From 0e5af65c467b2423a0b857ae3ad98c91acc1e190 Mon Sep 17 00:00:00 2001 From: "Matthias P. Braendli" Date: Mon, 11 Nov 2019 11:38:02 +0100 Subject: Include patched FDK-AAC in the repository The initial idea was to get the DAB+ patch into upstream, but since that follows the android source releases, there is no place for a custom DAB+ patch there. So instead of having to maintain a patched fdk-aac that has to have the same .so version as the distribution package on which it is installed, we prefer having a separate fdk-aac-dab library to avoid collision. At that point, there's no reason to keep fdk-aac in a separate repository, as odr-audioenc is the only tool that needs DAB+ encoding support. Including it here simplifies installation, and makes it consistent with toolame-dab, also shipped in this repository. DAB+ decoding support (needed by ODR-SourceCompanion, dablin, etisnoop, welle.io and others) can be done using upstream FDK-AAC. --- fdk-aac/libFDK/include/qmf.h | 301 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 301 insertions(+) create mode 100644 fdk-aac/libFDK/include/qmf.h (limited to 'fdk-aac/libFDK/include/qmf.h') diff --git a/fdk-aac/libFDK/include/qmf.h b/fdk-aac/libFDK/include/qmf.h new file mode 100644 index 0000000..609c6f1 --- /dev/null +++ b/fdk-aac/libFDK/include/qmf.h @@ -0,0 +1,301 @@ +/* ----------------------------------------------------------------------------- +Software License for The Fraunhofer FDK AAC Codec Library for Android + +© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten +Forschung e.V. All rights reserved. + + 1. INTRODUCTION +The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software +that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding +scheme for digital audio. This FDK AAC Codec software is intended to be used on +a wide variety of Android devices. + +AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient +general perceptual audio codecs. AAC-ELD is considered the best-performing +full-bandwidth communications codec by independent studies and is widely +deployed. AAC has been standardized by ISO and IEC as part of the MPEG +specifications. + +Patent licenses for necessary patent claims for the FDK AAC Codec (including +those of Fraunhofer) may be obtained through Via Licensing +(www.vialicensing.com) or through the respective patent owners individually for +the purpose of encoding or decoding bit streams in products that are compliant +with the ISO/IEC MPEG audio standards. Please note that most manufacturers of +Android devices already license these patent claims through Via Licensing or +directly from the patent owners, and therefore FDK AAC Codec software may +already be covered under those patent licenses when it is used for those +licensed purposes only. + +Commercially-licensed AAC software libraries, including floating-point versions +with enhanced sound quality, are also available from Fraunhofer. Users are +encouraged to check the Fraunhofer website for additional applications +information and documentation. + +2. COPYRIGHT LICENSE + +Redistribution and use in source and binary forms, with or without modification, +are permitted without payment of copyright license fees provided that you +satisfy the following conditions: + +You must retain the complete text of this software license in redistributions of +the FDK AAC Codec or your modifications thereto in source code form. + +You must retain the complete text of this software license in the documentation +and/or other materials provided with redistributions of the FDK AAC Codec or +your modifications thereto in binary form. You must make available free of +charge copies of the complete source code of the FDK AAC Codec and your +modifications thereto to recipients of copies in binary form. + +The name of Fraunhofer may not be used to endorse or promote products derived +from this library without prior written permission. + +You may not charge copyright license fees for anyone to use, copy or distribute +the FDK AAC Codec software or your modifications thereto. + +Your modified versions of the FDK AAC Codec must carry prominent notices stating +that you changed the software and the date of any change. For modified versions +of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" +must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK +AAC Codec Library for Android." + +3. NO PATENT LICENSE + +NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without +limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. +Fraunhofer provides no warranty of patent non-infringement with respect to this +software. + +You may use this FDK AAC Codec software or modifications thereto only for +purposes that are authorized by appropriate patent licenses. + +4. DISCLAIMER + +This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright +holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, +including but not limited to the implied warranties of merchantability and +fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR +CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, +or consequential damages, including but not limited to procurement of substitute +goods or services; loss of use, data, or profits, or business interruption, +however caused and on any theory of liability, whether in contract, strict +liability, or tort (including negligence), arising in any way out of the use of +this software, even if advised of the possibility of such damage. + +5. CONTACT INFORMATION + +Fraunhofer Institute for Integrated Circuits IIS +Attention: Audio and Multimedia Departments - FDK AAC LL +Am Wolfsmantel 33 +91058 Erlangen, Germany + +www.iis.fraunhofer.de/amm +amm-info@iis.fraunhofer.de +----------------------------------------------------------------------------- */ + +/******************* Library for basic calculation routines ******************** + + Author(s): + + Description: + +*******************************************************************************/ + +/*! + \file qmf.h + \brief Complex qmf analysis/synthesis + \author Markus Werner + +*/ + +#ifndef QMF_H +#define QMF_H + +#include "common_fix.h" +#include "FDK_tools_rom.h" +#include "dct.h" + +#define FIXP_QAS FIXP_PCM +#define QAS_BITS SAMPLE_BITS + +#define FIXP_QSS FIXP_DBL +#define QSS_BITS DFRACT_BITS + +/* Flags for QMF intialization */ +/* Low Power mode flag */ +#define QMF_FLAG_LP 1 +/* Filter is not symmetric. This flag is set internally in the QMF + * initialization as required. */ +/* DO NOT PASS THIS FLAG TO qmfInitAnalysisFilterBank or + * qmfInitSynthesisFilterBank */ +#define QMF_FLAG_NONSYMMETRIC 2 +/* Complex Low Delay Filter Bank (or std symmetric filter bank) */ +#define QMF_FLAG_CLDFB 4 +/* Flag indicating that the states should be kept. */ +#define QMF_FLAG_KEEP_STATES 8 +/* Complex Low Delay Filter Bank used in MPEG Surround Encoder */ +#define QMF_FLAG_MPSLDFB 16 +/* Complex Low Delay Filter Bank used in MPEG Surround Encoder allows a + * optimized calculation of the modulation in qmfForwardModulationHQ() */ +#define QMF_FLAG_MPSLDFB_OPTIMIZE_MODULATION 32 +/* Flag to indicate HE-AAC down-sampled SBR mode (decoder) -> adapt analysis + * post twiddling */ +#define QMF_FLAG_DOWNSAMPLED 64 + +#define QMF_MAX_SYNTHESIS_BANDS (64) + +/*! + * \brief Algorithmic scaling in sbrForwardModulation() + * + * The scaling in sbrForwardModulation() is caused by: + * + * \li 1 R_SHIFT in sbrForwardModulation() + * \li 5/6 R_SHIFT in dct3() if using 32/64 Bands + * \li 1 omitted gain of 2.0 in qmfForwardModulation() + */ +#define ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK 7 + +/*! + * \brief Algorithmic scaling in cplxSynthesisQmfFiltering() + * + * The scaling in cplxSynthesisQmfFiltering() is caused by: + * + * \li 5/6 R_SHIFT in dct2() if using 32/64 Bands + * \li 1 omitted gain of 2.0 in qmfInverseModulation() + * \li -6 division by 64 in synthesis filterbank + * \li x bits external influence + */ +#define ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK 1 + +typedef struct { + int lb_scale; /*!< Scale of low band area */ + int ov_lb_scale; /*!< Scale of adjusted overlap low band area */ + int hb_scale; /*!< Scale of high band area */ + int ov_hb_scale; /*!< Scale of adjusted overlap high band area */ +} QMF_SCALE_FACTOR; + +struct QMF_FILTER_BANK { + const FIXP_PFT *p_filter; /*!< Pointer to filter coefficients */ + + void *FilterStates; /*!< Pointer to buffer of filter states + FIXP_PCM in analyse and + FIXP_DBL in synthesis filter */ + int FilterSize; /*!< Size of prototype filter. */ + const FIXP_QTW *t_cos; /*!< Modulation tables. */ + const FIXP_QTW *t_sin; + int filterScale; /*!< filter scale */ + + int no_channels; /*!< Total number of channels (subbands) */ + int no_col; /*!< Number of time slots */ + int lsb; /*!< Top of low subbands */ + int usb; /*!< Top of high subbands */ + + int synScalefactor; /*!< Scale factor of synthesis qmf (syn only) */ + int outScalefactor; /*!< Scale factor of output data (syn only) */ + FIXP_DBL outGain_m; /*!< Mantissa of gain output data (syn only) (init with + 0x80000000 to ignore) */ + int outGain_e; /*!< Exponent of gain output data (syn only) */ + + UINT flags; /*!< flags */ + UCHAR p_stride; /*!< Stride Factor of polyphase filters */ +}; + +typedef struct QMF_FILTER_BANK *HANDLE_QMF_FILTER_BANK; + +void qmfAnalysisFiltering( + HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank */ + FIXP_DBL **qmfReal, /*!< Pointer to real subband slots */ + FIXP_DBL **qmfImag, /*!< Pointer to imag subband slots */ + QMF_SCALE_FACTOR *scaleFactor, /*!< Scale factors of QMF data */ + const LONG *timeIn, /*!< Time signal */ + const int timeIn_e, /*!< Exponent of audio data */ + const int stride, /*!< Stride factor of audio data */ + FIXP_DBL *pWorkBuffer /*!< pointer to temporary working buffer */ +); + +void qmfAnalysisFiltering( + HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank */ + FIXP_DBL **qmfReal, /*!< Pointer to real subband slots */ + FIXP_DBL **qmfImag, /*!< Pointer to imag subband slots */ + QMF_SCALE_FACTOR *scaleFactor, /*!< Scale factors of QMF data */ + const INT_PCM *timeIn, /*!< Time signal */ + const int timeIn_e, /*!< Exponent of audio data */ + const int stride, /*!< Stride factor of audio data */ + FIXP_DBL *pWorkBuffer /*!< pointer to temporal working buffer */ +); + +void qmfSynthesisFiltering( + HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank */ + FIXP_DBL **QmfBufferReal, /*!< Pointer to real subband slots */ + FIXP_DBL **QmfBufferImag, /*!< Pointer to imag subband slots */ + const QMF_SCALE_FACTOR *scaleFactor, /*!< Scale factors of QMF data */ + const int ov_len, /*!< Length of band overlap */ + INT_PCM *timeOut, /*!< Time signal */ + const INT stride, /*!< Stride factor of audio data */ + FIXP_DBL *pWorkBuffer /*!< pointer to temporary working buffer. It must be + aligned */ +); + +int qmfInitAnalysisFilterBank( + HANDLE_QMF_FILTER_BANK h_Qmf, /*!< QMF Handle */ + FIXP_QAS *pFilterStates, /*!< Pointer to filter state buffer */ + int noCols, /*!< Number of time slots */ + int lsb, /*!< Number of lower bands */ + int usb, /*!< Number of upper bands */ + int no_channels, /*!< Number of critically sampled bands */ + int flags); /*!< Flags */ + +void qmfAnalysisFilteringSlot( + HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Synthesis Bank */ + FIXP_DBL *qmfReal, /*!< Low and High band, real */ + FIXP_DBL *qmfImag, /*!< Low and High band, imag */ + const LONG *timeIn, /*!< Pointer to input */ + const int stride, /*!< stride factor of input */ + FIXP_DBL *pWorkBuffer /*!< pointer to temporary working buffer */ +); + +void qmfAnalysisFilteringSlot( + HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Synthesis Bank */ + FIXP_DBL *qmfReal, /*!< Low and High band, real */ + FIXP_DBL *qmfImag, /*!< Low and High band, imag */ + const INT_PCM *timeIn, /*!< Pointer to input */ + const int stride, /*!< stride factor of input */ + FIXP_DBL *pWorkBuffer /*!< pointer to temporal working buffer */ +); +int qmfInitSynthesisFilterBank( + HANDLE_QMF_FILTER_BANK h_Qmf, /*!< QMF Handle */ + FIXP_QSS *pFilterStates, /*!< Pointer to filter state buffer */ + int noCols, /*!< Number of time slots */ + int lsb, /*!< Number of lower bands */ + int usb, /*!< Number of upper bands */ + int no_channels, /*!< Number of critically sampled bands */ + int flags); /*!< Flags */ + +void qmfSynthesisFilteringSlot(HANDLE_QMF_FILTER_BANK synQmf, + const FIXP_DBL *realSlot, + const FIXP_DBL *imagSlot, + const int scaleFactorLowBand, + const int scaleFactorHighBand, INT_PCM *timeOut, + const int timeOut_e, FIXP_DBL *pWorkBuffer); + +void qmfChangeOutScalefactor( + HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank */ + int outScalefactor /*!< New scaling factor for output data */ +); + +int qmfGetOutScalefactor( + HANDLE_QMF_FILTER_BANK synQmf /*!< Handle of Qmf Synthesis Bank */ +); + +void qmfChangeOutGain( + HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank */ + FIXP_DBL outputGain, /*!< New gain for output data (mantissa) */ + int outputGainScale /*!< New gain for output data (exponent) */ +); +void qmfSynPrototypeFirSlot( + HANDLE_QMF_FILTER_BANK qmf, + FIXP_DBL *RESTRICT realSlot, /*!< Input: Pointer to real Slot */ + FIXP_DBL *RESTRICT imagSlot, /*!< Input: Pointer to imag Slot */ + INT_PCM *RESTRICT timeOut, /*!< Time domain data */ + const int timeOut_e); + +#endif /*ifndef QMF_H */ -- cgit v1.2.3