diff options
Diffstat (limited to 'libFDK/include/fixpoint_math.h')
-rw-r--r-- | libFDK/include/fixpoint_math.h | 466 |
1 files changed, 0 insertions, 466 deletions
diff --git a/libFDK/include/fixpoint_math.h b/libFDK/include/fixpoint_math.h deleted file mode 100644 index df141d3..0000000 --- a/libFDK/include/fixpoint_math.h +++ /dev/null @@ -1,466 +0,0 @@ - -/* ----------------------------------------------------------------------------------------------------------- -Software License for The Fraunhofer FDK AAC Codec Library for Android - -© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. - All rights reserved. - - 1. INTRODUCTION -The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements -the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. -This FDK AAC Codec software is intended to be used on a wide variety of Android devices. - -AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual -audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by -independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part -of the MPEG specifications. - -Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) -may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners -individually for the purpose of encoding or decoding bit streams in products that are compliant with -the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license -these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec -software may already be covered under those patent licenses when it is used for those licensed purposes only. - -Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, -are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional -applications information and documentation. - -2. COPYRIGHT LICENSE - -Redistribution and use in source and binary forms, with or without modification, are permitted without -payment of copyright license fees provided that you satisfy the following conditions: - -You must retain the complete text of this software license in redistributions of the FDK AAC Codec or -your modifications thereto in source code form. - -You must retain the complete text of this software license in the documentation and/or other materials -provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. -You must make available free of charge copies of the complete source code of the FDK AAC Codec and your -modifications thereto to recipients of copies in binary form. - -The name of Fraunhofer may not be used to endorse or promote products derived from this library without -prior written permission. - -You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec -software or your modifications thereto. - -Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software -and the date of any change. For modified versions of the FDK AAC Codec, the term -"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term -"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." - -3. NO PATENT LICENSE - -NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, -ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with -respect to this software. - -You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized -by appropriate patent licenses. - -4. DISCLAIMER - -This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors -"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties -of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR -CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, -including but not limited to procurement of substitute goods or services; loss of use, data, or profits, -or business interruption, however caused and on any theory of liability, whether in contract, strict -liability, or tort (including negligence), arising in any way out of the use of this software, even if -advised of the possibility of such damage. - -5. CONTACT INFORMATION - -Fraunhofer Institute for Integrated Circuits IIS -Attention: Audio and Multimedia Departments - FDK AAC LL -Am Wolfsmantel 33 -91058 Erlangen, Germany - -www.iis.fraunhofer.de/amm -amm-info@iis.fraunhofer.de ------------------------------------------------------------------------------------------------------------ */ - -/*************************** Fraunhofer IIS FDK Tools ********************** - - Author(s): M. Gayer - Description: Fixed point specific mathematical functions - -******************************************************************************/ - -#ifndef __fixpoint_math_H -#define __fixpoint_math_H - - -#include "common_fix.h" - - -#define LD_DATA_SCALING (64.0f) -#define LD_DATA_SHIFT 6 /* pow(2, LD_DATA_SHIFT) = LD_DATA_SCALING */ - -/** - * \brief deprecated. Use fLog2() instead. - */ -FIXP_DBL CalcLdData(FIXP_DBL op); - -void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT number); - -FIXP_DBL CalcInvLdData(FIXP_DBL op); - - -void InitLdInt(); -FIXP_DBL CalcLdInt(INT i); - -extern const USHORT sqrt_tab[49]; - -inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x) -{ - UINT y = (INT)x; - UCHAR is_zero=(y==0); - INT zeros=fixnormz_D(y) & 0x1e; - y<<=zeros; - UINT idx=(y>>26)-16; - USHORT frac=(y>>10)&0xffff; - USHORT nfrac=0xffff^frac; - UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1]; - t=t>>(zeros>>1); - return(is_zero ? 0 : t); -} - -inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x, INT *x_e) -{ - UINT y = (INT)x; - INT e; - - if (x == (FIXP_DBL)0) { - return x; - } - - /* Normalize */ - e=fixnormz_D(y); - y<<=e; - e = *x_e - e + 2; - - /* Correct odd exponent. */ - if (e & 1) { - y >>= 1; - e ++; - } - /* Get square root */ - UINT idx=(y>>26)-16; - USHORT frac=(y>>10)&0xffff; - USHORT nfrac=0xffff^frac; - UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1]; - - /* Write back exponent */ - *x_e = e >> 1; - return (FIXP_DBL)(LONG)(t>>1); -} - - - -FIXP_DBL sqrtFixp(FIXP_DBL op); - -void InitInvSqrtTab(); - -FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift); - -/***************************************************************************** - - functionname: invFixp - description: delivers 1/(op) - -*****************************************************************************/ -inline FIXP_DBL invFixp(FIXP_DBL op) -{ - INT tmp_exp ; - FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp) ; - FDK_ASSERT((31-(2*tmp_exp+1))>=0) ; - return ( fPow2Div2( (FIXP_DBL)tmp_inv ) >> (31-(2*tmp_exp+1)) ) ; -} - - - -#if defined(__mips__) && (__GNUC__==2) - -#define FUNCTION_schur_div -inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count) -{ - INT result, tmp ; - __asm__ ("srl %1, %2, 15\n" - "div %3, %1\n" : "=lo" (result) - : "%d" (tmp), "d" (denum) , "d" (num) - : "hi" ) ; - return result<<16 ; -} - -/*###########################################################################################*/ -#elif defined(__mips__) && (__GNUC__==3) - -#define FUNCTION_schur_div -inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count) -{ - INT result, tmp; - - __asm__ ("srl %[tmp], %[denum], 15\n" - "div %[result], %[num], %[tmp]\n" - : [tmp] "+r" (tmp), [result]"=r"(result) - : [denum]"r"(denum), [num]"r"(num) - : "hi", "lo"); - return result << (DFRACT_BITS-16); -} - -/*###########################################################################################*/ -#elif defined(SIMULATE_MIPS_DIV) - -#define FUNCTION_schur_div -inline FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count) -{ - FDK_ASSERT (count<=DFRACT_BITS-1); - FDK_ASSERT (num>=(FIXP_DBL)0); - FDK_ASSERT (denum>(FIXP_DBL)0); - FDK_ASSERT (num <= denum); - - INT tmp = denum >> (count-1); - INT result = 0; - - while (num > tmp) - { - num -= tmp; - result++; - } - - return result << (DFRACT_BITS-count); -} - -/*###########################################################################################*/ -#endif /* target architecture selector */ - -#if !defined(FUNCTION_schur_div) -/** - * \brief Divide two FIXP_DBL values with given precision. - * \param num dividend - * \param denum divisor - * \param count amount of significant bits of the result (starting to the MSB) - * \return num/divisor - */ -FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count); -#endif - - - -FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1, - const FIXP_SGL op2); - -/** - * \brief multiply two values with normalization, thus max precision. - * Author: Robert Weidner - * - * \param f1 first factor - * \param f2 secod factor - * \param result_e pointer to an INT where the exponent of the result is stored into - * \return mantissa of the product f1*f2 - */ -FIXP_DBL fMultNorm( - FIXP_DBL f1, - FIXP_DBL f2, - INT *result_e - ); - -inline FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2) -{ - FIXP_DBL m; - INT e; - - m = fMultNorm(f1, f2, &e); - - m = scaleValueSaturate(m, e); - - return m; -} - -/** - * \brief Divide 2 FIXP_DBL values with normalization of input values. - * \param num numerator - * \param denum denomintator - * \return num/denum with exponent = 0 - */ -FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom, INT *result_e); - -/** - * \brief Divide 2 FIXP_DBL values with normalization of input values. - * \param num numerator - * \param denum denomintator - * \param result_e pointer to an INT where the exponent of the result is stored into - * \return num/denum with exponent = *result_e - */ -FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom); - -/** - * \brief Divide 2 FIXP_DBL values with normalization of input values. - * \param num numerator - * \param denum denomintator - * \return num/denum with exponent = 0 - */ -FIXP_DBL fDivNormHighPrec(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e); - -/** - * \brief Calculate log(argument)/log(2) (logarithm with base 2). deprecated. Use fLog2() instead. - * \param arg mantissa of the argument - * \param arg_e exponent of the argument - * \param result_e pointer to an INT to store the exponent of the result - * \return the mantissa of the result. - * \param - */ -FIXP_DBL CalcLog2(FIXP_DBL arg, INT arg_e, INT *result_e); - -/** - * \brief return 2 ^ (exp * 2^exp_e) - * \param exp_m mantissa of the exponent to 2.0f - * \param exp_e exponent of the exponent to 2.0f - * \param result_e pointer to a INT where the exponent of the result will be stored into - * \return mantissa of the result - */ -FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e); - -/** - * \brief return 2 ^ (exp_m * 2^exp_e). This version returns only the mantissa with implicit exponent of zero. - * \param exp_m mantissa of the exponent to 2.0f - * \param exp_e exponent of the exponent to 2.0f - * \return mantissa of the result - */ -FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e); - -/** - * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves - * the need to compute log2() of constant values (when x is a constant). - * \param ldx_m mantissa of log2() of x. - * \param ldx_e exponent of log2() of x. - * \param exp_m mantissa of the exponent to 2.0f - * \param exp_e exponent of the exponent to 2.0f - * \param result_e pointer to a INT where the exponent of the result will be stored into - * \return mantissa of the result - */ -FIXP_DBL fLdPow( - FIXP_DBL baseLd_m, - INT baseLd_e, - FIXP_DBL exp_m, INT exp_e, - INT *result_e - ); - -/** - * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves - * the need to compute log2() of constant values (when x is a constant). This version - * does not return an exponent, which is implicitly 0. - * \param ldx_m mantissa of log2() of x. - * \param ldx_e exponent of log2() of x. - * \param exp_m mantissa of the exponent to 2.0f - * \param exp_e exponent of the exponent to 2.0f - * \return mantissa of the result - */ -FIXP_DBL fLdPow( - FIXP_DBL baseLd_m, INT baseLd_e, - FIXP_DBL exp_m, INT exp_e - ); - -/** - * \brief return (base * 2^base_e) ^ (exp * 2^exp_e). Use fLdPow() instead whenever possible. - * \param base_m mantissa of the base. - * \param base_e exponent of the base. - * \param exp_m mantissa of power to be calculated of the base. - * \param exp_e exponent of power to be calculated of the base. - * \param result_e pointer to a INT where the exponent of the result will be stored into. - * \return mantissa of the result. - */ -FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e, INT *result_e); - -/** - * \brief return (base * 2^base_e) ^ N - * \param base mantissa of the base - * \param base_e exponent of the base - * \param power to be calculated of the base - * \param result_e pointer to a INT where the exponent of the result will be stored into - * \return mantissa of the result - */ -FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT N, INT *result_e); - -/** - * \brief calculate logarithm of base 2 of x_m * 2^(x_e) - * \param x_m mantissa of the input value. - * \param x_e exponent of the input value. - * \param pointer to an INT where the exponent of the result is returned into. - * \return mantissa of the result. - */ -FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e); - -/** - * \brief calculate logarithm of base 2 of x_m * 2^(x_e) - * \param x_m mantissa of the input value. - * \param x_e exponent of the input value. - * \return mantissa of the result with implicit exponent of LD_DATA_SHIFT. - */ -FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e); - -/** - * \brief Add with saturation of the result. - * \param a first summand - * \param b second summand - * \return saturated sum of a and b. - */ -inline FIXP_SGL fAddSaturate(const FIXP_SGL a, const FIXP_SGL b) -{ - LONG sum; - - sum = (LONG)(SHORT)a + (LONG)(SHORT)b; - sum = fMax(fMin((INT)sum, (INT)MAXVAL_SGL), (INT)MINVAL_SGL); - return (FIXP_SGL)(SHORT)sum; -} - -/** - * \brief Add with saturation of the result. - * \param a first summand - * \param b second summand - * \return saturated sum of a and b. - */ -inline FIXP_DBL fAddSaturate(const FIXP_DBL a, const FIXP_DBL b) -{ - LONG sum; - - sum = (LONG)(a>>1) + (LONG)(b>>1); - sum = fMax(fMin((INT)sum, (INT)(MAXVAL_DBL>>1)), (INT)(MINVAL_DBL>>1)); - return (FIXP_DBL)(LONG)(sum<<1); -} - -//#define TEST_ROUNDING - - - - -/***************************************************************************** - - array for 1/n, n=1..50 - -****************************************************************************/ - - extern const FIXP_DBL invCount[50]; - - LNK_SECTION_INITCODE - inline void InitInvInt(void) {} - - -/** - * \brief Calculate the value of 1/i where i is a integer value. It supports - * input values from 1 upto 50. - * \param intValue Integer input value. - * \param FIXP_DBL representation of 1/intValue - */ -inline FIXP_DBL GetInvInt(int intValue) -{ - FDK_ASSERT((intValue > 0) && (intValue < 50)); - FDK_ASSERT(intValue<50); - return invCount[intValue]; -} - - -#endif - |