) { + dmxGain >>= -dmxScale; + dmxScale = 0; + } + + dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_FRONT_CHANNEL, dmxGain, dmxScale); + dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + RIGHT_FRONT_CHANNEL, dmxGain, dmxScale); + } + } break; + case DMX_METHOD_ARIB_JAPAN: + case DMX_METHOD_MPEG_LEGACY: { + FIXP_DMX flev, clev, slevLL, slevLR, slevRL, slevRR; + FIXP_DMX mtrxMixDwnCoef = + mpegMixDownIdx2Coef[pMetaData->matrixMixdownIdx]; + + if ((pParams->pseudoSurrMode == FORCE_PS_DMX) || + ((pParams->pseudoSurrMode == AUTO_PS_DMX) && + (pMetaData->pseudoSurround == 1))) { + if (dmxMethod == DMX_METHOD_ARIB_JAPAN) { + /* 3/2 input: L' = 0.707 * [L+0.707*C-k*Ls-k*Rs]; + R' = 0.707 * [R+0.707*C+k*Ls+k*Rs]; */ + flev = mpegMixDownIdx2Coef[0]; /* a = 0.707 */ + } else { /* 3/2 input: L' = (1.707+2*A)^-1 * + [L+0.707*C-A*Ls-A*Rs]; R' = (1.707+2*A)^-1 * + [R+0.707*C+A*Ls+A*Rs]; */ + flev = mpegMixDownIdx2PreFact[1][pMetaData->matrixMixdownIdx]; + } + slevRR = slevRL = FX_DBL2FX_DMX(fMult(flev, mtrxMixDwnCoef)); + slevLL = slevLR = -slevRL; + } else { + if (dmxMethod == DMX_METHOD_ARIB_JAPAN) { + /* 3/2 input: L' = 0.707 * [L+0.707*C+k*Ls]; + R' = 0.707 * [R+0.707*C+k*Rs]; */ + flev = mpegMixDownIdx2Coef[0]; /* a = 0.707 */ + } else { /* 3/2 input: L' = (1.707+A)^-1 * [L+0.707*C+A*Ls]; + R' = (1.707+A)^-1 * [R+0.707*C+A*Rs]; */ + flev = mpegMixDownIdx2PreFact[0][pMetaData->matrixMixdownIdx]; + } + slevRR = slevLL = FX_DBL2FX_DMX(fMult(flev, mtrxMixDwnCoef)); + slevLR = slevRL = (FIXP_DMX)0; + } + /* common factor */ + clev = + FX_DBL2FX_DMX(fMult(flev, mpegMixDownIdx2Coef[0] /* 0.707 */)); + + dmxSetChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_FRONT_CHANNEL, flev, 0); + dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + CENTER_FRONT_CHANNEL, clev, 0); + dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + LEFT_REAR_CHANNEL, slevLL, 0); + dmxAddChannel(mixFactors, mixScales, LEFT_FRONT_CHANNEL, + RIGHT_REAR_CHANNEL, slevLR, 0); + + dmxSetChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + RIGHT_FRONT_CHANNEL, flev, 0); + dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + CENTER_FRONT_CHANNEL, clev, 0); + dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + LEFT_REAR_CHANNEL, slevRL, 0); + dmxAddChannel(mixFactors, mixScales, RIGHT_FRONT_CHANNEL, + RIGHT_REAR_CHANNEL, slevRR, 0); + } break; + } /* switch (dmxMethod) */ + } break; + default: + /* This configuration does not fit to any known downmix equation! */ + err = PCMDMX_INVALID_MODE; + break; + } /* switch (inChMode) */ + + /* Mark the output channels */ + FDKmemclear(valid, (8) * sizeof(unsigned int)); + valid[LEFT_FRONT_CHANNEL] = 1; + valid[RIGHT_FRONT_CHANNEL] = 1; + } + + if (numOutChannel == ONE_CHANNEL) { + FIXP_DMX monoMixLevel; + INT monoMixScale = 0; + + dmxClearChannel(mixFactors, mixScales, + CENTER_FRONT_CHANNEL); /* C is not in the mix */ + + if (dmxMethod == + DMX_METHOD_MPEG_LEGACY) { /* C' = (3+2*A)^-1 * [C+L+R+A*Ls+A+Rs]; */ + monoMixLevel = mpegMixDownIdx2PreFact[2][pMetaData->matrixMixdownIdx]; + + mixFactors[CENTER_FRONT_CHANNEL][CENTER_FRONT_CHANNEL] = monoMixLevel; + mixFactors[CENTER_FRONT_CHANNEL][LEFT_FRONT_CHANNEL] = monoMixLevel; + mixFactors[CENTER_FRONT_CHANNEL][RIGHT_FRONT_CHANNEL] = monoMixLevel; + monoMixLevel = FX_DBL2FX_DMX(fMult( + monoMixLevel, mpegMixDownIdx2Coef[pMetaData->matrixMixdownIdx])); + mixFactors[CENTER_FRONT_CHANNEL][LEFT_REAR_CHANNEL] = monoMixLevel; + mixFactors[CENTER_FRONT_CHANNEL][RIGHT_REAR_CHANNEL] = monoMixLevel; + } else { + switch (dmxMethod) { + case DMX_METHOD_MPEG_AMD4: + /* C' = L + R; */ + monoMixLevel = FL2FXCONST_DMX(0.5f); + monoMixScale = 1; + break; + default: + /* C' = 0.5*L + 0.5*R; */ + monoMixLevel = FL2FXCONST_DMX(0.5f); + monoMixScale = 0; + break; + } + dmxSetChannel(mixFactors, mixScales, CENTER_FRONT_CHANNEL, + LEFT_FRONT_CHANNEL, monoMixLevel, monoMixScale); + dmxAddChannel(mixFactors, mixScales, CENTER_FRONT_CHANNEL, + RIGHT_FRONT_CHANNEL, monoMixLevel, monoMixScale); + } + + /* Mark the output channel */ + FDKmemclear(valid, (8) * sizeof(unsigned int)); + valid[CENTER_FRONT_CHANNEL] = 1; + } + +#define MAX_SEARCH_START_VAL (-7) + + { + LONG chSum[(8)]; + INT chSumMax = MAX_SEARCH_START_VAL; + + /* Determine the current maximum scale factor */ + for (outCh = 0; outCh < (8); outCh += 1) { + if (valid[outCh] != 0) { + unsigned int inCh; + for (inCh = 0; inCh < (8); inCh += 1) { + if (mixScales[outCh][inCh] > maxScale) { /* Store the new maximum */ + maxScale = mixScales[outCh][inCh]; + } + } + } + } + + /* Individualy analyse output chanal levels */ + for (outCh = 0; outCh < (8); outCh += 1) { + chSum[outCh] = MAX_SEARCH_START_VAL; + if (valid[outCh] != 0) { + int ovrflwProtScale = 0; + unsigned int inCh; + + /* Accumulate all factors for each output channel */ + chSum[outCh] = 0; + for (inCh = 0; inCh < (8); inCh += 1) { + SHORT addFact = FX_DMX2SHRT(mixFactors[outCh][inCh]); + if (mixScales[outCh][inCh] <= maxScale) { + addFact >>= maxScale - mixScales[outCh][inCh]; + } else { + addFact <<= mixScales[outCh][inCh] - maxScale; + } + chSum[outCh] += addFact; + } + if (chSum[outCh] > (LONG)MAXVAL_SGL) { + while (chSum[outCh] > (LONG)MAXVAL_SGL) { + ovrflwProtScale += 1; + chSum[outCh] >>= 1; + } + } else if (chSum[outCh] > 0) { + while ((chSum[outCh] << 1) <= (LONG)MAXVAL_SGL) { + ovrflwProtScale -= 1; + chSum[outCh] <<= 1; + } + } + /* Store the differential scaling in the same array */ + chSum[outCh] = ovrflwProtScale; + } + } + + for (outCh = 0; outCh < (8); outCh += 1) { + if ((valid[outCh] != 0) && + (chSum[outCh] > chSumMax)) { /* Store the new maximum */ + chSumMax = chSum[outCh]; + } + } + maxScale = fMax(maxScale + chSumMax, 0); + + /* Normalize all factors */ + for (outCh = 0; outCh < (8); outCh += 1) { + if (valid[outCh] != 0) { + unsigned int inCh; + for (inCh = 0; inCh < (8); inCh += 1) { + if (mixFactors[outCh][inCh] != (FIXP_DMX)0) { + if (mixScales[outCh][inCh] <= maxScale) { + mixFactors[outCh][inCh] >>= maxScale - mixScales[outCh][inCh]; + } else { + mixFactors[outCh][inCh] <<= mixScales[outCh][inCh] - maxScale; + } + mixScales[outCh][inCh] = maxScale; + } + } + } + } + } + + /* return the scale factor */ + *pOutScale = maxScale; + + return (err); +} + +/** Open and initialize an instance of the PCM downmix module + * @param [out] Pointer to a buffer receiving the handle of the new instance. + * @returns Returns an error code. + **/ +PCMDMX_ERROR pcmDmx_Open(HANDLE_PCM_DOWNMIX *pSelf) { + HANDLE_PCM_DOWNMIX self; + + if (pSelf == NULL) { + return (PCMDMX_INVALID_HANDLE); + } + + *pSelf = NULL; + + self = (HANDLE_PCM_DOWNMIX)GetPcmDmxInstance(0); + if (self == NULL) { + return (PCMDMX_OUT_OF_MEMORY); + } + + /* Reset the full instance */ + pcmDmx_Reset(self, PCMDMX_RESET_FULL); + + *pSelf = self; + + return (PCMDMX_OK); +} + +/** Reset all static values like e.g. mixdown coefficients. + * @param [in] Handle of PCM downmix module instance. + * @param [in] Flags telling which parts of the module shall be reset. + * @returns Returns an error code. + **/ +PCMDMX_ERROR pcmDmx_Reset(HANDLE_PCM_DOWNMIX self, UINT flags) { + if (self == NULL) { + return (PCMDMX_INVALID_HANDLE); + } + + if (flags & PCMDMX_RESET_PARAMS) { + PCM_DMX_USER_PARAMS *pParams = &self->userParams; + + pParams->dualChannelMode = STEREO_MODE; + pParams->pseudoSurrMode = NEVER_DO_PS_DMX; + pParams->numOutChannelsMax = (6); + pParams->numOutChannelsMin = (0); + pParams->frameDelay = 0; + pParams->expiryFrame = (0); + + self->applyProcessing = 0; + } + + if (flags & PCMDMX_RESET_BS_DATA) { + int slot; + /* Init all slots with a default set */ + for (slot = 0; slot <= (1); slot += 1) { + FDKmemcpy(&self->bsMetaData[slot], &dfltMetaData, + sizeof(DMX_BS_META_DATA)); + } + } + + return (PCMDMX_OK); +} + +/** Set one parameter for one instance of the PCM downmix module. + * @param [in] Handle of PCM downmix module instance. + * @param [in] Parameter to be set. + * @param [in] Parameter value. + * @returns Returns an error code. + **/ +PCMDMX_ERROR pcmDmx_SetParam(HANDLE_PCM_DOWNMIX self, const PCMDMX_PARAM param, + const INT value) { + switch (param) { + case DMX_PROFILE_SETTING: + switch ((DMX_PROFILE_TYPE)value) { + case DMX_PRFL_STANDARD: + case DMX_PRFL_MATRIX_MIX: + case DMX_PRFL_FORCE_MATRIX_MIX: + case DMX_PRFL_ARIB_JAPAN: + break; + default: + return (PCMDMX_UNABLE_TO_SET_PARAM); + } + if (self == NULL) return (PCMDMX_INVALID_HANDLE); + self->userParams.dmxProfile = (DMX_PROFILE_TYPE)value; + break; + + case DMX_BS_DATA_EXPIRY_FRAME: + if (self == NULL) return (PCMDMX_INVALID_HANDLE); + self->userParams.expiryFrame = (value > 0) ? (UINT)value : 0; + break; + + case DMX_BS_DATA_DELAY: + if ((value > (1)) || (value < 0)) { + return (PCMDMX_UNABLE_TO_SET_PARAM); + } + if (self == NULL) { + return (PCMDMX_INVALID_HANDLE); + } + self->userParams.frameDelay = (UCHAR)value; + break; + + case MIN_NUMBER_OF_OUTPUT_CHANNELS: + switch (value) { /* supported output channels */ + case -1: + case 0: + case ONE_CHANNEL: + case TWO_CHANNEL: + case SIX_CHANNEL: + case EIGHT_CHANNEL: + break; + default: + return (PCMDMX_UNABLE_TO_SET_PARAM); + } + if (self == NULL) return (PCMDMX_INVALID_HANDLE); + /* Store the new value */ + self->userParams.numOutChannelsMin = (value > 0) ? (SHORT)value : -1; + if ((value > 0) && (self->userParams.numOutChannelsMax > 0) && + (value > self->userParams + .numOutChannelsMax)) { /* MIN > MAX would be an invalid + state. Thus set MAX = MIN in + this case. */ + self->userParams.numOutChannelsMax = self->userParams.numOutChannelsMin; + } + break; + + case MAX_NUMBER_OF_OUTPUT_CHANNELS: + switch (value) { /* supported output channels */ + case -1: + case 0: + case ONE_CHANNEL: + case TWO_CHANNEL: + case SIX_CHANNEL: + case EIGHT_CHANNEL: + break; + default: + return (PCMDMX_UNABLE_TO_SET_PARAM); + } + if (self == NULL) return (PCMDMX_INVALID_HANDLE); + /* Store the new value */ + self->userParams.numOutChannelsMax = (value > 0) ? (SHORT)value : -1; + if ((value > 0) && + (value < self->userParams + .numOutChannelsMin)) { /* MAX < MIN would be an invalid + state. Thus set MIN = MAX in + this case. */ + self->userParams.numOutChannelsMin = self->userParams.numOutChannelsMax; + } + break; + + case DMX_DUAL_CHANNEL_MODE: + switch ((DUAL_CHANNEL_MODE)value) { + case STEREO_MODE: + case CH1_MODE: + case CH2_MODE: + case MIXED_MODE: + break; + default: + return (PCMDMX_UNABLE_TO_SET_PARAM); + } + if (self == NULL) return (PCMDMX_INVALID_HANDLE); + self->userParams.dualChannelMode = (DUAL_CHANNEL_MODE)value; + self->applyProcessing = ((DUAL_CHANNEL_MODE)value != STEREO_MODE) + ? 1 + : 0; /* Force processing if necessary. */ + break; + + case DMX_PSEUDO_SURROUND_MODE: + switch ((PSEUDO_SURROUND_MODE)value) { + case NEVER_DO_PS_DMX: + case AUTO_PS_DMX: + case FORCE_PS_DMX: + break; + default: + return (PCMDMX_UNABLE_TO_SET_PARAM); + } + if (self == NULL) return (PCMDMX_INVALID_HANDLE); + self->userParams.pseudoSurrMode = (PSEUDO_SURROUND_MODE)value; + break; + + default: + return (PCMDMX_UNKNOWN_PARAM); + } + + return (PCMDMX_OK); +} + +/** Get one parameter value of one PCM downmix module instance. + * @param [in] Handle of PCM downmix module instance. + * @param [in] Parameter to be set. + * @param [out] Pointer to buffer receiving the parameter value. + * @returns Returns an error code. + **/ +PCMDMX_ERROR pcmDmx_GetParam(HANDLE_PCM_DOWNMIX self, const PCMDMX_PARAM param, + INT *const pValue) { + PCM_DMX_USER_PARAMS *pUsrParams; + + if ((self == NULL) || (pValue == NULL)) { + return (PCMDMX_INVALID_HANDLE); + } + pUsrParams = &self->userParams; + + switch (param) { + case DMX_PROFILE_SETTING: + *pValue = (INT)pUsrParams->dmxProfile; + break; + case DMX_BS_DATA_EXPIRY_FRAME: + *pValue = (INT)pUsrParams->expiryFrame; + break; + case DMX_BS_DATA_DELAY: + *pValue = (INT)pUsrParams->frameDelay; + break; + case MIN_NUMBER_OF_OUTPUT_CHANNELS: + *pValue = (INT)pUsrParams->numOutChannelsMin; + break; + case MAX_NUMBER_OF_OUTPUT_CHANNELS: + *pValue = (INT)pUsrParams->numOutChannelsMax; + break; + case DMX_DUAL_CHANNEL_MODE: + *pValue = (INT)pUsrParams->dualChannelMode; + break; + case DMX_PSEUDO_SURROUND_MODE: + *pValue = (INT)pUsrParams->pseudoSurrMode; + break; + default: + return (PCMDMX_UNKNOWN_PARAM); + } + + return (PCMDMX_OK); +} + +/* + * Read DMX meta-data from a data stream element. + */ +PCMDMX_ERROR pcmDmx_Parse(HANDLE_PCM_DOWNMIX self, HANDLE_FDK_BITSTREAM hBs, + UINT ancDataBits, int isMpeg2) { + PCMDMX_ERROR errorStatus = PCMDMX_OK; + +#define MAX_DSE_ANC_BYTES (16) /* 15 bytes */ +#define ANC_DATA_SYNC_BYTE (0xBC) /* ancillary data sync byte. */ + + DMX_BS_META_DATA *pBsMetaData; + + int skip4Dmx = 0, skip4Ext = 0; + int dmxLvlAvail = 0, extDataAvail = 0; + UINT foundNewData = 0; + UINT minAncBits = ((isMpeg2) ? 5 : 3) * 8; + + if ((self == NULL) || (hBs == NULL)) { + return (PCMDMX_INVALID_HANDLE); + } + + /* sanity checks */ + if ((ancDataBits < minAncBits) || (ancDataBits > FDKgetValidBits(hBs))) { + return (PCMDMX_CORRUPT_ANC_DATA); + } + + pBsMetaData = &self->bsMetaData[0]; + + if (isMpeg2) { + /* skip DVD ancillary data */ + FDKpushFor(hBs, 16); + } + + /* check sync word */ + if (FDKreadBits(hBs, 8) != ANC_DATA_SYNC_BYTE) { + return (PCMDMX_CORRUPT_ANC_DATA); + } + + /* skip MPEG audio type and Dolby surround mode */ + FDKpushFor(hBs, 4); + + if (isMpeg2) { + /* int numAncBytes = */ FDKreadBits(hBs, 4); + /* advanced dynamic range control */ + if (FDKreadBit(hBs)) skip4Dmx += 24; + /* dialog normalization */ + if (FDKreadBit(hBs)) skip4Dmx += 8; + /* reproduction_level */ + if (FDKreadBit(hBs)) skip4Dmx += 8; + } else { + FDKpushFor(hBs, 2); /* drc presentation mode */ + pBsMetaData->pseudoSurround = (SCHAR)FDKreadBit(hBs); + FDKpushFor(hBs, 4); /* reserved bits */ + } + + /* downmixing levels MPEGx status */ + dmxLvlAvail = FDKreadBit(hBs); + + if (isMpeg2) { + /* scale factor CRC status */ + if (FDKreadBit(hBs)) skip4Ext += 16; + } else { + /* ancillary data extension status */ + extDataAvail = FDKreadBit(hBs); + } + + /* audio coding and compression status */ + if (FDKreadBit(hBs)) skip4Ext += 16; + /* coarse grain timecode status */ + if (FDKreadBit(hBs)) skip4Ext += 16; + /* fine grain timecode status */ + if (FDKreadBit(hBs)) skip4Ext += 16; + + /* skip the useless data to get to the DMX levels */ + FDKpushFor(hBs, skip4Dmx); + + /* downmix_levels_MPEGX */ + if (dmxLvlAvail) { + if (FDKreadBit(hBs)) { /* center_mix_level_on */ + pBsMetaData->cLevIdx = (UCHAR)FDKreadBits(hBs, 3); + foundNewData |= TYPE_DSE_CLEV_DATA; + } else { + FDKreadBits(hBs, 3); + } + if (FDKreadBit(hBs)) { /* surround_mix_level_on */ + pBsMetaData->sLevIdx = (UCHAR)FDKreadBits(hBs, 3); + foundNewData |= TYPE_DSE_SLEV_DATA; + } else { + FDKreadBits(hBs, 3); + } + } + + /* skip the useless data to get to the ancillary data extension */ + FDKpushFor(hBs, skip4Ext); + + /* anc data extension (MPEG-4 only) */ + if (extDataAvail) { + int extDmxLvlSt, extDmxGainSt, extDmxLfeSt; + + FDKreadBit(hBs); /* reserved bit */ + extDmxLvlSt = FDKreadBit(hBs); + extDmxGainSt = FDKreadBit(hBs); + extDmxLfeSt = FDKreadBit(hBs); + FDKreadBits(hBs, 4); /* reserved bits */ + + if (extDmxLvlSt) { + pBsMetaData->dmixIdxA = (UCHAR)FDKreadBits(hBs, 3); + pBsMetaData->dmixIdxB = (UCHAR)FDKreadBits(hBs, 3); + FDKreadBits(hBs, 2); /* reserved bits */ + foundNewData |= TYPE_DSE_DMIX_AB_DATA; + } + if (extDmxGainSt) { + pBsMetaData->dmxGainIdx5 = (UCHAR)FDKreadBits(hBs, 7); + FDKreadBit(hBs); /* reserved bit */ + pBsMetaData->dmxGainIdx2 = (UCHAR)FDKreadBits(hBs, 7); + FDKreadBit(hBs); /* reserved bit */ + foundNewData |= TYPE_DSE_DMX_GAIN_DATA; + } + if (extDmxLfeSt) { + pBsMetaData->dmixIdxLfe = (UCHAR)FDKreadBits(hBs, 4); + FDKreadBits(hBs, 4); /* reserved bits */ + foundNewData |= TYPE_DSE_DMIX_LFE_DATA; + } + } + + /* final sanity check on the amount of read data */ + if ((INT)FDKgetValidBits(hBs) < 0) { + errorStatus = PCMDMX_CORRUPT_ANC_DATA; + } + + if ((errorStatus == PCMDMX_OK) && (foundNewData != 0)) { + /* announce new data */ + pBsMetaData->typeFlags |= foundNewData; + /* reset expiry counter */ + pBsMetaData->expiryCount = 0; + } + + return (errorStatus); +} + +/* + * Read DMX meta-data from a data stream element. + */ +PCMDMX_ERROR pcmDmx_ReadDvbAncData(HANDLE_PCM_DOWNMIX self, UCHAR *pAncDataBuf, + UINT ancDataBytes, int isMpeg2) { + PCMDMX_ERROR errorStatus = PCMDMX_OK; + FDK_BITSTREAM bs; + HANDLE_FDK_BITSTREAM hBs = &bs; + + if (self == NULL) { + return (PCMDMX_INVALID_HANDLE); + } + + /* sanity checks */ + if ((pAncDataBuf == NULL) || (ancDataBytes == 0)) { + return (PCMDMX_CORRUPT_ANC_DATA); + } + + FDKinitBitStream(hBs, pAncDataBuf, MAX_DSE_ANC_BYTES, ancDataBytes * 8, + BS_READER); + + errorStatus = pcmDmx_Parse(self, hBs, ancDataBytes * 8, isMpeg2); + + return (errorStatus); +} + +/** Set the matrix mixdown information extracted from the PCE of an AAC + *bitstream. Note: Call only if matrix_mixdown_idx_present is true. + * @param [in] Handle of PCM downmix module instance. + * @param [in] The 2 bit matrix mixdown index extracted from PCE. + * @param [in] The pseudo surround enable flag extracted from PCE. + * @returns Returns an error code. + **/ +PCMDMX_ERROR pcmDmx_SetMatrixMixdownFromPce(HANDLE_PCM_DOWNMIX self, + int matrixMixdownPresent, + int matrixMixdownIdx, + int pseudoSurroundEnable) { + if (self == NULL) { + return (PCMDMX_INVALID_HANDLE); + } + + { + DMX_BS_META_DATA *pBsMetaData = &self->bsMetaData[0]; + + if (matrixMixdownPresent) { + pBsMetaData->pseudoSurround = (pseudoSurroundEnable) ? 1 : 0; + pBsMetaData->matrixMixdownIdx = matrixMixdownIdx & 0x03; + pBsMetaData->typeFlags |= TYPE_PCE_DATA; + /* Reset expiry counter */ + pBsMetaData->expiryCount = 0; + } + } + + return (PCMDMX_OK); +} + +/** Apply down or up mixing. + * @param [in] Handle of PCM downmix module instance. + * @param [inout] Pointer to buffer that hold the time domain signal. + * @param [in] Pointer where the amount of output samples is returned into. + * @param [in] Size of pPcmBuf. + * @param [inout] Pointer where the amount of output channels is returned into. + * @param [in] Input and output samples are processed interleaved. + * @param [inout] Array where the corresponding channel type for each output + *audio channel is stored into. + * @param [inout] Array where the corresponding channel type index for each + *output audio channel is stored into. + * @param [in] Array containing the out channel mapping to be used (From MPEG + *PCE ordering to whatever is required). + * @param [out] Pointer on a field receiving the scale factor that has to be + *applied on all samples afterwards. If the handed pointer is NULL scaling is + *done internally. + * @returns Returns an error code. + **/ +PCMDMX_ERROR pcmDmx_ApplyFrame(HANDLE_PCM_DOWNMIX self, DMX_PCM *pPcmBuf, + const int pcmBufSize, UINT frameSize, + INT *nChannels, INT fInterleaved, + AUDIO_CHANNEL_TYPE channelType[], + UCHAR channelIndices[], + const FDK_channelMapDescr *const mapDescr, + INT *pDmxOutScale) { + PCM_DMX_USER_PARAMS *pParam = NULL; + PCMDMX_ERROR errorStatus = PCMDMX_OK; + DUAL_CHANNEL_MODE dualChannelMode; + PCM_DMX_CHANNEL_MODE inChMode; + PCM_DMX_CHANNEL_MODE outChMode; + INT devNull; /* Just a dummy to avoid a lot of branches in the code */ + int numOutChannels, numInChannels; + int inStride, outStride, offset; + int dmxMaxScale, dmxScale; + int slot; + UCHAR inOffsetTable[(8)]; + + DMX_BS_META_DATA bsMetaData; + + if ((self == NULL) || (nChannels == NULL) || (channelType == NULL) || + (channelIndices == NULL) || (!FDK_chMapDescr_isValid(mapDescr))) { + return (PCMDMX_INVALID_HANDLE); + } + + /* Init the output scaling */ + dmxScale = 0; + if (pDmxOutScale != NULL) { + /* Avoid final scaling internally and hand it to the outside world. */ + *pDmxOutScale = 0; + dmxMaxScale = (3); + } else { + /* Apply the scaling internally. */ + pDmxOutScale = &devNull; /* redirect to temporal stack memory */ + dmxMaxScale = 0; + } + + pParam = &self->userParams; + numInChannels = *nChannels; + + /* Perform some input sanity checks */ + if (pPcmBuf == NULL) { + return (PCMDMX_INVALID_ARGUMENT); + } + if (frameSize == 0) { + return (PCMDMX_INVALID_ARGUMENT); + } + if (numInChannels == 0) { + return (PCMDMX_INVALID_ARGUMENT); + } + if (numInChannels > (8)) { + return (PCMDMX_INVALID_CH_CONFIG); + } + + /* Check on misconfiguration */ + FDK_ASSERT((pParam->numOutChannelsMax <= 0) || + (pParam->numOutChannelsMax >= pParam->numOutChannelsMin)); + + /* Determine if the module has to do processing */ + if ((self->applyProcessing == 0) && + ((pParam->numOutChannelsMax <= 0) || + (pParam->numOutChannelsMax >= numInChannels)) && + (pParam->numOutChannelsMin <= numInChannels)) { + /* Nothing to do */ + return (errorStatus); + } + + /* Determine the number of output channels */ + if ((pParam->numOutChannelsMax > 0) && + (numInChannels > pParam->numOutChannelsMax)) { + numOutChannels = pParam->numOutChannelsMax; + } else if (numInChannels < pParam->numOutChannelsMin) { + numOutChannels = pParam->numOutChannelsMin; + } else { + numOutChannels = numInChannels; + } + + /* Check I/O buffer size */ + if ((UINT)pcmBufSize < (UINT)numOutChannels * frameSize) { + return (PCMDMX_OUTPUT_BUFFER_TOO_SMALL); + } + + dualChannelMode = pParam->dualChannelMode; + + /* Analyse input channel configuration and get channel offset + * table that can be accessed with the fixed channel labels. */ + errorStatus = getChannelMode(numInChannels, channelType, channelIndices, + inOffsetTable, &inChMode); + if (PCMDMX_IS_FATAL_ERROR(errorStatus) || (inChMode == CH_MODE_UNDEFINED)) { + /* We don't need to restore because the channel + configuration has not been changed. Just exit. */ + return (PCMDMX_INVALID_CH_CONFIG); + } + + /* Set input stride and offset */ + if (fInterleaved) { + inStride = numInChannels; + offset = 1; /* Channel specific offset factor */ + } else { + inStride = 1; + offset = frameSize; /* Channel specific offset factor */ + } + + /* Reset downmix meta data if necessary */ + if ((pParam->expiryFrame > 0) && + (++self->bsMetaData[0].expiryCount > + pParam + ->expiryFrame)) { /* The metadata read from bitstream is too old. */ +#ifdef FDK_ASSERT_ENABLE + PCMDMX_ERROR err = pcmDmx_Reset(self, PCMDMX_RESET_BS_DATA); + FDK_ASSERT(err == PCMDMX_OK); +#else + pcmDmx_Reset(self, PCMDMX_RESET_BS_DATA); +#endif + } + FDKmemcpy(&bsMetaData, &self->bsMetaData[pParam->frameDelay], + sizeof(DMX_BS_META_DATA)); + /* Maintain delay line */ + for (slot = pParam->frameDelay; slot > 0; slot -= 1) { + FDKmemcpy(&self->bsMetaData[slot], &self->bsMetaData[slot - 1], + sizeof(DMX_BS_META_DATA)); + } + + /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + * - - - - - - - - - - - - - - - - - - */ + if (numInChannels > numOutChannels) { /* Apply downmix */ + DMX_PCM *pInPcm[(8)] = {NULL}; + DMX_PCM *pOutPcm[(8)] = {NULL}; + FIXP_DMX mixFactors[(8)][(8)]; + UCHAR outOffsetTable[(8)]; + UINT sample; + int chCfg = 0; + int bypScale = 0; + + if (numInChannels > SIX_CHANNEL) { + AUDIO_CHANNEL_TYPE multiPurposeChType[2]; + + /* Get the type of the multipurpose channels */ + multiPurposeChType[0] = + channelType[inOffsetTable[LEFT_MULTIPRPS_CHANNEL]]; + multiPurposeChType[1] = + channelType[inOffsetTable[RIGHT_MULTIPRPS_CHANNEL]]; + + /* Check if the input configuration is one defined in the standard. */ + switch (inChMode) { + case CH_MODE_5_0_2_1: /* chCfg 7 || 14 */ + /* Further analyse the input config to distinguish the two + * CH_MODE_5_0_2_1 configs. */ + if ((multiPurposeChType[0] == ACT_FRONT_TOP) && + (multiPurposeChType[1] == ACT_FRONT_TOP)) { + chCfg = 14; + } else { + chCfg = 7; + } + break; + case CH_MODE_3_0_3_1: /* chCfg 11 */ + chCfg = 11; + break; + case CH_MODE_3_0_4_1: /* chCfg 12 */ + chCfg = 12; + break; + default: + chCfg = 0; /* Not a known config */ + break; + } + } + + /* Set this stages output stride and channel mode: */ + outStride = (fInterleaved) ? numOutChannels : 1; + outChMode = outChModeTable[numOutChannels]; + FDK_ASSERT(outChMode != CH_MODE_UNDEFINED); + + /* Get channel description and channel mapping for the desired output + * configuration. */ + getChannelDescription(outChMode, mapDescr, channelType, channelIndices, + outOffsetTable); + /* Now there is no way back because we modified the channel configuration! + */ + + /* Create the DMX matrix */ + errorStatus = + getMixFactors((chCfg > 0) ? 1 : 0, + (chCfg > 0) ? (PCM_DMX_CHANNEL_MODE)chCfg : inChMode, + outChMode, pParam, &bsMetaData, mixFactors, &dmxScale); + /* No fatal errors can occur here. The function is designed to always return + a valid matrix. The error code is used to signal configurations and + matrices that are not conform to any standard. */ + + /* Determine the final scaling */ + bypScale = fMin(dmxMaxScale, dmxScale); + *pDmxOutScale += bypScale; + dmxScale -= bypScale; + + { /* Set channel pointer for input. Remove empty cols. */ + int inCh, outCh, map[(8)]; + int ch = 0; + for (inCh = 0; inCh < (8); inCh += 1) { + if (inOffsetTable[inCh] < (UCHAR)numInChannels) { + pInPcm[ch] = &pPcmBuf[inOffsetTable[inCh] * offset]; + map[ch++] = inCh; + } + } + for (; ch < (8); ch += 1) { + map[ch] = ch; + } + + /* Remove unused cols from factor matrix */ + for (inCh = 0; inCh < numInChannels; inCh += 1) { + if (inCh != map[inCh]) { + for (outCh = 0; outCh < (8); outCh += 1) { + mixFactors[outCh][inCh] = mixFactors[outCh][map[inCh]]; + } + } + } + + /* Set channel pointer for output. Remove empty cols. */ + ch = 0; + for (outCh = 0; outCh < (8); outCh += 1) { + if (outOffsetTable[outCh] < (UCHAR)numOutChannels) { + pOutPcm[ch] = &pPcmBuf[outOffsetTable[outCh] * offset]; + map[ch++] = outCh; + } + } + for (; ch < (8); ch += 1) { + map[ch] = ch; + } + + /* Remove unused rows from factor matrix */ + for (outCh = 0; outCh < numOutChannels; outCh += 1) { + if (outCh != map[outCh]) { + FDKmemcpy(&mixFactors[outCh], &mixFactors[map[outCh]], + (8) * sizeof(FIXP_DMX)); + } + } + } + + /* Sample processing loop */ + for (sample = 0; sample < frameSize; sample++) { + DMX_PCM tIn[(8)] = {0}; + FIXP_DBL tOut[(8)] = {(FIXP_DBL)0}; + int inCh, outCh; + + /* Preload all input samples */ + for (inCh = 0; inCh < numInChannels; inCh += 1) { + if (pInPcm[inCh] != NULL) { + tIn[inCh] = *pInPcm[inCh]; + pInPcm[inCh] += inStride; + } else { + tIn[inCh] = (DMX_PCM)0; + } + } + /* Apply downmix coefficients to input samples and accumulate for output + */ + for (outCh = 0; outCh < numOutChannels; outCh += 1) { + for (inCh = 0; inCh < numInChannels; inCh += 1) { + tOut[outCh] += fMult((DMX_PCMF)tIn[inCh], mixFactors[outCh][inCh]); + } + FDK_ASSERT(pOutPcm[outCh] >= pPcmBuf); + FDK_ASSERT(pOutPcm[outCh] < &pPcmBuf[pcmBufSize]); + /* Write sample */ + *pOutPcm[outCh] = (DMX_PCM)SATURATE_SHIFT( + tOut[outCh], DFRACT_BITS - DMX_PCM_BITS - dmxScale, DMX_PCM_BITS); + pOutPcm[outCh] += outStride; + } + } + + /* Update the number of output channels */ + *nChannels = numOutChannels; + + } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - */ + else if (numInChannels < numOutChannels) { /* Apply rudimentary upmix */ + /* Set up channel pointer */ + UCHAR outOffsetTable[(8)]; + + /* FIRST STAGE + Create a stereo/dual channel signal */ + if (numInChannels == ONE_CHANNEL) { + DMX_PCM *pInPcm[(8)]; + DMX_PCM *pOutLF, *pOutRF; + UINT sample; + + /* Set this stages output stride and channel mode: */ + outStride = (fInterleaved) ? TWO_CHANNEL : 1; + outChMode = outChModeTable[TWO_CHANNEL]; + + /* Get channel description and channel mapping for this + * stages number of output channels (always STEREO). */ + getChannelDescription(outChMode, mapDescr, channelType, channelIndices, + outOffsetTable); + /* Now there is no way back because we modified the channel configuration! + */ + + /* Set input channel pointer. The first channel is always at index 0. */ + pInPcm[CENTER_FRONT_CHANNEL] = + &pPcmBuf[(frameSize - 1) * + inStride]; /* Considering input mapping could lead to a + invalid pointer here if the channel is not + declared to be a front channel. */ + + /* Set output channel pointer (for this stage). */ + pOutLF = &pPcmBuf[outOffsetTable[LEFT_FRONT_CHANNEL] * offset + + (frameSize - 1) * outStride]; + pOutRF = &pPcmBuf[outOffsetTable[RIGHT_FRONT_CHANNEL] * offset + + (frameSize - 1) * outStride]; + + /* 1/0 input: */ + for (sample = 0; sample < frameSize; sample++) { + /* L' = C; R' = C; */ + *pOutLF = *pOutRF = *pInPcm[CENTER_FRONT_CHANNEL]; + + pInPcm[CENTER_FRONT_CHANNEL] -= inStride; + pOutLF -= outStride; + pOutRF -= outStride; + } + + /* Prepare for next stage: */ + inStride = outStride; + inChMode = outChMode; + FDKmemcpy(inOffsetTable, outOffsetTable, (8) * sizeof(UCHAR)); + } + + /* SECOND STAGE + Extend with zero channels to achieved the desired number of output + channels. */ + if (numOutChannels > TWO_CHANNEL) { + DMX_PCM *pIn[(8)] = {NULL}; + DMX_PCM *pOut[(8)] = {NULL}; + UINT sample; + AUDIO_CHANNEL_TYPE inChTypes[(8)]; + UCHAR inChIndices[(8)]; + UCHAR numChPerGrp[2][(4)]; + int nContentCh = 0; /* Number of channels with content */ + int nEmptyCh = 0; /* Number of channels with content */ + int ch, chGrp, isCompatible = 1; + + /* Do not change the signalling which is the channel types and indices. + Just reorder and add channels. So first save the input signalling. */ + FDKmemcpy(inChTypes, channelType, + numInChannels * sizeof(AUDIO_CHANNEL_TYPE)); + FDKmemclear(inChTypes + numInChannels, + ((8) - numInChannels) * sizeof(AUDIO_CHANNEL_TYPE)); + FDKmemcpy(inChIndices, channelIndices, numInChannels * sizeof(UCHAR)); + FDKmemclear(inChIndices + numInChannels, + ((8) - numInChannels) * sizeof(UCHAR)); + + /* Set this stages output stride and channel mode: */ + outStride = (fInterleaved) ? numOutChannels : 1; + outChMode = outChModeTable[numOutChannels]; + FDK_ASSERT(outChMode != CH_MODE_UNDEFINED); + + /* Check if input channel config can be easily mapped to the desired + * output config. */ + for (chGrp = 0; chGrp < (4); chGrp += 1) { + numChPerGrp[IN][chGrp] = (inChMode >> (chGrp * 4)) & 0xF; + numChPerGrp[OUT][chGrp] = (outChMode >> (chGrp * 4)) & 0xF; + + if (numChPerGrp[IN][chGrp] > numChPerGrp[OUT][chGrp]) { + isCompatible = 0; + break; + } + } + + if (isCompatible) { + /* Get new channel description and channel + * mapping for the desired output channel mode. */ + getChannelDescription(outChMode, mapDescr, channelType, channelIndices, + outOffsetTable); + /* If the input config has a back center channel but the output + config has not, copy it to left and right (if available). */ + if ((numChPerGrp[IN][CH_GROUP_REAR] % 2) && + !(numChPerGrp[OUT][CH_GROUP_REAR] % 2)) { + if (numChPerGrp[IN][CH_GROUP_REAR] == 1) { + inOffsetTable[RIGHT_REAR_CHANNEL] = + inOffsetTable[LEFT_REAR_CHANNEL]; + } else if (numChPerGrp[IN][CH_GROUP_REAR] == 3) { + inOffsetTable[RIGHT_MULTIPRPS_CHANNEL] = + inOffsetTable[LEFT_MULTIPRPS_CHANNEL]; + } + } + } else { + /* Just copy and extend the original config */ + FDKmemcpy(outOffsetTable, inOffsetTable, (8) * sizeof(UCHAR)); + } + + /* Set I/O channel pointer. + Note: The following assignment algorithm clears the channel offset + tables. Thus they can not be used afterwards. */ + for (ch = 0; ch < (8); ch += 1) { + if ((outOffsetTable[ch] < 255) && + (inOffsetTable[ch] < 255)) { /* Set I/O pointer: */ + pIn[nContentCh] = + &pPcmBuf[inOffsetTable[ch] * offset + (frameSize - 1) * inStride]; + pOut[nContentCh] = &pPcmBuf[outOffsetTable[ch] * offset + + (frameSize - 1) * outStride]; + /* Update signalling */ + channelType[outOffsetTable[ch]] = inChTypes[inOffsetTable[ch]]; + channelIndices[outOffsetTable[ch]] = inChIndices[inOffsetTable[ch]]; + inOffsetTable[ch] = 255; + outOffsetTable[ch] = 255; + nContentCh += 1; + } + } + if (isCompatible) { + /* Assign the remaining input channels. + This is just a safety appliance. We should never need it. */ + for (ch = 0; ch < (8); ch += 1) { + if (inOffsetTable[ch] < 255) { + int outCh; + for (outCh = 0; outCh < (8); outCh += 1) { + if (outOffsetTable[outCh] < 255) { + break; + } + } + if (outCh >= (8)) { + FDK_ASSERT(0); + break; + } + /* Set I/O pointer: */ + pIn[nContentCh] = &pPcmBuf[inOffsetTable[ch] * offset + + (frameSize - 1) * inStride]; + pOut[nContentCh] = &pPcmBuf[outOffsetTable[outCh] * offset + + (frameSize - 1) * outStride]; + /* Update signalling */ + FDK_ASSERT(inOffsetTable[outCh] < numInChannels); + FDK_ASSERT(outOffsetTable[outCh] < numOutChannels); + channelType[outOffsetTable[outCh]] = inChTypes[inOffsetTable[ch]]; + channelIndices[outOffsetTable[outCh]] = + inChIndices[inOffsetTable[ch]]; + inOffsetTable[ch] = 255; + outOffsetTable[outCh] = 255; + nContentCh += 1; + } + } + /* Set the remaining output channel pointer */ + for (ch = 0; ch < (8); ch += 1) { + if (outOffsetTable[ch] < 255) { + pOut[nContentCh + nEmptyCh] = &pPcmBuf[outOffsetTable[ch] * offset + + (frameSize - 1) * outStride]; + /* Expand output signalling */ + channelType[outOffsetTable[ch]] = ACT_NONE; + channelIndices[outOffsetTable[ch]] = (UCHAR)nEmptyCh; + outOffsetTable[ch] = 255; + nEmptyCh += 1; + } + } + } else { + /* Set the remaining output channel pointer */ + for (ch = nContentCh; ch < numOutChannels; ch += 1) { + pOut[ch] = &pPcmBuf[ch * offset + (frameSize - 1) * outStride]; + /* Expand output signalling */ + channelType[ch] = ACT_NONE; + channelIndices[ch] = (UCHAR)nEmptyCh; + nEmptyCh += 1; + } + } + + /* First copy the channels that have signal */ + for (sample = 0; sample < frameSize; sample += 1) { + DMX_PCM tIn[(8)]; + /* Read all channel samples */ + for (ch = 0; ch < nContentCh; ch += 1) { + tIn[ch] = *pIn[ch]; + pIn[ch] -= inStride; + } + /* Write all channel samples */ + for (ch = 0; ch < nContentCh; ch += 1) { + *pOut[ch] = tIn[ch]; + pOut[ch] -= outStride; + } + } + + /* Clear all the other channels */ + for (sample = 0; sample < frameSize; sample++) { + for (ch = nContentCh; ch < numOutChannels; ch += 1) { + *pOut[ch] = (DMX_PCM)0; + pOut[ch] -= outStride; + } + } + } + + /* update the number of output channels */ + *nChannels = numOutChannels; + } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - */ + else if (numInChannels == numOutChannels) { + /* Don't need to change the channel description here */ + + switch (numInChannels) { + case 2: { /* Set up channel pointer */ + DMX_PCM *pInPcm[(8)]; + DMX_PCM *pOutL, *pOutR; + FIXP_DMX flev; + + UINT sample; + + if (fInterleaved) { + inStride = numInChannels; + outStride = + 2; /* fixed !!! (below stereo is donwmixed to mono if required */ + offset = 1; /* Channel specific offset factor */ + } else { + inStride = 1; + outStride = 1; + offset = frameSize; /* Channel specific offset factor */ + } + + /* Set input channel pointer */ + pInPcm[LEFT_FRONT_CHANNEL] = + &pPcmBuf[inOffsetTable[LEFT_FRONT_CHANNEL] * offset]; + pInPcm[RIGHT_FRONT_CHANNEL] = + &pPcmBuf[inOffsetTable[RIGHT_FRONT_CHANNEL] * offset]; + + /* Set output channel pointer (same as input) */ + pOutL = pInPcm[LEFT_FRONT_CHANNEL]; + pOutR = pInPcm[RIGHT_FRONT_CHANNEL]; + + /* Set downmix levels: */ + flev = FL2FXCONST_DMX(0.70710678f); + /* 2/0 input: */ + switch (dualChannelMode) { + case CH1_MODE: /* L' = 0.707 * Ch1; R' = 0.707 * Ch1 */ + for (sample = 0; sample < frameSize; sample++) { + *pOutL = *pOutR = (DMX_PCM)SATURATE_RIGHT_SHIFT( + fMult((DMX_PCMF)*pInPcm[LEFT_FRONT_CHANNEL], flev), + DFRACT_BITS - DMX_PCM_BITS, DMX_PCM_BITS); + + pInPcm[LEFT_FRONT_CHANNEL] += inStride; + pOutL += outStride; + pOutR += outStride; + } + break; + case CH2_MODE: /* L' = 0.707 * Ch2; R' = 0.707 * Ch2 */ + for (sample = 0; sample < frameSize; sample++) { + *pOutL = *pOutR = (DMX_PCM)SATURATE_RIGHT_SHIFT( + fMult((DMX_PCMF)*pInPcm[RIGHT_FRONT_CHANNEL], flev), + DFRACT_BITS - DMX_PCM_BITS, DMX_PCM_BITS); + + pInPcm[RIGHT_FRONT_CHANNEL] += inStride; + pOutL += outStride; + pOutR += outStride; + } + break; + case MIXED_MODE: /* L' = 0.5*Ch1 + 0.5*Ch2; R' = 0.5*Ch1 + 0.5*Ch2 */ + for (sample = 0; sample < frameSize; sample++) { + *pOutL = *pOutR = (*pInPcm[LEFT_FRONT_CHANNEL] >> 1) + + (*pInPcm[RIGHT_FRONT_CHANNEL] >> 1); + + pInPcm[LEFT_FRONT_CHANNEL] += inStride; + pInPcm[RIGHT_FRONT_CHANNEL] += inStride; + pOutL += outStride; + pOutR += outStride; + } + break; + default: + case STEREO_MODE: + /* nothing to do */ + break; + } + } break; + + default: + /* nothing to do */ + break; + } + } + + return (errorStatus); +} + +/** Close an instance of the PCM downmix module. + * @param [inout] Pointer to a buffer containing the handle of the instance. + * @returns Returns an error code. + **/ +PCMDMX_ERROR pcmDmx_Close(HANDLE_PCM_DOWNMIX *pSelf) { + if (pSelf == NULL) { + return (PCMDMX_INVALID_HANDLE); + } + + FreePcmDmxInstance(pSelf); + *pSelf = NULL; + + return (PCMDMX_OK); +} + +/** Get library info for this module. + * @param [out] Pointer to an allocated LIB_INFO structure. + * @returns Returns an error code. + */ +PCMDMX_ERROR pcmDmx_GetLibInfo(LIB_INFO *info) { + int i; + + if (info == NULL) { + return PCMDMX_INVALID_ARGUMENT; + } + + /* Search for next free tab */ + for (i = 0; i < FDK_MODULE_LAST; i++) { + if (info[i].module_id == FDK_NONE) break; + } + if (i == FDK_MODULE_LAST) { + return PCMDMX_INVALID_ARGUMENT; + } + + /* Add the library info */ + info[i].module_id = FDK_PCMDMX; + info[i].version = + LIB_VERSION(PCMUTIL_LIB_VL0, PCMUTIL_LIB_VL1, PCMUTIL_LIB_VL2); + LIB_VERSION_STRING(info + i); + info[i].build_date = PCMUTIL_LIB_BUILD_DATE; + info[i].build_time = PCMUTIL_LIB_BUILD_TIME; + info[i].title = PCMDMX_LIB_TITLE; + + /* Set flags */ + info[i].flags = 0 | CAPF_DMX_BLIND /* At least blind downmixing is possible */ + | CAPF_DMX_PCE /* Guided downmix with data from MPEG-2/4 + Program Config Elements (PCE). */ + | CAPF_DMX_ARIB /* PCE guided downmix with slightly different + equations and levels. */ + | CAPF_DMX_DVB /* Guided downmix with data from DVB ancillary + data fields. */ + | CAPF_DMX_CH_EXP /* Simple upmixing by dublicating channels + or adding zero channels. */ + | CAPF_DMX_6_CH | CAPF_DMX_8_CH; + + /* Add lib info for FDK tools (if not yet done). */ + FDK_toolsGetLibInfo(info); + + return PCMDMX_OK; +} -- cgit v1.2.3