summaryrefslogtreecommitdiffstats
path: root/libSBRdec/src/transcendent.h
diff options
context:
space:
mode:
Diffstat (limited to 'libSBRdec/src/transcendent.h')
-rw-r--r--libSBRdec/src/transcendent.h355
1 files changed, 0 insertions, 355 deletions
diff --git a/libSBRdec/src/transcendent.h b/libSBRdec/src/transcendent.h
deleted file mode 100644
index ad88bc9..0000000
--- a/libSBRdec/src/transcendent.h
+++ /dev/null
@@ -1,355 +0,0 @@
-
-/* -----------------------------------------------------------------------------------------------------------
-Software License for The Fraunhofer FDK AAC Codec Library for Android
-
-© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- All rights reserved.
-
- 1. INTRODUCTION
-The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
-the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
-This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
-
-AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
-audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
-independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
-of the MPEG specifications.
-
-Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
-may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
-individually for the purpose of encoding or decoding bit streams in products that are compliant with
-the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
-these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
-software may already be covered under those patent licenses when it is used for those licensed purposes only.
-
-Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
-are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
-applications information and documentation.
-
-2. COPYRIGHT LICENSE
-
-Redistribution and use in source and binary forms, with or without modification, are permitted without
-payment of copyright license fees provided that you satisfy the following conditions:
-
-You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
-your modifications thereto in source code form.
-
-You must retain the complete text of this software license in the documentation and/or other materials
-provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
-You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
-modifications thereto to recipients of copies in binary form.
-
-The name of Fraunhofer may not be used to endorse or promote products derived from this library without
-prior written permission.
-
-You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
-software or your modifications thereto.
-
-Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
-and the date of any change. For modified versions of the FDK AAC Codec, the term
-"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
-"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
-
-3. NO PATENT LICENSE
-
-NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
-ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
-respect to this software.
-
-You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
-by appropriate patent licenses.
-
-4. DISCLAIMER
-
-This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
-"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
-of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
-CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
-including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
-or business interruption, however caused and on any theory of liability, whether in contract, strict
-liability, or tort (including negligence), arising in any way out of the use of this software, even if
-advised of the possibility of such damage.
-
-5. CONTACT INFORMATION
-
-Fraunhofer Institute for Integrated Circuits IIS
-Attention: Audio and Multimedia Departments - FDK AAC LL
-Am Wolfsmantel 33
-91058 Erlangen, Germany
-
-www.iis.fraunhofer.de/amm
-amm-info@iis.fraunhofer.de
------------------------------------------------------------------------------------------------------------ */
-
-/*!
- \file
- \brief FDK Fixed Point Arithmetic Library Interface
-*/
-
-#ifndef __TRANSCENDENT_H
-#define __TRANSCENDENT_H
-
-#include "sbrdecoder.h"
-#include "sbr_rom.h"
-
-/************************************************************************/
-/*!
- \brief Get number of octaves between frequencies a and b
-
- The Result is scaled with 1/8.
- The valid range for a and b is 1 to LOG_DUALIS_TABLE_SIZE.
-
- \return ld(a/b) / 8
-*/
-/************************************************************************/
-static inline FIXP_SGL FDK_getNumOctavesDiv8(INT a, /*!< lower band */
- INT b) /*!< upper band */
-{
- return ( (SHORT)((LONG)(CalcLdInt(b) - CalcLdInt(a))>>(FRACT_BITS-3)) );
-}
-
-
-/************************************************************************/
-/*!
- \brief Add two values given by mantissa and exponent.
-
- Mantissas are in fract format with values between 0 and 1. <br>
- The base for exponents is 2. Example: \f$ a = a\_m * 2^{a\_e} \f$<br>
-*/
-/************************************************************************/
-inline void FDK_add_MantExp(FIXP_SGL a_m, /*!< Mantissa of 1st operand a */
- SCHAR a_e, /*!< Exponent of 1st operand a */
- FIXP_SGL b_m, /*!< Mantissa of 2nd operand b */
- SCHAR b_e, /*!< Exponent of 2nd operand b */
- FIXP_SGL *ptrSum_m, /*!< Mantissa of result */
- SCHAR *ptrSum_e) /*!< Exponent of result */
-{
- FIXP_DBL accu;
- int shift;
- int shiftAbs;
-
- FIXP_DBL shiftedMantissa;
- FIXP_DBL otherMantissa;
-
- /* Equalize exponents of the summands.
- For the smaller summand, the exponent is adapted and
- for compensation, the mantissa is shifted right. */
-
- shift = (int)(a_e - b_e);
-
- shiftAbs = (shift>0)? shift : -shift;
- shiftAbs = (shiftAbs < DFRACT_BITS-1)? shiftAbs : DFRACT_BITS-1;
- shiftedMantissa = (shift>0)? (FX_SGL2FX_DBL(b_m) >> shiftAbs) : (FX_SGL2FX_DBL(a_m) >> shiftAbs);
- otherMantissa = (shift>0)? FX_SGL2FX_DBL(a_m) : FX_SGL2FX_DBL(b_m);
- *ptrSum_e = (shift>0)? a_e : b_e;
-
- accu = (shiftedMantissa >> 1) + (otherMantissa >> 1);
- /* shift by 1 bit to avoid overflow */
-
- if ( (accu >= (FL2FXCONST_DBL(0.5f) - (FIXP_DBL)1)) || (accu <= FL2FXCONST_DBL(-0.5f)) )
- *ptrSum_e += 1;
- else
- accu = (shiftedMantissa + otherMantissa);
-
- *ptrSum_m = FX_DBL2FX_SGL(accu);
-
-}
-
-inline void FDK_add_MantExp(FIXP_DBL a, /*!< Mantissa of 1st operand a */
- SCHAR a_e, /*!< Exponent of 1st operand a */
- FIXP_DBL b, /*!< Mantissa of 2nd operand b */
- SCHAR b_e, /*!< Exponent of 2nd operand b */
- FIXP_DBL *ptrSum, /*!< Mantissa of result */
- SCHAR *ptrSum_e) /*!< Exponent of result */
-{
- FIXP_DBL accu;
- int shift;
- int shiftAbs;
-
- FIXP_DBL shiftedMantissa;
- FIXP_DBL otherMantissa;
-
- /* Equalize exponents of the summands.
- For the smaller summand, the exponent is adapted and
- for compensation, the mantissa is shifted right. */
-
- shift = (int)(a_e - b_e);
-
- shiftAbs = (shift>0)? shift : -shift;
- shiftAbs = (shiftAbs < DFRACT_BITS-1)? shiftAbs : DFRACT_BITS-1;
- shiftedMantissa = (shift>0)? (b >> shiftAbs) : (a >> shiftAbs);
- otherMantissa = (shift>0)? a : b;
- *ptrSum_e = (shift>0)? a_e : b_e;
-
- accu = (shiftedMantissa >> 1) + (otherMantissa >> 1);
- /* shift by 1 bit to avoid overflow */
-
- if ( (accu >= (FL2FXCONST_DBL(0.5f) - (FIXP_DBL)1)) || (accu <= FL2FXCONST_DBL(-0.5f)) )
- *ptrSum_e += 1;
- else
- accu = (shiftedMantissa + otherMantissa);
-
- *ptrSum = accu;
-
-}
-
-/************************************************************************/
-/*!
- \brief Divide two values given by mantissa and exponent.
-
- Mantissas are in fract format with values between 0 and 1. <br>
- The base for exponents is 2. Example: \f$ a = a\_m * 2^{a\_e} \f$<br>
-
- For performance reasons, the division is based on a table lookup
- which limits accuracy.
-*/
-/************************************************************************/
-static inline void FDK_divide_MantExp(FIXP_SGL a_m, /*!< Mantissa of dividend a */
- SCHAR a_e, /*!< Exponent of dividend a */
- FIXP_SGL b_m, /*!< Mantissa of divisor b */
- SCHAR b_e, /*!< Exponent of divisor b */
- FIXP_SGL *ptrResult_m, /*!< Mantissa of quotient a/b */
- SCHAR *ptrResult_e) /*!< Exponent of quotient a/b */
-
-{
- int preShift, postShift, index, shift;
- FIXP_DBL ratio_m;
- FIXP_SGL bInv_m = FL2FXCONST_SGL(0.0f);
-
- preShift = CntLeadingZeros(FX_SGL2FX_DBL(b_m));
-
- /*
- Shift b into the range from 0..INV_TABLE_SIZE-1,
-
- E.g. 10 bits must be skipped for INV_TABLE_BITS 8:
- - leave 8 bits as index for table
- - skip sign bit,
- - skip first bit of mantissa, because this is always the same (>0.5)
-
- We are dealing with energies, so we need not care
- about negative numbers
- */
-
- /*
- The first interval has half width so the lowest bit of the index is
- needed for a doubled resolution.
- */
- shift = (FRACT_BITS - 2 - INV_TABLE_BITS - preShift);
-
- index = (shift<0)? (LONG)b_m << (-shift) : (LONG)b_m >> shift;
-
-
- /* The index has INV_TABLE_BITS +1 valid bits here. Clear the other bits. */
- index &= (1 << (INV_TABLE_BITS+1)) - 1;
-
- /* Remove offset of half an interval */
- index--;
-
- /* Now the lowest bit is shifted out */
- index = index >> 1;
-
- /* Fetch inversed mantissa from table: */
- bInv_m = (index<0)? bInv_m : FDK_sbrDecoder_invTable[index];
-
- /* Multiply a with the inverse of b: */
- ratio_m = (index<0)? FX_SGL2FX_DBL(a_m >> 1) : fMultDiv2(bInv_m,a_m);
-
- postShift = CntLeadingZeros(ratio_m)-1;
-
- *ptrResult_m = FX_DBL2FX_SGL(ratio_m << postShift);
- *ptrResult_e = a_e - b_e + 1 + preShift - postShift;
-}
-
-static inline void FDK_divide_MantExp(FIXP_DBL a_m, /*!< Mantissa of dividend a */
- SCHAR a_e, /*!< Exponent of dividend a */
- FIXP_DBL b_m, /*!< Mantissa of divisor b */
- SCHAR b_e, /*!< Exponent of divisor b */
- FIXP_DBL *ptrResult_m, /*!< Mantissa of quotient a/b */
- SCHAR *ptrResult_e) /*!< Exponent of quotient a/b */
-
-{
- int preShift, postShift, index, shift;
- FIXP_DBL ratio_m;
- FIXP_SGL bInv_m = FL2FXCONST_SGL(0.0f);
-
- preShift = CntLeadingZeros(b_m);
-
- /*
- Shift b into the range from 0..INV_TABLE_SIZE-1,
-
- E.g. 10 bits must be skipped for INV_TABLE_BITS 8:
- - leave 8 bits as index for table
- - skip sign bit,
- - skip first bit of mantissa, because this is always the same (>0.5)
-
- We are dealing with energies, so we need not care
- about negative numbers
- */
-
- /*
- The first interval has half width so the lowest bit of the index is
- needed for a doubled resolution.
- */
- shift = (DFRACT_BITS - 2 - INV_TABLE_BITS - preShift);
-
- index = (shift<0)? (LONG)b_m << (-shift) : (LONG)b_m >> shift;
-
-
- /* The index has INV_TABLE_BITS +1 valid bits here. Clear the other bits. */
- index &= (1 << (INV_TABLE_BITS+1)) - 1;
-
- /* Remove offset of half an interval */
- index--;
-
- /* Now the lowest bit is shifted out */
- index = index >> 1;
-
- /* Fetch inversed mantissa from table: */
- bInv_m = (index<0)? bInv_m : FDK_sbrDecoder_invTable[index];
-
- /* Multiply a with the inverse of b: */
- ratio_m = (index<0)? (a_m >> 1) : fMultDiv2(bInv_m,a_m);
-
- postShift = CntLeadingZeros(ratio_m)-1;
-
- *ptrResult_m = ratio_m << postShift;
- *ptrResult_e = a_e - b_e + 1 + preShift - postShift;
-}
-
-/*!
- \brief Calculate the squareroot of a number given by mantissa and exponent
-
- Mantissa is in fract format with values between 0 and 1. <br>
- The base for the exponent is 2. Example: \f$ a = a\_m * 2^{a\_e} \f$<br>
- The operand is addressed via pointers and will be overwritten with the result.
-
- For performance reasons, the square root is based on a table lookup
- which limits accuracy.
-*/
-static inline void FDK_sqrt_MantExp(FIXP_DBL *mantissa, /*!< Pointer to mantissa */
- SCHAR *exponent,
- const SCHAR *destScale)
-{
- FIXP_DBL input_m = *mantissa;
- int input_e = (int) *exponent;
- FIXP_DBL result = FL2FXCONST_DBL(0.0f);
- int result_e = -FRACT_BITS;
-
- /* Call lookup square root, which does internally normalization. */
- result = sqrtFixp_lookup(input_m, &input_e);
- result_e = input_e;
-
- /* Write result */
- if (exponent==destScale) {
- *mantissa = result;
- *exponent = result_e;
- } else {
- int shift = result_e - *destScale;
- *mantissa = (shift>=0) ? result << (INT)fixMin(DFRACT_BITS-1,shift)
- : result >> (INT)fixMin(DFRACT_BITS-1,-shift);
- *exponent = *destScale;
- }
-}
-
-
-#endif