diff options
Diffstat (limited to 'libFDK/src/dct.cpp')
-rw-r--r-- | libFDK/src/dct.cpp | 540 |
1 files changed, 0 insertions, 540 deletions
diff --git a/libFDK/src/dct.cpp b/libFDK/src/dct.cpp deleted file mode 100644 index 3c755bd..0000000 --- a/libFDK/src/dct.cpp +++ /dev/null @@ -1,540 +0,0 @@ - -/* ----------------------------------------------------------------------------------------------------------- -Software License for The Fraunhofer FDK AAC Codec Library for Android - -© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. - All rights reserved. - - 1. INTRODUCTION -The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements -the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. -This FDK AAC Codec software is intended to be used on a wide variety of Android devices. - -AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual -audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by -independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part -of the MPEG specifications. - -Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) -may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners -individually for the purpose of encoding or decoding bit streams in products that are compliant with -the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license -these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec -software may already be covered under those patent licenses when it is used for those licensed purposes only. - -Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, -are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional -applications information and documentation. - -2. COPYRIGHT LICENSE - -Redistribution and use in source and binary forms, with or without modification, are permitted without -payment of copyright license fees provided that you satisfy the following conditions: - -You must retain the complete text of this software license in redistributions of the FDK AAC Codec or -your modifications thereto in source code form. - -You must retain the complete text of this software license in the documentation and/or other materials -provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. -You must make available free of charge copies of the complete source code of the FDK AAC Codec and your -modifications thereto to recipients of copies in binary form. - -The name of Fraunhofer may not be used to endorse or promote products derived from this library without -prior written permission. - -You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec -software or your modifications thereto. - -Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software -and the date of any change. For modified versions of the FDK AAC Codec, the term -"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term -"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." - -3. NO PATENT LICENSE - -NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, -ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with -respect to this software. - -You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized -by appropriate patent licenses. - -4. DISCLAIMER - -This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors -"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties -of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR -CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, -including but not limited to procurement of substitute goods or services; loss of use, data, or profits, -or business interruption, however caused and on any theory of liability, whether in contract, strict -liability, or tort (including negligence), arising in any way out of the use of this software, even if -advised of the possibility of such damage. - -5. CONTACT INFORMATION - -Fraunhofer Institute for Integrated Circuits IIS -Attention: Audio and Multimedia Departments - FDK AAC LL -Am Wolfsmantel 33 -91058 Erlangen, Germany - -www.iis.fraunhofer.de/amm -amm-info@iis.fraunhofer.de ------------------------------------------------------------------------------------------------------------ */ - -/*! - \file dct.cpp - \brief DCT Implementations - Library functions to calculate standard DCTs. This will most likely be replaced by hand-optimized - functions for the specific target processor. - - Three different implementations of the dct type II and the dct type III transforms are provided. - - By default implementations which are based on a single, standard complex FFT-kernel are used (dctII_f() and dctIII_f()). - These are specifically helpful in cases where optimized FFT libraries are already available. The FFT used in these - implementation is FFT rad2 from FDK_tools. - - Of course, one might also use DCT-libraries should they be available. The DCT and DST - type IV implementations are only available in a version based on a complex FFT kernel. -*/ - -#include "dct.h" - - -#include "FDK_tools_rom.h" -#include "fft.h" - - -#if defined(__arm__) -#include "arm/dct_arm.cpp" -#endif - - -#if !defined(FUNCTION_dct_III) -void dct_III(FIXP_DBL *pDat, /*!< pointer to input/output */ - FIXP_DBL *tmp, /*!< pointer to temporal working buffer */ - int L, /*!< lenght of transform */ - int *pDat_e - ) -{ - FDK_ASSERT(L == 64 || L == 32); - int i; - FIXP_DBL xr, accu1, accu2; - int inc; - int M = L>>1; - int ld_M; - - if (L == 64) ld_M = 5; - else ld_M = 4; - - /* This loop performs multiplication for index i (i*inc) */ - inc = (64/2) >> ld_M; /* 64/L */ - - FIXP_DBL *pTmp_0 = &tmp[2]; - FIXP_DBL *pTmp_1 = &tmp[(M-1)*2]; - - for(i=1; i<M>>1; i++,pTmp_0+=2,pTmp_1-=2) { - - FIXP_DBL accu3,accu4,accu5,accu6; - - cplxMultDiv2(&accu2, &accu1, pDat[L - i], pDat[i], sin_twiddle_L64[i*inc]); - cplxMultDiv2(&accu4, &accu3, pDat[M+i], pDat[M-i], sin_twiddle_L64[(M-i)*inc]); - accu3 >>= 1; accu4 >>= 1; - - /* This method is better for ARM926, that uses operand2 shifted right by 1 always */ - cplxMultDiv2(&accu6, &accu5, (accu3 - (accu1>>1)), ((accu2>>1) + accu4), sin_twiddle_L64[(4*i)*inc]); - xr = (accu1>>1) + accu3; - pTmp_0[0] = (xr>>1) - accu5; - pTmp_1[0] = (xr>>1) + accu5; - - xr = (accu2>>1) - accu4; - pTmp_0[1] = (xr>>1) - accu6; - pTmp_1[1] = -((xr>>1) + accu6); - - } - - xr = fMultDiv2(pDat[M], sin_twiddle_L64[64/2].v.re );/* cos((PI/(2*L))*M); */ - tmp[0] = ((pDat[0]>>1) + xr)>>1; - tmp[1] = ((pDat[0]>>1) - xr)>>1; - - cplxMultDiv2(&accu2, &accu1, pDat[L - (M/2)], pDat[M/2], sin_twiddle_L64[64/4]); - tmp[M] = accu1>>1; - tmp[M+1] = accu2>>1; - - /* dit_fft expects 1 bit scaled input values */ - fft(M, tmp, pDat_e); - - /* ARM926: 12 cycles per 2-iteration, no overhead code by compiler */ - pTmp_1 = &tmp[L]; - for (i = M>>1; i--;) - { - FIXP_DBL tmp1, tmp2, tmp3, tmp4; - tmp1 = *tmp++; - tmp2 = *tmp++; - tmp3 = *--pTmp_1; - tmp4 = *--pTmp_1; - *pDat++ = tmp1; - *pDat++ = tmp3; - *pDat++ = tmp2; - *pDat++ = tmp4; - } - - *pDat_e += 2; -} -#endif - -#if !defined(FUNCTION_dct_II) -void dct_II(FIXP_DBL *pDat, /*!< pointer to input/output */ - FIXP_DBL *tmp, /*!< pointer to temporal working buffer */ - int L, /*!< lenght of transform */ - int *pDat_e - ) -{ - FDK_ASSERT(L == 64 || L == 32); - FIXP_DBL accu1,accu2; - FIXP_DBL *pTmp_0, *pTmp_1; - - int i; - int inc; - int M = L>>1; - int ld_M; - - FDK_ASSERT(L == 64 || L == 32); - ld_M = 4 + (L >> 6); /* L=64: 5, L=32: 4 */ - - inc = (64/2) >> ld_M; /* L=64: 1, L=32: 2 */ - - FIXP_DBL *pdat = &pDat[0]; - FIXP_DBL accu3, accu4; - pTmp_0 = &tmp[0]; - pTmp_1 = &tmp[L-1]; - for (i = M>>1; i--; ) - { - accu1 = *pdat++; - accu2 = *pdat++; - accu3 = *pdat++; - accu4 = *pdat++; - accu1 >>= 1; - accu2 >>= 1; - accu3 >>= 1; - accu4 >>= 1; - *pTmp_0++ = accu1; - *pTmp_0++ = accu3; - *pTmp_1-- = accu2; - *pTmp_1-- = accu4; - } - - - fft(M, tmp, pDat_e); - - pTmp_0 = &tmp[2]; - pTmp_1 = &tmp[(M-1)*2]; - - for (i=1; i<M>>1; i++,pTmp_0+=2,pTmp_1-=2) { - - FIXP_DBL a1,a2; - FIXP_DBL accu3, accu4; - - a1 = ((pTmp_0[1]>>1) + (pTmp_1[1]>>1)); - a2 = ((pTmp_1[0]>>1) - (pTmp_0[0]>>1)); - - cplxMultDiv2(&accu1, &accu2, a2, a1, sin_twiddle_L64[(4*i)*inc]); - accu1<<=1; accu2<<=1; - - a1 = ((pTmp_0[0]>>1) + (pTmp_1[0]>>1)); - a2 = ((pTmp_0[1]>>1) - (pTmp_1[1]>>1)); - - cplxMultDiv2(&accu3, &accu4, (a1 + accu2), -(accu1 + a2), sin_twiddle_L64[i*inc]); - pDat[L - i] = accu4; - pDat[i] = accu3; - - cplxMultDiv2(&accu3, &accu4, (a1 - accu2), -(accu1 - a2), sin_twiddle_L64[(M-i)*inc]); - pDat[M + i] = accu4; - pDat[M - i] = accu3; - - } - - cplxMultDiv2(&accu1, &accu2, tmp[M], tmp[M+1], sin_twiddle_L64[(M/2)*inc]); - pDat[L - (M/2)] = accu2; - pDat[M/2] = accu1; - - pDat[0] = (tmp[0]>>1)+(tmp[1]>>1); - pDat[M] = fMult(((tmp[0]>>1)-(tmp[1]>>1)), sin_twiddle_L64[64/2].v.re);/* cos((PI/(2*L))*M); */ - - *pDat_e += 2; -} -#endif - -static -void getTables(const FIXP_WTP **twiddle, const FIXP_STP **sin_twiddle, int *sin_step, int length) -{ - int ld2_length; - - /* Get ld2 of length - 2 + 1 - -2: because first table entry is window of size 4 - +1: because we already include +1 because of ceil(log2(length)) */ - ld2_length = DFRACT_BITS-1-fNormz((FIXP_DBL)length) - 1; - - /* Extract sort of "eigenvalue" (the 4 left most bits) of length. */ - switch ( (length) >> (ld2_length-1) ) { - case 0x4: /* radix 2 */ - *sin_twiddle = SineTable512; - *sin_step = 1<<(9 - ld2_length); - *twiddle = windowSlopes[0][0][ld2_length-1]; - break; - case 0x7: /* 10 ms */ - *sin_twiddle = SineTable480; - *sin_step = 1<<(8 - ld2_length); - *twiddle = windowSlopes[0][1][ld2_length]; - break; - default: - *sin_twiddle = NULL; - *sin_step = 0; - *twiddle = NULL; - break; - } - - FDK_ASSERT(*twiddle != NULL); - - FDK_ASSERT(*sin_step > 0); - -} - -#if !defined(FUNCTION_dct_IV) - -void dct_IV(FIXP_DBL *pDat, - int L, - int *pDat_e) -{ - int sin_step = 0; - int M = L >> 1; - - const FIXP_WTP *twiddle; - const FIXP_STP *sin_twiddle; - - FDK_ASSERT(L >= 4); - - getTables(&twiddle, &sin_twiddle, &sin_step, L); - -#ifdef FUNCTION_dct_IV_func1 - if (M>=4 && (M&3) == 0) { - /* ARM926: 44 cycles for 2 iterations = 22 cycles/iteration */ - dct_IV_func1(M>>2, twiddle, &pDat[0], &pDat[L-1]); - } else -#endif /* FUNCTION_dct_IV_func1 */ - { - FIXP_DBL *RESTRICT pDat_0 = &pDat[0]; - FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2]; - register int i; - - /* 29 cycles on ARM926 */ - for (i = 0; i < M-1; i+=2,pDat_0+=2,pDat_1-=2) - { - register FIXP_DBL accu1,accu2,accu3,accu4; - - accu1 = pDat_1[1]; accu2 = pDat_0[0]; - accu3 = pDat_0[1]; accu4 = pDat_1[0]; - - cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]); - cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i+1]); - - pDat_0[0] = accu2; pDat_0[1] = accu1; - pDat_1[0] = accu4; pDat_1[1] = -accu3; - } - if (M&1) - { - register FIXP_DBL accu1,accu2; - - accu1 = pDat_1[1]; accu2 = pDat_0[0]; - - cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]); - - pDat_0[0] = accu2; pDat_0[1] = accu1; - } - } - - fft(M, pDat, pDat_e); - -#ifdef FUNCTION_dct_IV_func2 - if (M>=4 && (M&3) == 0) { - /* ARM926: 42 cycles for 2 iterations = 21 cycles/iteration */ - dct_IV_func2(M>>2, sin_twiddle, &pDat[0], &pDat[L], sin_step); - } else -#endif /* FUNCTION_dct_IV_func2 */ - { - FIXP_DBL *RESTRICT pDat_0 = &pDat[0]; - FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2]; - register FIXP_DBL accu1,accu2,accu3,accu4; - int idx, i; - - /* Sin and Cos values are 0.0f and 1.0f */ - accu1 = pDat_1[0]; - accu2 = pDat_1[1]; - - pDat_1[1] = -(pDat_0[1]>>1); - pDat_0[0] = (pDat_0[0]>>1); - - - /* 28 cycles for ARM926 */ - for (idx = sin_step,i=1; i<(M+1)>>1; i++, idx+=sin_step) - { - FIXP_STP twd = sin_twiddle[idx]; - cplxMultDiv2(&accu3, &accu4, accu1, accu2, twd); - pDat_0[1] = accu3; - pDat_1[0] = accu4; - - pDat_0+=2; - pDat_1-=2; - - cplxMultDiv2(&accu3, &accu4, pDat_0[1], pDat_0[0], twd); - - accu1 = pDat_1[0]; - accu2 = pDat_1[1]; - - pDat_1[1] = -accu3; - pDat_0[0] = accu4; - } - - if ( (M&1) == 0 ) - { - /* Last Sin and Cos value pair are the same */ - accu1 = fMultDiv2(accu1, WTC(0x5a82799a)); - accu2 = fMultDiv2(accu2, WTC(0x5a82799a)); - - pDat_1[0] = accu1 + accu2; - pDat_0[1] = accu1 - accu2; - } - } - - /* Add twiddeling scale. */ - *pDat_e += 2; -} -#endif /* defined (FUNCTION_dct_IV) */ - -#if !defined(FUNCTION_dst_IV) -void dst_IV(FIXP_DBL *pDat, - int L, - int *pDat_e ) -{ - int sin_step = 0; - int M = L >> 1; - - const FIXP_WTP *twiddle; - const FIXP_STP *sin_twiddle; - -#ifdef DSTIV2_ENABLE - if (L == 2) { - const FIXP_STP tab = STCP(0x7641AF3D, 0x30FB9452); - FIXP_DBL tmp1, tmp2; - - cplxMultDiv2(&tmp2, &tmp1, pDat[0], pDat[1], tab); - - pDat[0] = tmp1; - pDat[1] = tmp2; - - *pDat_e += 1; - - return; - } -#else - FDK_ASSERT(L >= 4); -#endif - - getTables(&twiddle, &sin_twiddle, &sin_step, L); - -#ifdef FUNCTION_dst_IV_func1 - if ( (M>=4) && ((M&3) == 0) ) { - dst_IV_func1(M, twiddle, &pDat[0], &pDat[L]); - } else -#endif - { - FIXP_DBL *RESTRICT pDat_0 = &pDat[0]; - FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2]; - - register int i; - - /* 34 cycles on ARM926 */ - for (i = 0; i < M-1; i+=2,pDat_0+=2,pDat_1-=2) - { - register FIXP_DBL accu1,accu2,accu3,accu4; - - accu1 = pDat_1[1]; accu2 = -pDat_0[0]; - accu3 = pDat_0[1]; accu4 = -pDat_1[0]; - - cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]); - cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i+1]); - - pDat_0[0] = accu2; pDat_0[1] = accu1; - pDat_1[0] = accu4; pDat_1[1] = -accu3; - } - if (M&1) - { - register FIXP_DBL accu1,accu2; - - accu1 = pDat_1[1]; accu2 = -pDat_0[0]; - - cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]); - - pDat_0[0] = accu2; pDat_0[1] = accu1; - } - } - - fft(M, pDat, pDat_e); - -#ifdef FUNCTION_dst_IV_func2 - if ( (M>=4) && ((M&3) == 0) ) { - dst_IV_func2(M>>2, sin_twiddle + sin_step, &pDat[0], &pDat[L - 1], sin_step); - } else -#endif /* FUNCTION_dst_IV_func2 */ - { - FIXP_DBL *RESTRICT pDat_0; - FIXP_DBL *RESTRICT pDat_1; - register FIXP_DBL accu1,accu2,accu3,accu4; - int idx, i; - - pDat_0 = &pDat[0]; - pDat_1 = &pDat[L - 2]; - - /* Sin and Cos values are 0.0f and 1.0f */ - accu1 = pDat_1[0]; - accu2 = pDat_1[1]; - - pDat_1[1] = -(pDat_0[0]>>1); - pDat_0[0] = (pDat_0[1]>>1); - - for (idx = sin_step,i=1; i<(M+1)>>1; i++, idx+=sin_step) - { - FIXP_STP twd = sin_twiddle[idx]; - - cplxMultDiv2(&accu3, &accu4, accu1, accu2, twd); - pDat_1[0] = -accu3; - pDat_0[1] = -accu4; - - pDat_0+=2; - pDat_1-=2; - - cplxMultDiv2(&accu3, &accu4, pDat_0[1], pDat_0[0], twd); - - accu1 = pDat_1[0]; - accu2 = pDat_1[1]; - - pDat_0[0] = accu3; - pDat_1[1] = -accu4; - } - - if ( (M&1) == 0 ) - { - /* Last Sin and Cos value pair are the same */ - accu1 = fMultDiv2(accu1, WTC(0x5a82799a)); - accu2 = fMultDiv2(accu2, WTC(0x5a82799a)); - - pDat_0[1] = - accu1 - accu2; - pDat_1[0] = accu2 - accu1; - } - } - - /* Add twiddeling scale. */ - *pDat_e += 2; -} -#endif /* !defined(FUNCTION_dst_IV) */ - - |