summaryrefslogtreecommitdiffstats
path: root/libFDK/include/fixpoint_math.h
diff options
context:
space:
mode:
Diffstat (limited to 'libFDK/include/fixpoint_math.h')
-rw-r--r--libFDK/include/fixpoint_math.h397
1 files changed, 397 insertions, 0 deletions
diff --git a/libFDK/include/fixpoint_math.h b/libFDK/include/fixpoint_math.h
new file mode 100644
index 0000000..0d0a059
--- /dev/null
+++ b/libFDK/include/fixpoint_math.h
@@ -0,0 +1,397 @@
+/*************************** Fraunhofer IIS FDK Tools **********************
+
+ (C) Copyright Fraunhofer IIS (1999)
+ All Rights Reserved
+
+ Please be advised that this software and/or program delivery is
+ Confidential Information of Fraunhofer and subject to and covered by the
+
+ Fraunhofer IIS Software Evaluation Agreement
+ between Google Inc. and Fraunhofer
+ effective and in full force since March 1, 2012.
+
+ You may use this software and/or program only under the terms and
+ conditions described in the above mentioned Fraunhofer IIS Software
+ Evaluation Agreement. Any other and/or further use requires a separate agreement.
+
+
+ $Id$
+ Author(s): M. Gayer
+ Description: Fixed point specific mathematical functions
+
+ This software and/or program is protected by copyright law and international
+ treaties. Any reproduction or distribution of this software and/or program,
+ or any portion of it, may result in severe civil and criminal penalties, and
+ will be prosecuted to the maximum extent possible under law.
+
+******************************************************************************/
+
+#ifndef __fixpoint_math_H
+#define __fixpoint_math_H
+
+
+#include "common_fix.h"
+
+
+#define LD_DATA_SCALING (64.0f)
+#define LD_DATA_SHIFT 6 /* pow(2, LD_DATA_SHIFT) = LD_DATA_SCALING */
+/*#define SIMULATE_MIPS_DIV */ /* schur_div() in C that simulates the inline asm schur_div() on MIPS */
+
+/**
+ * \brief deprecated. Use fLog2() instead.
+ */
+FIXP_DBL CalcLdData(FIXP_DBL op);
+
+void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT number);
+
+FIXP_DBL CalcInvLdData(FIXP_DBL op);
+
+
+void InitLdInt();
+FIXP_DBL CalcLdInt(INT i);
+
+extern const USHORT sqrt_tab[49];
+
+inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x)
+{
+ UINT y = (INT)x;
+ UCHAR is_zero=(y==0);
+ INT zeros=fixnormz_D(y) & 0x1e;
+ y<<=zeros;
+ UINT idx=(y>>26)-16;
+ USHORT frac=(y>>10)&0xffff;
+ USHORT nfrac=0xffff^frac;
+ UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1];
+ t=t>>(zeros>>1);
+ return(is_zero ? 0 : t);
+}
+
+inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x, INT *x_e)
+{
+ UINT y = (INT)x;
+ INT e;
+
+ if (x == (FIXP_DBL)0) {
+ return x;
+ }
+
+ /* Normalize */
+ e=fixnormz_D(y);
+ y<<=e;
+ e = *x_e - e + 2;
+
+ /* Correct odd exponent. */
+ if (e & 1) {
+ y >>= 1;
+ e ++;
+ }
+ /* Get square root */
+ UINT idx=(y>>26)-16;
+ USHORT frac=(y>>10)&0xffff;
+ USHORT nfrac=0xffff^frac;
+ UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1];
+
+ /* Write back exponent */
+ *x_e = e >> 1;
+ return (FIXP_DBL)(LONG)(t>>1);
+}
+
+
+
+FIXP_DBL sqrtFixp(FIXP_DBL op);
+
+void InitInvSqrtTab();
+
+FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift);
+
+/*****************************************************************************
+
+ functionname: invFixp
+ description: delivers 1/(op)
+
+*****************************************************************************/
+inline FIXP_DBL invFixp(FIXP_DBL op)
+{
+ INT tmp_exp ;
+ FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp) ;
+ FDK_ASSERT((31-(2*tmp_exp+1))>=0) ;
+ return ( fPow2Div2( (FIXP_DBL)tmp_inv ) >> (31-(2*tmp_exp+1)) ) ;
+}
+
+
+
+#if defined(__mips__) && (__GNUC__==2)
+
+#define FUNCTION_schur_div
+inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count)
+{
+ INT result, tmp ;
+ __asm__ ("srl %1, %2, 15\n"
+ "div %3, %1\n" : "=lo" (result)
+ : "%d" (tmp), "d" (denum) , "d" (num)
+ : "hi" ) ;
+ return result<<16 ;
+}
+
+/*###########################################################################################*/
+#elif defined(__mips__) && (__GNUC__==3)
+
+#define FUNCTION_schur_div
+inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count)
+{
+ INT result, tmp;
+
+ __asm__ ("srl %[tmp], %[denum], 15\n"
+ "div %[result], %[num], %[tmp]\n"
+ : [tmp] "+r" (tmp), [result]"=r"(result)
+ : [denum]"r"(denum), [num]"r"(num)
+ : "hi", "lo");
+ return result << (DFRACT_BITS-16);
+}
+
+/*###########################################################################################*/
+#elif defined(SIMULATE_MIPS_DIV)
+
+#define FUNCTION_schur_div
+inline FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count)
+{
+ FDK_ASSERT (count<=DFRACT_BITS-1);
+ FDK_ASSERT (num>=(FIXP_DBL)0);
+ FDK_ASSERT (denum>(FIXP_DBL)0);
+ FDK_ASSERT (num <= denum);
+
+ INT tmp = denum >> (count-1);
+ INT result = 0;
+
+ while (num > tmp)
+ {
+ num -= tmp;
+ result++;
+ }
+
+ return result << (DFRACT_BITS-count);
+}
+
+/*###########################################################################################*/
+#endif /* target architecture selector */
+
+#if !defined(FUNCTION_schur_div)
+/**
+ * \brief Divide two FIXP_DBL values with given precision.
+ * \param num dividend
+ * \param denum divisor
+ * \param count amount of significant bits of the result (starting to the MSB)
+ * \return num/divisor
+ */
+FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count);
+#endif
+
+
+
+FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1,
+ const FIXP_SGL op2);
+
+/**
+ * \brief multiply two values with normalization, thus max precision.
+ * Author: Robert Weidner
+ *
+ * \param f1 first factor
+ * \param f2 secod factor
+ * \param result_e pointer to an INT where the exponent of the result is stored into
+ * \return mantissa of the product f1*f2
+ */
+FIXP_DBL fMultNorm(
+ FIXP_DBL f1,
+ FIXP_DBL f2,
+ INT *result_e
+ );
+
+/**
+ * \brief Divide 2 FIXP_DBL values with normalization of input values.
+ * \param num numerator
+ * \param denum denomintator
+ * \return num/denum with exponent = 0
+ */
+FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom, INT *result_e);
+
+/**
+ * \brief Divide 2 FIXP_DBL values with normalization of input values.
+ * \param num numerator
+ * \param denum denomintator
+ * \param result_e pointer to an INT where the exponent of the result is stored into
+ * \return num/denum with exponent = *result_e
+ */
+FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom);
+
+/**
+ * \brief Divide 2 FIXP_DBL values with normalization of input values.
+ * \param num numerator
+ * \param denum denomintator
+ * \return num/denum with exponent = 0
+ */
+FIXP_DBL fDivNormHighPrec(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e);
+
+/**
+ * \brief Calculate log(argument)/log(2) (logarithm with base 2). deprecated. Use fLog2() instead.
+ * \param arg mantissa of the argument
+ * \param arg_e exponent of the argument
+ * \param result_e pointer to an INT to store the exponent of the result
+ * \return the mantissa of the result.
+ * \param
+ */
+FIXP_DBL CalcLog2(FIXP_DBL arg, INT arg_e, INT *result_e);
+
+/**
+ * \brief return 2 ^ (exp * 2^exp_e)
+ * \param exp_m mantissa of the exponent to 2.0f
+ * \param exp_e exponent of the exponent to 2.0f
+ * \param result_e pointer to a INT where the exponent of the result will be stored into
+ * \return mantissa of the result
+ */
+FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e);
+
+/**
+ * \brief return 2 ^ (exp_m * 2^exp_e). This version returns only the mantissa with implicit exponent of zero.
+ * \param exp_m mantissa of the exponent to 2.0f
+ * \param exp_e exponent of the exponent to 2.0f
+ * \return mantissa of the result
+ */
+FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e);
+
+/**
+ * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves
+ * the need to compute log2() of constant values (when x is a constant).
+ * \param ldx_m mantissa of log2() of x.
+ * \param ldx_e exponent of log2() of x.
+ * \param exp_m mantissa of the exponent to 2.0f
+ * \param exp_e exponent of the exponent to 2.0f
+ * \param result_e pointer to a INT where the exponent of the result will be stored into
+ * \return mantissa of the result
+ */
+FIXP_DBL fLdPow(
+ FIXP_DBL baseLd_m,
+ INT baseLd_e,
+ FIXP_DBL exp_m, INT exp_e,
+ INT *result_e
+ );
+
+/**
+ * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves
+ * the need to compute log2() of constant values (when x is a constant). This version
+ * does not return an exponent, which is implicitly 0.
+ * \param ldx_m mantissa of log2() of x.
+ * \param ldx_e exponent of log2() of x.
+ * \param exp_m mantissa of the exponent to 2.0f
+ * \param exp_e exponent of the exponent to 2.0f
+ * \return mantissa of the result
+ */
+FIXP_DBL fLdPow(
+ FIXP_DBL baseLd_m, INT baseLd_e,
+ FIXP_DBL exp_m, INT exp_e
+ );
+
+/**
+ * \brief return (base * 2^base_e) ^ (exp * 2^exp_e). Use fLdPow() instead whenever possible.
+ * \param base_m mantissa of the base.
+ * \param base_e exponent of the base.
+ * \param exp_m mantissa of power to be calculated of the base.
+ * \param exp_e exponent of power to be calculated of the base.
+ * \param result_e pointer to a INT where the exponent of the result will be stored into.
+ * \return mantissa of the result.
+ */
+FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e, INT *result_e);
+
+/**
+ * \brief return (base * 2^base_e) ^ N
+ * \param base mantissa of the base
+ * \param base_e exponent of the base
+ * \param power to be calculated of the base
+ * \param result_e pointer to a INT where the exponent of the result will be stored into
+ * \return mantissa of the result
+ */
+FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT N, INT *result_e);
+
+/**
+ * \brief calculate logarithm of base 2 of x_m * 2^(x_e)
+ * \param x_m mantissa of the input value.
+ * \param x_e exponent of the input value.
+ * \param pointer to an INT where the exponent of the result is returned into.
+ * \return mantissa of the result.
+ */
+FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e);
+
+/**
+ * \brief calculate logarithm of base 2 of x_m * 2^(x_e)
+ * \param x_m mantissa of the input value.
+ * \param x_e exponent of the input value.
+ * \return mantissa of the result with implicit exponent of LD_DATA_SHIFT.
+ */
+FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e);
+
+/**
+ * \brief Add with saturation of the result.
+ * \param a first summand
+ * \param b second summand
+ * \return saturated sum of a and b.
+ */
+inline FIXP_SGL fAddSaturate(const FIXP_SGL a, const FIXP_SGL b)
+{
+ LONG sum;
+
+ sum = (LONG)(SHORT)a + (LONG)(SHORT)b;
+ sum = fMax(fMin((INT)sum, (INT)MAXVAL_SGL), (INT)MINVAL_SGL);
+ return (FIXP_SGL)(SHORT)sum;
+}
+
+/**
+ * \brief Add with saturation of the result.
+ * \param a first summand
+ * \param b second summand
+ * \return saturated sum of a and b.
+ */
+inline FIXP_DBL fAddSaturate(const FIXP_DBL a, const FIXP_DBL b)
+{
+ LONG sum;
+
+ sum = (LONG)(a>>1) + (LONG)(b>>1);
+ sum = fMax(fMin((INT)sum, (INT)(MAXVAL_DBL>>1)), (INT)(MINVAL_DBL>>1));
+ return (FIXP_DBL)(LONG)(sum<<1);
+}
+
+#define TEST_ROUNDING 0
+
+
+#if TEST_ROUNDING
+void checkRound();
+void checkRound2();
+#endif
+
+
+/*****************************************************************************
+
+ array for 1/n, n=1..50
+
+****************************************************************************/
+
+ extern const FIXP_DBL invCount[50];
+
+ LNK_SECTION_INITCODE
+ inline void InitInvInt(void) {}
+
+
+/**
+ * \brief Calculate the value of 1/i where i is a integer value. It supports
+ * input values from 1 upto 50.
+ * \param intValue Integer input value.
+ * \param FIXP_DBL representation of 1/intValue
+ */
+inline FIXP_DBL GetInvInt(int intValue)
+{
+ FDK_ASSERT((intValue > 0) && (intValue < 50));
+ FDK_ASSERT(intValue<50);
+ return invCount[intValue];
+}
+
+
+#endif
+