summaryrefslogtreecommitdiffstats
path: root/libFDK/include/fixpoint_math.h
diff options
context:
space:
mode:
Diffstat (limited to 'libFDK/include/fixpoint_math.h')
-rw-r--r--libFDK/include/fixpoint_math.h466
1 files changed, 0 insertions, 466 deletions
diff --git a/libFDK/include/fixpoint_math.h b/libFDK/include/fixpoint_math.h
deleted file mode 100644
index df141d3..0000000
--- a/libFDK/include/fixpoint_math.h
+++ /dev/null
@@ -1,466 +0,0 @@
-
-/* -----------------------------------------------------------------------------------------------------------
-Software License for The Fraunhofer FDK AAC Codec Library for Android
-
-© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- All rights reserved.
-
- 1. INTRODUCTION
-The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
-the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
-This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
-
-AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
-audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
-independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
-of the MPEG specifications.
-
-Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
-may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
-individually for the purpose of encoding or decoding bit streams in products that are compliant with
-the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
-these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
-software may already be covered under those patent licenses when it is used for those licensed purposes only.
-
-Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
-are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
-applications information and documentation.
-
-2. COPYRIGHT LICENSE
-
-Redistribution and use in source and binary forms, with or without modification, are permitted without
-payment of copyright license fees provided that you satisfy the following conditions:
-
-You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
-your modifications thereto in source code form.
-
-You must retain the complete text of this software license in the documentation and/or other materials
-provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
-You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
-modifications thereto to recipients of copies in binary form.
-
-The name of Fraunhofer may not be used to endorse or promote products derived from this library without
-prior written permission.
-
-You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
-software or your modifications thereto.
-
-Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
-and the date of any change. For modified versions of the FDK AAC Codec, the term
-"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
-"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
-
-3. NO PATENT LICENSE
-
-NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
-ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
-respect to this software.
-
-You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
-by appropriate patent licenses.
-
-4. DISCLAIMER
-
-This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
-"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
-of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
-CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
-including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
-or business interruption, however caused and on any theory of liability, whether in contract, strict
-liability, or tort (including negligence), arising in any way out of the use of this software, even if
-advised of the possibility of such damage.
-
-5. CONTACT INFORMATION
-
-Fraunhofer Institute for Integrated Circuits IIS
-Attention: Audio and Multimedia Departments - FDK AAC LL
-Am Wolfsmantel 33
-91058 Erlangen, Germany
-
-www.iis.fraunhofer.de/amm
-amm-info@iis.fraunhofer.de
------------------------------------------------------------------------------------------------------------ */
-
-/*************************** Fraunhofer IIS FDK Tools **********************
-
- Author(s): M. Gayer
- Description: Fixed point specific mathematical functions
-
-******************************************************************************/
-
-#ifndef __fixpoint_math_H
-#define __fixpoint_math_H
-
-
-#include "common_fix.h"
-
-
-#define LD_DATA_SCALING (64.0f)
-#define LD_DATA_SHIFT 6 /* pow(2, LD_DATA_SHIFT) = LD_DATA_SCALING */
-
-/**
- * \brief deprecated. Use fLog2() instead.
- */
-FIXP_DBL CalcLdData(FIXP_DBL op);
-
-void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT number);
-
-FIXP_DBL CalcInvLdData(FIXP_DBL op);
-
-
-void InitLdInt();
-FIXP_DBL CalcLdInt(INT i);
-
-extern const USHORT sqrt_tab[49];
-
-inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x)
-{
- UINT y = (INT)x;
- UCHAR is_zero=(y==0);
- INT zeros=fixnormz_D(y) & 0x1e;
- y<<=zeros;
- UINT idx=(y>>26)-16;
- USHORT frac=(y>>10)&0xffff;
- USHORT nfrac=0xffff^frac;
- UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1];
- t=t>>(zeros>>1);
- return(is_zero ? 0 : t);
-}
-
-inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x, INT *x_e)
-{
- UINT y = (INT)x;
- INT e;
-
- if (x == (FIXP_DBL)0) {
- return x;
- }
-
- /* Normalize */
- e=fixnormz_D(y);
- y<<=e;
- e = *x_e - e + 2;
-
- /* Correct odd exponent. */
- if (e & 1) {
- y >>= 1;
- e ++;
- }
- /* Get square root */
- UINT idx=(y>>26)-16;
- USHORT frac=(y>>10)&0xffff;
- USHORT nfrac=0xffff^frac;
- UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1];
-
- /* Write back exponent */
- *x_e = e >> 1;
- return (FIXP_DBL)(LONG)(t>>1);
-}
-
-
-
-FIXP_DBL sqrtFixp(FIXP_DBL op);
-
-void InitInvSqrtTab();
-
-FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift);
-
-/*****************************************************************************
-
- functionname: invFixp
- description: delivers 1/(op)
-
-*****************************************************************************/
-inline FIXP_DBL invFixp(FIXP_DBL op)
-{
- INT tmp_exp ;
- FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp) ;
- FDK_ASSERT((31-(2*tmp_exp+1))>=0) ;
- return ( fPow2Div2( (FIXP_DBL)tmp_inv ) >> (31-(2*tmp_exp+1)) ) ;
-}
-
-
-
-#if defined(__mips__) && (__GNUC__==2)
-
-#define FUNCTION_schur_div
-inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count)
-{
- INT result, tmp ;
- __asm__ ("srl %1, %2, 15\n"
- "div %3, %1\n" : "=lo" (result)
- : "%d" (tmp), "d" (denum) , "d" (num)
- : "hi" ) ;
- return result<<16 ;
-}
-
-/*###########################################################################################*/
-#elif defined(__mips__) && (__GNUC__==3)
-
-#define FUNCTION_schur_div
-inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count)
-{
- INT result, tmp;
-
- __asm__ ("srl %[tmp], %[denum], 15\n"
- "div %[result], %[num], %[tmp]\n"
- : [tmp] "+r" (tmp), [result]"=r"(result)
- : [denum]"r"(denum), [num]"r"(num)
- : "hi", "lo");
- return result << (DFRACT_BITS-16);
-}
-
-/*###########################################################################################*/
-#elif defined(SIMULATE_MIPS_DIV)
-
-#define FUNCTION_schur_div
-inline FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count)
-{
- FDK_ASSERT (count<=DFRACT_BITS-1);
- FDK_ASSERT (num>=(FIXP_DBL)0);
- FDK_ASSERT (denum>(FIXP_DBL)0);
- FDK_ASSERT (num <= denum);
-
- INT tmp = denum >> (count-1);
- INT result = 0;
-
- while (num > tmp)
- {
- num -= tmp;
- result++;
- }
-
- return result << (DFRACT_BITS-count);
-}
-
-/*###########################################################################################*/
-#endif /* target architecture selector */
-
-#if !defined(FUNCTION_schur_div)
-/**
- * \brief Divide two FIXP_DBL values with given precision.
- * \param num dividend
- * \param denum divisor
- * \param count amount of significant bits of the result (starting to the MSB)
- * \return num/divisor
- */
-FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count);
-#endif
-
-
-
-FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1,
- const FIXP_SGL op2);
-
-/**
- * \brief multiply two values with normalization, thus max precision.
- * Author: Robert Weidner
- *
- * \param f1 first factor
- * \param f2 secod factor
- * \param result_e pointer to an INT where the exponent of the result is stored into
- * \return mantissa of the product f1*f2
- */
-FIXP_DBL fMultNorm(
- FIXP_DBL f1,
- FIXP_DBL f2,
- INT *result_e
- );
-
-inline FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2)
-{
- FIXP_DBL m;
- INT e;
-
- m = fMultNorm(f1, f2, &e);
-
- m = scaleValueSaturate(m, e);
-
- return m;
-}
-
-/**
- * \brief Divide 2 FIXP_DBL values with normalization of input values.
- * \param num numerator
- * \param denum denomintator
- * \return num/denum with exponent = 0
- */
-FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom, INT *result_e);
-
-/**
- * \brief Divide 2 FIXP_DBL values with normalization of input values.
- * \param num numerator
- * \param denum denomintator
- * \param result_e pointer to an INT where the exponent of the result is stored into
- * \return num/denum with exponent = *result_e
- */
-FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom);
-
-/**
- * \brief Divide 2 FIXP_DBL values with normalization of input values.
- * \param num numerator
- * \param denum denomintator
- * \return num/denum with exponent = 0
- */
-FIXP_DBL fDivNormHighPrec(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e);
-
-/**
- * \brief Calculate log(argument)/log(2) (logarithm with base 2). deprecated. Use fLog2() instead.
- * \param arg mantissa of the argument
- * \param arg_e exponent of the argument
- * \param result_e pointer to an INT to store the exponent of the result
- * \return the mantissa of the result.
- * \param
- */
-FIXP_DBL CalcLog2(FIXP_DBL arg, INT arg_e, INT *result_e);
-
-/**
- * \brief return 2 ^ (exp * 2^exp_e)
- * \param exp_m mantissa of the exponent to 2.0f
- * \param exp_e exponent of the exponent to 2.0f
- * \param result_e pointer to a INT where the exponent of the result will be stored into
- * \return mantissa of the result
- */
-FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e);
-
-/**
- * \brief return 2 ^ (exp_m * 2^exp_e). This version returns only the mantissa with implicit exponent of zero.
- * \param exp_m mantissa of the exponent to 2.0f
- * \param exp_e exponent of the exponent to 2.0f
- * \return mantissa of the result
- */
-FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e);
-
-/**
- * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves
- * the need to compute log2() of constant values (when x is a constant).
- * \param ldx_m mantissa of log2() of x.
- * \param ldx_e exponent of log2() of x.
- * \param exp_m mantissa of the exponent to 2.0f
- * \param exp_e exponent of the exponent to 2.0f
- * \param result_e pointer to a INT where the exponent of the result will be stored into
- * \return mantissa of the result
- */
-FIXP_DBL fLdPow(
- FIXP_DBL baseLd_m,
- INT baseLd_e,
- FIXP_DBL exp_m, INT exp_e,
- INT *result_e
- );
-
-/**
- * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves
- * the need to compute log2() of constant values (when x is a constant). This version
- * does not return an exponent, which is implicitly 0.
- * \param ldx_m mantissa of log2() of x.
- * \param ldx_e exponent of log2() of x.
- * \param exp_m mantissa of the exponent to 2.0f
- * \param exp_e exponent of the exponent to 2.0f
- * \return mantissa of the result
- */
-FIXP_DBL fLdPow(
- FIXP_DBL baseLd_m, INT baseLd_e,
- FIXP_DBL exp_m, INT exp_e
- );
-
-/**
- * \brief return (base * 2^base_e) ^ (exp * 2^exp_e). Use fLdPow() instead whenever possible.
- * \param base_m mantissa of the base.
- * \param base_e exponent of the base.
- * \param exp_m mantissa of power to be calculated of the base.
- * \param exp_e exponent of power to be calculated of the base.
- * \param result_e pointer to a INT where the exponent of the result will be stored into.
- * \return mantissa of the result.
- */
-FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e, INT *result_e);
-
-/**
- * \brief return (base * 2^base_e) ^ N
- * \param base mantissa of the base
- * \param base_e exponent of the base
- * \param power to be calculated of the base
- * \param result_e pointer to a INT where the exponent of the result will be stored into
- * \return mantissa of the result
- */
-FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT N, INT *result_e);
-
-/**
- * \brief calculate logarithm of base 2 of x_m * 2^(x_e)
- * \param x_m mantissa of the input value.
- * \param x_e exponent of the input value.
- * \param pointer to an INT where the exponent of the result is returned into.
- * \return mantissa of the result.
- */
-FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e);
-
-/**
- * \brief calculate logarithm of base 2 of x_m * 2^(x_e)
- * \param x_m mantissa of the input value.
- * \param x_e exponent of the input value.
- * \return mantissa of the result with implicit exponent of LD_DATA_SHIFT.
- */
-FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e);
-
-/**
- * \brief Add with saturation of the result.
- * \param a first summand
- * \param b second summand
- * \return saturated sum of a and b.
- */
-inline FIXP_SGL fAddSaturate(const FIXP_SGL a, const FIXP_SGL b)
-{
- LONG sum;
-
- sum = (LONG)(SHORT)a + (LONG)(SHORT)b;
- sum = fMax(fMin((INT)sum, (INT)MAXVAL_SGL), (INT)MINVAL_SGL);
- return (FIXP_SGL)(SHORT)sum;
-}
-
-/**
- * \brief Add with saturation of the result.
- * \param a first summand
- * \param b second summand
- * \return saturated sum of a and b.
- */
-inline FIXP_DBL fAddSaturate(const FIXP_DBL a, const FIXP_DBL b)
-{
- LONG sum;
-
- sum = (LONG)(a>>1) + (LONG)(b>>1);
- sum = fMax(fMin((INT)sum, (INT)(MAXVAL_DBL>>1)), (INT)(MINVAL_DBL>>1));
- return (FIXP_DBL)(LONG)(sum<<1);
-}
-
-//#define TEST_ROUNDING
-
-
-
-
-/*****************************************************************************
-
- array for 1/n, n=1..50
-
-****************************************************************************/
-
- extern const FIXP_DBL invCount[50];
-
- LNK_SECTION_INITCODE
- inline void InitInvInt(void) {}
-
-
-/**
- * \brief Calculate the value of 1/i where i is a integer value. It supports
- * input values from 1 upto 50.
- * \param intValue Integer input value.
- * \param FIXP_DBL representation of 1/intValue
- */
-inline FIXP_DBL GetInvInt(int intValue)
-{
- FDK_ASSERT((intValue > 0) && (intValue < 50));
- FDK_ASSERT(intValue<50);
- return invCount[intValue];
-}
-
-
-#endif
-