summaryrefslogtreecommitdiffstats
path: root/libSBRdec/src/sbrdec_freq_sca.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libSBRdec/src/sbrdec_freq_sca.cpp')
-rw-r--r--libSBRdec/src/sbrdec_freq_sca.cpp812
1 files changed, 0 insertions, 812 deletions
diff --git a/libSBRdec/src/sbrdec_freq_sca.cpp b/libSBRdec/src/sbrdec_freq_sca.cpp
deleted file mode 100644
index 8adfbb1..0000000
--- a/libSBRdec/src/sbrdec_freq_sca.cpp
+++ /dev/null
@@ -1,812 +0,0 @@
-
-/* -----------------------------------------------------------------------------------------------------------
-Software License for The Fraunhofer FDK AAC Codec Library for Android
-
-© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- All rights reserved.
-
- 1. INTRODUCTION
-The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
-the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
-This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
-
-AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
-audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
-independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
-of the MPEG specifications.
-
-Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
-may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
-individually for the purpose of encoding or decoding bit streams in products that are compliant with
-the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
-these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
-software may already be covered under those patent licenses when it is used for those licensed purposes only.
-
-Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
-are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
-applications information and documentation.
-
-2. COPYRIGHT LICENSE
-
-Redistribution and use in source and binary forms, with or without modification, are permitted without
-payment of copyright license fees provided that you satisfy the following conditions:
-
-You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
-your modifications thereto in source code form.
-
-You must retain the complete text of this software license in the documentation and/or other materials
-provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
-You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
-modifications thereto to recipients of copies in binary form.
-
-The name of Fraunhofer may not be used to endorse or promote products derived from this library without
-prior written permission.
-
-You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
-software or your modifications thereto.
-
-Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
-and the date of any change. For modified versions of the FDK AAC Codec, the term
-"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
-"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
-
-3. NO PATENT LICENSE
-
-NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
-ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
-respect to this software.
-
-You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
-by appropriate patent licenses.
-
-4. DISCLAIMER
-
-This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
-"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
-of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
-CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
-including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
-or business interruption, however caused and on any theory of liability, whether in contract, strict
-liability, or tort (including negligence), arising in any way out of the use of this software, even if
-advised of the possibility of such damage.
-
-5. CONTACT INFORMATION
-
-Fraunhofer Institute for Integrated Circuits IIS
-Attention: Audio and Multimedia Departments - FDK AAC LL
-Am Wolfsmantel 33
-91058 Erlangen, Germany
-
-www.iis.fraunhofer.de/amm
-amm-info@iis.fraunhofer.de
------------------------------------------------------------------------------------------------------------ */
-
-/*!
- \file
- \brief Frequency scale calculation
-*/
-
-#include "sbrdec_freq_sca.h"
-
-#include "transcendent.h"
-#include "sbr_rom.h"
-#include "env_extr.h"
-
-#include "genericStds.h" /* need log() for debug-code only */
-
-#define MAX_OCTAVE 29
-#define MAX_SECOND_REGION 50
-
-
-static int numberOfBands(FIXP_SGL bpo_div16, int start, int stop, int warpFlag);
-static void CalcBands(UCHAR * diff, UCHAR start, UCHAR stop, UCHAR num_bands);
-static SBR_ERROR modifyBands(UCHAR max_band, UCHAR * diff, UCHAR length);
-static void cumSum(UCHAR start_value, UCHAR* diff, UCHAR length, UCHAR *start_adress);
-
-
-
-/*!
- \brief Retrieve QMF-band where the SBR range starts
-
- Convert startFreq which was read from the bitstream into a
- QMF-channel number.
-
- \return Number of start band
-*/
-static UCHAR
-getStartBand(UINT fs, /*!< Output sampling frequency */
- UCHAR startFreq, /*!< Index to table of possible start bands */
- UINT headerDataFlags) /*!< Info to SBR mode */
-{
- INT band;
- UINT fsMapped;
-
- fsMapped = fs;
-
- switch (fsMapped) {
- case 96000:
- case 88200:
- band = FDK_sbrDecoder_sbr_start_freq_88[startFreq];
- break;
- case 64000:
- band = FDK_sbrDecoder_sbr_start_freq_64[startFreq];
- break;
- case 48000:
- band = FDK_sbrDecoder_sbr_start_freq_48[startFreq];
- break;
- case 44100:
- band = FDK_sbrDecoder_sbr_start_freq_44[startFreq];
- break;
- case 32000:
- band = FDK_sbrDecoder_sbr_start_freq_32[startFreq];
- break;
- case 24000:
- band = FDK_sbrDecoder_sbr_start_freq_24[startFreq];
- break;
- case 22050:
- band = FDK_sbrDecoder_sbr_start_freq_22[startFreq];
- break;
- case 16000:
- band = FDK_sbrDecoder_sbr_start_freq_16[startFreq];
- break;
- default:
- band = 255;
- }
-
- return band;
-}
-
-
-/*!
- \brief Retrieve QMF-band where the SBR range starts
-
- Convert startFreq which was read from the bitstream into a
- QMF-channel number.
-
- \return Number of start band
-*/
-static UCHAR
-getStopBand(UINT fs, /*!< Output sampling frequency */
- UCHAR stopFreq, /*!< Index to table of possible start bands */
- UINT headerDataFlags, /*!< Info to SBR mode */
- UCHAR k0) /*!< Start freq index */
-{
- UCHAR k2;
-
- if (stopFreq < 14) {
- INT stopMin;
- UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
- UCHAR *diff0 = diff_tot;
- UCHAR *diff1 = diff_tot+MAX_OCTAVE;
-
- if (fs < 32000) {
- stopMin = (((2*6000*2*(64)) / fs) + 1) >> 1;
- }
- else {
- if (fs < 64000) {
- stopMin = (((2*8000*2*(64)) / fs) + 1) >> 1;
- }
- else {
- stopMin = (((2*10000*2*(64)) / fs) + 1) >> 1;
- }
- }
-
- /*
- Choose a stop band between k1 and 64 depending on stopFreq (0..13),
- based on a logarithmic scale.
- The vectors diff0 and diff1 are used temporarily here.
- */
- CalcBands( diff0, stopMin, 64, 13);
- shellsort( diff0, 13);
- cumSum(stopMin, diff0, 13, diff1);
- k2 = diff1[stopFreq];
- }
- else if (stopFreq==14)
- k2 = 2*k0;
- else
- k2 = 3*k0;
-
- /* Limit to Nyquist */
- if (k2 > (64))
- k2 = (64);
-
-
- /* Range checks */
- /* 1 <= difference <= 48; 1 <= fs <= 96000 */
- if ( ((k2 - k0) > MAX_FREQ_COEFFS) || (k2 <= k0) ) {
- return 255;
- }
-
- if (headerDataFlags & (SBRDEC_SYNTAX_USAC|SBRDEC_SYNTAX_RSVD50)) {
- /* 1 <= difference <= 35; 42000 <= fs <= 96000 */
- if ( (fs >= 42000) && ( (k2 - k0) > MAX_FREQ_COEFFS_FS44100 ) ) {
- return 255;
- }
- /* 1 <= difference <= 32; 46009 <= fs <= 96000 */
- if ( (fs >= 46009) && ( (k2 - k0) > MAX_FREQ_COEFFS_FS48000 ) ) {
- return 255;
- }
- }
- else {
- /* 1 <= difference <= 35; fs == 44100 */
- if ( (fs == 44100) && ( (k2 - k0) > MAX_FREQ_COEFFS_FS44100 ) ) {
- return 255;
- }
- /* 1 <= difference <= 32; 48000 <= fs <= 96000 */
- if ( (fs >= 48000) && ( (k2 - k0) > MAX_FREQ_COEFFS_FS48000 ) ) {
- return 255;
- }
- }
-
- return k2;
-}
-
-
-/*!
- \brief Generates master frequency tables
-
- Frequency tables are calculated according to the selected domain
- (linear/logarithmic) and granularity.
- IEC 14496-3 4.6.18.3.2.1
-
- \return errorCode, 0 if successful
-*/
-SBR_ERROR
-sbrdecUpdateFreqScale(UCHAR * v_k_master, /*!< Master table to be created */
- UCHAR *numMaster, /*!< Number of entries in master table */
- UINT fs, /*!< SBR working sampling rate */
- HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Control data from bitstream */
- UINT flags)
-{
- FIXP_SGL bpo_div16; /* bands_per_octave divided by 16 */
- INT dk=0;
-
- /* Internal variables */
- UCHAR k0, k2, i;
- UCHAR num_bands0 = 0;
- UCHAR num_bands1 = 0;
- UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
- UCHAR *diff0 = diff_tot;
- UCHAR *diff1 = diff_tot+MAX_OCTAVE;
- INT k2_achived;
- INT k2_diff;
- INT incr=0;
-
- /*
- Determine start band
- */
- k0 = getStartBand(fs, hHeaderData->bs_data.startFreq, flags);
- if (k0 == 255) {
- return SBRDEC_UNSUPPORTED_CONFIG;
- }
-
- /*
- Determine stop band
- */
- k2 = getStopBand(fs, hHeaderData->bs_data.stopFreq, flags, k0);
- if (k2 == 255) {
- return SBRDEC_UNSUPPORTED_CONFIG;
- }
-
- if(hHeaderData->bs_data.freqScale>0) { /* Bark */
- INT k1;
-
- if(hHeaderData->bs_data.freqScale==1) {
- bpo_div16 = FL2FXCONST_SGL(12.0f/16.0f);
- }
- else if(hHeaderData->bs_data.freqScale==2) {
- bpo_div16 = FL2FXCONST_SGL(10.0f/16.0f);
- }
- else {
- bpo_div16 = FL2FXCONST_SGL(8.0f/16.0f);
- }
-
-
- if( 1000 * k2 > 2245 * k0 ) { /* Two or more regions */
- k1 = 2*k0;
-
- num_bands0 = numberOfBands(bpo_div16, k0, k1, 0);
- num_bands1 = numberOfBands(bpo_div16, k1, k2, hHeaderData->bs_data.alterScale );
- if ( num_bands0 < 1) {
- return SBRDEC_UNSUPPORTED_CONFIG;
- }
- if ( num_bands1 < 1 ) {
- return SBRDEC_UNSUPPORTED_CONFIG;
- }
-
- CalcBands(diff0, k0, k1, num_bands0);
- shellsort( diff0, num_bands0);
- if (diff0[0] == 0) {
-#ifdef DEBUG_TOOLS
-#endif
- return SBRDEC_UNSUPPORTED_CONFIG;
- }
-
- cumSum(k0, diff0, num_bands0, v_k_master);
-
- CalcBands(diff1, k1, k2, num_bands1);
- shellsort( diff1, num_bands1);
- if(diff0[num_bands0-1] > diff1[0]) {
- SBR_ERROR err;
-
- err = modifyBands(diff0[num_bands0-1],diff1, num_bands1);
- if (err)
- return SBRDEC_UNSUPPORTED_CONFIG;
- }
-
- /* Add 2nd region */
- cumSum(k1, diff1, num_bands1, &v_k_master[num_bands0]);
- *numMaster = num_bands0 + num_bands1; /* Output nr of bands */
-
- }
- else { /* Only one region */
- k1=k2;
-
- num_bands0 = numberOfBands(bpo_div16, k0, k1, 0);
- if ( num_bands0 < 1) {
- return SBRDEC_UNSUPPORTED_CONFIG;
- }
- CalcBands(diff0, k0, k1, num_bands0);
- shellsort(diff0, num_bands0);
- if (diff0[0] == 0) {
-#ifdef DEBUG_TOOLS
-#endif
- return SBRDEC_UNSUPPORTED_CONFIG;
- }
-
- cumSum(k0, diff0, num_bands0, v_k_master);
- *numMaster = num_bands0; /* Output nr of bands */
-
- }
- }
- else { /* Linear mode */
- if (hHeaderData->bs_data.alterScale==0) {
- dk = 1;
- /* FLOOR to get to few number of bands (next lower even number) */
- num_bands0 = (k2 - k0) & 254;
- } else {
- dk = 2;
- num_bands0 = ( ((k2 - k0) >> 1) + 1 ) & 254; /* ROUND to the closest fit */
- }
-
- if (num_bands0 < 1) {
- return SBRDEC_UNSUPPORTED_CONFIG;
- /* We must return already here because 'i' can become negative below. */
- }
-
- k2_achived = k0 + num_bands0*dk;
- k2_diff = k2 - k2_achived;
-
- for(i=0;i<num_bands0;i++)
- diff_tot[i] = dk;
-
- /* If linear scale wasn't achieved */
- /* and we got too wide SBR area */
- if (k2_diff < 0) {
- incr = 1;
- i = 0;
- }
-
- /* If linear scale wasn't achieved */
- /* and we got too small SBR area */
- if (k2_diff > 0) {
- incr = -1;
- i = num_bands0-1;
- }
-
- /* Adjust diff vector to get sepc. SBR range */
- while (k2_diff != 0) {
- diff_tot[i] = diff_tot[i] - incr;
- i = i + incr;
- k2_diff = k2_diff + incr;
- }
-
- cumSum(k0, diff_tot, num_bands0, v_k_master);/* cumsum */
- *numMaster = num_bands0; /* Output nr of bands */
- }
-
- if (*numMaster < 1) {
- return SBRDEC_UNSUPPORTED_CONFIG;
- }
-
-
- /*
- Print out the calculated table
- */
-
- return SBRDEC_OK;
-}
-
-
-/*!
- \brief Calculate frequency ratio of one SBR band
-
- All SBR bands should span a constant frequency range in the logarithmic
- domain. This function calculates the ratio of any SBR band's upper and lower
- frequency.
-
- \return num_band-th root of k_start/k_stop
-*/
-static FIXP_SGL calcFactorPerBand(int k_start, int k_stop, int num_bands)
-{
-/* Scaled bandfactor and step 1 bit right to avoid overflow
- * use double data type */
- FIXP_DBL bandfactor = FL2FXCONST_DBL(0.25f); /* Start value */
- FIXP_DBL step = FL2FXCONST_DBL(0.125f); /* Initial increment for factor */
-
- int direction = 1;
-
-/* Because saturation can't be done in INT IIS,
- * changed start and stop data type from FIXP_SGL to FIXP_DBL */
- FIXP_DBL start = k_start << (DFRACT_BITS-8);
- FIXP_DBL stop = k_stop << (DFRACT_BITS-8);
-
- FIXP_DBL temp;
-
- int j, i=0;
-
- while ( step > FL2FXCONST_DBL(0.0f)) {
- i++;
- temp = stop;
-
- /* Calculate temp^num_bands: */
- for (j=0; j<num_bands; j++)
- //temp = fMult(temp,bandfactor);
- temp = fMultDiv2(temp,bandfactor)<<2;
-
- if (temp<start) { /* Factor too strong, make it weaker */
- if (direction == 0)
- /* Halfen step. Right shift is not done as fract because otherwise the
- lowest bit cannot be cleared due to rounding */
- step = (FIXP_DBL)((LONG)step >> 1);
- direction = 1;
- bandfactor = bandfactor + step;
- }
- else { /* Factor is too weak: make it stronger */
- if (direction == 1)
- step = (FIXP_DBL)((LONG)step >> 1);
- direction = 0;
- bandfactor = bandfactor - step;
- }
-
- if (i>100) {
- step = FL2FXCONST_DBL(0.0f);
- }
- }
- return FX_DBL2FX_SGL(bandfactor<<1);
-}
-
-
-/*!
- \brief Calculate number of SBR bands between start and stop band
-
- Given the number of bands per octave, this function calculates how many
- bands fit in the given frequency range.
- When the warpFlag is set, the 'band density' is decreased by a factor
- of 1/1.3
-
- \return number of bands
-*/
-static int
-numberOfBands(FIXP_SGL bpo_div16, /*!< Input: number of bands per octave divided by 16 */
- int start, /*!< First QMF band of SBR frequency range */
- int stop, /*!< Last QMF band of SBR frequency range + 1 */
- int warpFlag) /*!< Stretching flag */
-{
- FIXP_SGL num_bands_div128;
- int num_bands;
-
- num_bands_div128 = FX_DBL2FX_SGL(fMult(FDK_getNumOctavesDiv8(start,stop),bpo_div16));
-
- if (warpFlag) {
- /* Apply the warp factor of 1.3 to get wider bands. We use a value
- of 32768/25200 instead of the exact value to avoid critical cases
- of rounding.
- */
- num_bands_div128 = FX_DBL2FX_SGL(fMult(num_bands_div128, FL2FXCONST_SGL(25200.0/32768.0)));
- }
-
- /* add scaled 1 for rounding to even numbers: */
- num_bands_div128 = num_bands_div128 + FL2FXCONST_SGL( 1.0f/128.0f );
- /* scale back to right aligned integer and double the value: */
- num_bands = 2 * ((LONG)num_bands_div128 >> (FRACT_BITS - 7));
-
- return(num_bands);
-}
-
-
-/*!
- \brief Calculate width of SBR bands
-
- Given the desired number of bands within the SBR frequency range,
- this function calculates the width of each SBR band in QMF channels.
- The bands get wider from start to stop (bark scale).
-*/
-static void
-CalcBands(UCHAR * diff, /*!< Vector of widths to be calculated */
- UCHAR start, /*!< Lower end of subband range */
- UCHAR stop, /*!< Upper end of subband range */
- UCHAR num_bands) /*!< Desired number of bands */
-{
- int i;
- int previous;
- int current;
- FIXP_SGL exact, temp;
- FIXP_SGL bandfactor = calcFactorPerBand(start, stop, num_bands);
-
- previous = stop; /* Start with highest QMF channel */
- exact = (FIXP_SGL)(stop << (FRACT_BITS-8)); /* Shift left to gain some accuracy */
-
- for(i=num_bands-1; i>=0; i--) {
- /* Calculate border of next lower sbr band */
- exact = FX_DBL2FX_SGL(fMult(exact,bandfactor));
-
- /* Add scaled 0.5 for rounding:
- We use a value 128/256 instead of 0.5 to avoid some critical cases of rounding. */
- temp = exact + FL2FXCONST_SGL(128.0/32768.0);
-
- /* scale back to right alinged integer: */
- current = (LONG)temp >> (FRACT_BITS-8);
-
- /* Save width of band i */
- diff[i] = previous - current;
- previous = current;
- }
-}
-
-
-/*!
- \brief Calculate cumulated sum vector from delta vector
-*/
-static void
-cumSum(UCHAR start_value, UCHAR* diff, UCHAR length, UCHAR *start_adress)
-{
- int i;
- start_adress[0]=start_value;
- for(i=1; i<=length; i++)
- start_adress[i] = start_adress[i-1] + diff[i-1];
-}
-
-
-/*!
- \brief Adapt width of frequency bands in the second region
-
- If SBR spans more than 2 octaves, the upper part of a bark-frequency-scale
- is calculated separately. This function tries to avoid that the second region
- starts with a band smaller than the highest band of the first region.
-*/
-static SBR_ERROR
-modifyBands(UCHAR max_band_previous, UCHAR * diff, UCHAR length)
-{
- int change = max_band_previous - diff[0];
-
- /* Limit the change so that the last band cannot get narrower than the first one */
- if ( change > (diff[length-1]-diff[0])>>1 )
- change = (diff[length-1]-diff[0])>>1;
-
- diff[0] += change;
- diff[length-1] -= change;
- shellsort(diff, length);
-
- return SBRDEC_OK;
-}
-
-
-/*!
- \brief Update high resolution frequency band table
-*/
-static void
-sbrdecUpdateHiRes(UCHAR * h_hires,
- UCHAR * num_hires,
- UCHAR * v_k_master,
- UCHAR num_bands,
- UCHAR xover_band)
-{
- UCHAR i;
-
- *num_hires = num_bands-xover_band;
-
- for(i=xover_band; i<=num_bands; i++) {
- h_hires[i-xover_band] = v_k_master[i];
- }
-}
-
-
-/*!
- \brief Build low resolution table out of high resolution table
-*/
-static void
-sbrdecUpdateLoRes(UCHAR * h_lores,
- UCHAR * num_lores,
- UCHAR * h_hires,
- UCHAR num_hires)
-{
- UCHAR i;
-
- if( (num_hires & 1) == 0) {
- /* If even number of hires bands */
- *num_lores = num_hires >> 1;
- /* Use every second lores=hires[0,2,4...] */
- for(i=0; i<=*num_lores; i++)
- h_lores[i] = h_hires[i*2];
- }
- else {
- /* Odd number of hires, which means xover is odd */
- *num_lores = (num_hires+1) >> 1;
- /* Use lores=hires[0,1,3,5 ...] */
- h_lores[0] = h_hires[0];
- for(i=1; i<=*num_lores; i++) {
- h_lores[i] = h_hires[i*2-1];
- }
- }
-}
-
-
-/*!
- \brief Derive a low-resolution frequency-table from the master frequency table
-*/
-void
-sbrdecDownSampleLoRes(UCHAR *v_result,
- UCHAR num_result,
- UCHAR *freqBandTableRef,
- UCHAR num_Ref)
-{
- int step;
- int i,j;
- int org_length,result_length;
- int v_index[MAX_FREQ_COEFFS>>1];
-
- /* init */
- org_length = num_Ref;
- result_length = num_result;
-
- v_index[0] = 0; /* Always use left border */
- i=0;
- while(org_length > 0) {
- /* Create downsample vector */
- i++;
- step = org_length / result_length;
- org_length = org_length - step;
- result_length--;
- v_index[i] = v_index[i-1] + step;
- }
-
- for(j=0;j<=i;j++) {
- /* Use downsample vector to index LoResolution vector */
- v_result[j]=freqBandTableRef[v_index[j]];
- }
-
-}
-
-
-/*!
- \brief Sorting routine
-*/
-void shellsort(UCHAR *in, UCHAR n)
-{
-
- int i, j, v, w;
- int inc = 1;
-
- do
- inc = 3 * inc + 1;
- while (inc <= n);
-
- do {
- inc = inc / 3;
- for (i = inc; i < n; i++) {
- v = in[i];
- j = i;
- while ((w=in[j-inc]) > v) {
- in[j] = w;
- j -= inc;
- if (j < inc)
- break;
- }
- in[j] = v;
- }
- } while (inc > 1);
-
-}
-
-
-
-/*!
- \brief Reset frequency band tables
- \return errorCode, 0 if successful
-*/
-SBR_ERROR
-resetFreqBandTables(HANDLE_SBR_HEADER_DATA hHeaderData, const UINT flags)
-{
- SBR_ERROR err = SBRDEC_OK;
- int k2,kx, lsb, usb;
- int intTemp;
- UCHAR nBandsLo, nBandsHi;
- HANDLE_FREQ_BAND_DATA hFreq = &hHeaderData->freqBandData;
-
- /* Calculate master frequency function */
- err = sbrdecUpdateFreqScale(hFreq->v_k_master,
- &hFreq->numMaster,
- hHeaderData->sbrProcSmplRate,
- hHeaderData,
- flags);
-
- if ( err || (hHeaderData->bs_info.xover_band > hFreq->numMaster) ) {
- return SBRDEC_UNSUPPORTED_CONFIG;
- }
-
- /* Derive Hiresolution from master frequency function */
- sbrdecUpdateHiRes(hFreq->freqBandTable[1], &nBandsHi, hFreq->v_k_master, hFreq->numMaster, hHeaderData->bs_info.xover_band );
- /* Derive Loresolution from Hiresolution */
- sbrdecUpdateLoRes(hFreq->freqBandTable[0], &nBandsLo, hFreq->freqBandTable[1], nBandsHi);
-
-
- hFreq->nSfb[0] = nBandsLo;
- hFreq->nSfb[1] = nBandsHi;
-
- /* Check index to freqBandTable[0] */
- if ( !(nBandsLo > 0) || (nBandsLo > (MAX_FREQ_COEFFS>>1)) ) {
- return SBRDEC_UNSUPPORTED_CONFIG;
- }
-
- lsb = hFreq->freqBandTable[0][0];
- usb = hFreq->freqBandTable[0][nBandsLo];
-
- /* Additional check for lsb */
- if ( (lsb > (32)) || (lsb >= usb) ) {
- return SBRDEC_UNSUPPORTED_CONFIG;
- }
-
-
- /* Calculate number of noise bands */
-
- k2 = hFreq->freqBandTable[1][nBandsHi];
- kx = hFreq->freqBandTable[1][0];
-
- if (hHeaderData->bs_data.noise_bands == 0)
- {
- hFreq->nNfb = 1;
- }
- else /* Calculate no of noise bands 1,2 or 3 bands/octave */
- {
- /* Fetch number of octaves divided by 32 */
- intTemp = (LONG)FDK_getNumOctavesDiv8(kx,k2) >> 2;
-
- /* Integer-Multiplication with number of bands: */
- intTemp = intTemp * hHeaderData->bs_data.noise_bands;
-
- /* Add scaled 0.5 for rounding: */
- intTemp = intTemp + (LONG)FL2FXCONST_SGL(0.5f/32.0f);
-
- /* Convert to right-aligned integer: */
- intTemp = intTemp >> (FRACT_BITS - 1 /*sign*/ - 5 /* rescale */);
-
- /* Compare with float calculation */
- FDK_ASSERT( intTemp == (int)((hHeaderData->bs_data.noise_bands * FDKlog( (float)k2/kx) / (float)(FDKlog(2.0)))+0.5) );
-
- if( intTemp==0)
- intTemp=1;
-
- hFreq->nNfb = intTemp;
- }
-
- hFreq->nInvfBands = hFreq->nNfb;
-
- if( hFreq->nNfb > MAX_NOISE_COEFFS ) {
- return SBRDEC_UNSUPPORTED_CONFIG;
- }
-
- /* Get noise bands */
- sbrdecDownSampleLoRes(hFreq->freqBandTableNoise,
- hFreq->nNfb,
- hFreq->freqBandTable[0],
- nBandsLo);
-
-
-
-
- hFreq->lowSubband = lsb;
- hFreq->highSubband = usb;
-
- return SBRDEC_OK;
-}