diff options
Diffstat (limited to 'libFDK/include/fixpoint_math.h')
-rw-r--r-- | libFDK/include/fixpoint_math.h | 397 |
1 files changed, 397 insertions, 0 deletions
diff --git a/libFDK/include/fixpoint_math.h b/libFDK/include/fixpoint_math.h new file mode 100644 index 0000000..0d0a059 --- /dev/null +++ b/libFDK/include/fixpoint_math.h @@ -0,0 +1,397 @@ +/*************************** Fraunhofer IIS FDK Tools ********************** + + (C) Copyright Fraunhofer IIS (1999) + All Rights Reserved + + Please be advised that this software and/or program delivery is + Confidential Information of Fraunhofer and subject to and covered by the + + Fraunhofer IIS Software Evaluation Agreement + between Google Inc. and Fraunhofer + effective and in full force since March 1, 2012. + + You may use this software and/or program only under the terms and + conditions described in the above mentioned Fraunhofer IIS Software + Evaluation Agreement. Any other and/or further use requires a separate agreement. + + + $Id$ + Author(s): M. Gayer + Description: Fixed point specific mathematical functions + + This software and/or program is protected by copyright law and international + treaties. Any reproduction or distribution of this software and/or program, + or any portion of it, may result in severe civil and criminal penalties, and + will be prosecuted to the maximum extent possible under law. + +******************************************************************************/ + +#ifndef __fixpoint_math_H +#define __fixpoint_math_H + + +#include "common_fix.h" + + +#define LD_DATA_SCALING (64.0f) +#define LD_DATA_SHIFT 6 /* pow(2, LD_DATA_SHIFT) = LD_DATA_SCALING */ +/*#define SIMULATE_MIPS_DIV */ /* schur_div() in C that simulates the inline asm schur_div() on MIPS */ + +/** + * \brief deprecated. Use fLog2() instead. + */ +FIXP_DBL CalcLdData(FIXP_DBL op); + +void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT number); + +FIXP_DBL CalcInvLdData(FIXP_DBL op); + + +void InitLdInt(); +FIXP_DBL CalcLdInt(INT i); + +extern const USHORT sqrt_tab[49]; + +inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x) +{ + UINT y = (INT)x; + UCHAR is_zero=(y==0); + INT zeros=fixnormz_D(y) & 0x1e; + y<<=zeros; + UINT idx=(y>>26)-16; + USHORT frac=(y>>10)&0xffff; + USHORT nfrac=0xffff^frac; + UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1]; + t=t>>(zeros>>1); + return(is_zero ? 0 : t); +} + +inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x, INT *x_e) +{ + UINT y = (INT)x; + INT e; + + if (x == (FIXP_DBL)0) { + return x; + } + + /* Normalize */ + e=fixnormz_D(y); + y<<=e; + e = *x_e - e + 2; + + /* Correct odd exponent. */ + if (e & 1) { + y >>= 1; + e ++; + } + /* Get square root */ + UINT idx=(y>>26)-16; + USHORT frac=(y>>10)&0xffff; + USHORT nfrac=0xffff^frac; + UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1]; + + /* Write back exponent */ + *x_e = e >> 1; + return (FIXP_DBL)(LONG)(t>>1); +} + + + +FIXP_DBL sqrtFixp(FIXP_DBL op); + +void InitInvSqrtTab(); + +FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift); + +/***************************************************************************** + + functionname: invFixp + description: delivers 1/(op) + +*****************************************************************************/ +inline FIXP_DBL invFixp(FIXP_DBL op) +{ + INT tmp_exp ; + FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp) ; + FDK_ASSERT((31-(2*tmp_exp+1))>=0) ; + return ( fPow2Div2( (FIXP_DBL)tmp_inv ) >> (31-(2*tmp_exp+1)) ) ; +} + + + +#if defined(__mips__) && (__GNUC__==2) + +#define FUNCTION_schur_div +inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count) +{ + INT result, tmp ; + __asm__ ("srl %1, %2, 15\n" + "div %3, %1\n" : "=lo" (result) + : "%d" (tmp), "d" (denum) , "d" (num) + : "hi" ) ; + return result<<16 ; +} + +/*###########################################################################################*/ +#elif defined(__mips__) && (__GNUC__==3) + +#define FUNCTION_schur_div +inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count) +{ + INT result, tmp; + + __asm__ ("srl %[tmp], %[denum], 15\n" + "div %[result], %[num], %[tmp]\n" + : [tmp] "+r" (tmp), [result]"=r"(result) + : [denum]"r"(denum), [num]"r"(num) + : "hi", "lo"); + return result << (DFRACT_BITS-16); +} + +/*###########################################################################################*/ +#elif defined(SIMULATE_MIPS_DIV) + +#define FUNCTION_schur_div +inline FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count) +{ + FDK_ASSERT (count<=DFRACT_BITS-1); + FDK_ASSERT (num>=(FIXP_DBL)0); + FDK_ASSERT (denum>(FIXP_DBL)0); + FDK_ASSERT (num <= denum); + + INT tmp = denum >> (count-1); + INT result = 0; + + while (num > tmp) + { + num -= tmp; + result++; + } + + return result << (DFRACT_BITS-count); +} + +/*###########################################################################################*/ +#endif /* target architecture selector */ + +#if !defined(FUNCTION_schur_div) +/** + * \brief Divide two FIXP_DBL values with given precision. + * \param num dividend + * \param denum divisor + * \param count amount of significant bits of the result (starting to the MSB) + * \return num/divisor + */ +FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count); +#endif + + + +FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1, + const FIXP_SGL op2); + +/** + * \brief multiply two values with normalization, thus max precision. + * Author: Robert Weidner + * + * \param f1 first factor + * \param f2 secod factor + * \param result_e pointer to an INT where the exponent of the result is stored into + * \return mantissa of the product f1*f2 + */ +FIXP_DBL fMultNorm( + FIXP_DBL f1, + FIXP_DBL f2, + INT *result_e + ); + +/** + * \brief Divide 2 FIXP_DBL values with normalization of input values. + * \param num numerator + * \param denum denomintator + * \return num/denum with exponent = 0 + */ +FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom, INT *result_e); + +/** + * \brief Divide 2 FIXP_DBL values with normalization of input values. + * \param num numerator + * \param denum denomintator + * \param result_e pointer to an INT where the exponent of the result is stored into + * \return num/denum with exponent = *result_e + */ +FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom); + +/** + * \brief Divide 2 FIXP_DBL values with normalization of input values. + * \param num numerator + * \param denum denomintator + * \return num/denum with exponent = 0 + */ +FIXP_DBL fDivNormHighPrec(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e); + +/** + * \brief Calculate log(argument)/log(2) (logarithm with base 2). deprecated. Use fLog2() instead. + * \param arg mantissa of the argument + * \param arg_e exponent of the argument + * \param result_e pointer to an INT to store the exponent of the result + * \return the mantissa of the result. + * \param + */ +FIXP_DBL CalcLog2(FIXP_DBL arg, INT arg_e, INT *result_e); + +/** + * \brief return 2 ^ (exp * 2^exp_e) + * \param exp_m mantissa of the exponent to 2.0f + * \param exp_e exponent of the exponent to 2.0f + * \param result_e pointer to a INT where the exponent of the result will be stored into + * \return mantissa of the result + */ +FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e); + +/** + * \brief return 2 ^ (exp_m * 2^exp_e). This version returns only the mantissa with implicit exponent of zero. + * \param exp_m mantissa of the exponent to 2.0f + * \param exp_e exponent of the exponent to 2.0f + * \return mantissa of the result + */ +FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e); + +/** + * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves + * the need to compute log2() of constant values (when x is a constant). + * \param ldx_m mantissa of log2() of x. + * \param ldx_e exponent of log2() of x. + * \param exp_m mantissa of the exponent to 2.0f + * \param exp_e exponent of the exponent to 2.0f + * \param result_e pointer to a INT where the exponent of the result will be stored into + * \return mantissa of the result + */ +FIXP_DBL fLdPow( + FIXP_DBL baseLd_m, + INT baseLd_e, + FIXP_DBL exp_m, INT exp_e, + INT *result_e + ); + +/** + * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves + * the need to compute log2() of constant values (when x is a constant). This version + * does not return an exponent, which is implicitly 0. + * \param ldx_m mantissa of log2() of x. + * \param ldx_e exponent of log2() of x. + * \param exp_m mantissa of the exponent to 2.0f + * \param exp_e exponent of the exponent to 2.0f + * \return mantissa of the result + */ +FIXP_DBL fLdPow( + FIXP_DBL baseLd_m, INT baseLd_e, + FIXP_DBL exp_m, INT exp_e + ); + +/** + * \brief return (base * 2^base_e) ^ (exp * 2^exp_e). Use fLdPow() instead whenever possible. + * \param base_m mantissa of the base. + * \param base_e exponent of the base. + * \param exp_m mantissa of power to be calculated of the base. + * \param exp_e exponent of power to be calculated of the base. + * \param result_e pointer to a INT where the exponent of the result will be stored into. + * \return mantissa of the result. + */ +FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e, INT *result_e); + +/** + * \brief return (base * 2^base_e) ^ N + * \param base mantissa of the base + * \param base_e exponent of the base + * \param power to be calculated of the base + * \param result_e pointer to a INT where the exponent of the result will be stored into + * \return mantissa of the result + */ +FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT N, INT *result_e); + +/** + * \brief calculate logarithm of base 2 of x_m * 2^(x_e) + * \param x_m mantissa of the input value. + * \param x_e exponent of the input value. + * \param pointer to an INT where the exponent of the result is returned into. + * \return mantissa of the result. + */ +FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e); + +/** + * \brief calculate logarithm of base 2 of x_m * 2^(x_e) + * \param x_m mantissa of the input value. + * \param x_e exponent of the input value. + * \return mantissa of the result with implicit exponent of LD_DATA_SHIFT. + */ +FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e); + +/** + * \brief Add with saturation of the result. + * \param a first summand + * \param b second summand + * \return saturated sum of a and b. + */ +inline FIXP_SGL fAddSaturate(const FIXP_SGL a, const FIXP_SGL b) +{ + LONG sum; + + sum = (LONG)(SHORT)a + (LONG)(SHORT)b; + sum = fMax(fMin((INT)sum, (INT)MAXVAL_SGL), (INT)MINVAL_SGL); + return (FIXP_SGL)(SHORT)sum; +} + +/** + * \brief Add with saturation of the result. + * \param a first summand + * \param b second summand + * \return saturated sum of a and b. + */ +inline FIXP_DBL fAddSaturate(const FIXP_DBL a, const FIXP_DBL b) +{ + LONG sum; + + sum = (LONG)(a>>1) + (LONG)(b>>1); + sum = fMax(fMin((INT)sum, (INT)(MAXVAL_DBL>>1)), (INT)(MINVAL_DBL>>1)); + return (FIXP_DBL)(LONG)(sum<<1); +} + +#define TEST_ROUNDING 0 + + +#if TEST_ROUNDING +void checkRound(); +void checkRound2(); +#endif + + +/***************************************************************************** + + array for 1/n, n=1..50 + +****************************************************************************/ + + extern const FIXP_DBL invCount[50]; + + LNK_SECTION_INITCODE + inline void InitInvInt(void) {} + + +/** + * \brief Calculate the value of 1/i where i is a integer value. It supports + * input values from 1 upto 50. + * \param intValue Integer input value. + * \param FIXP_DBL representation of 1/intValue + */ +inline FIXP_DBL GetInvInt(int intValue) +{ + FDK_ASSERT((intValue > 0) && (intValue < 50)); + FDK_ASSERT(intValue<50); + return invCount[intValue]; +} + + +#endif + |