diff options
Diffstat (limited to 'fdk-aac/libFDK/src/scale.cpp')
-rw-r--r-- | fdk-aac/libFDK/src/scale.cpp | 720 |
1 files changed, 720 insertions, 0 deletions
diff --git a/fdk-aac/libFDK/src/scale.cpp b/fdk-aac/libFDK/src/scale.cpp new file mode 100644 index 0000000..24a8a5b --- /dev/null +++ b/fdk-aac/libFDK/src/scale.cpp @@ -0,0 +1,720 @@ +/* ----------------------------------------------------------------------------- +Software License for The Fraunhofer FDK AAC Codec Library for Android + +© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten +Forschung e.V. All rights reserved. + + 1. INTRODUCTION +The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software +that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding +scheme for digital audio. This FDK AAC Codec software is intended to be used on +a wide variety of Android devices. + +AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient +general perceptual audio codecs. AAC-ELD is considered the best-performing +full-bandwidth communications codec by independent studies and is widely +deployed. AAC has been standardized by ISO and IEC as part of the MPEG +specifications. + +Patent licenses for necessary patent claims for the FDK AAC Codec (including +those of Fraunhofer) may be obtained through Via Licensing +(www.vialicensing.com) or through the respective patent owners individually for +the purpose of encoding or decoding bit streams in products that are compliant +with the ISO/IEC MPEG audio standards. Please note that most manufacturers of +Android devices already license these patent claims through Via Licensing or +directly from the patent owners, and therefore FDK AAC Codec software may +already be covered under those patent licenses when it is used for those +licensed purposes only. + +Commercially-licensed AAC software libraries, including floating-point versions +with enhanced sound quality, are also available from Fraunhofer. Users are +encouraged to check the Fraunhofer website for additional applications +information and documentation. + +2. COPYRIGHT LICENSE + +Redistribution and use in source and binary forms, with or without modification, +are permitted without payment of copyright license fees provided that you +satisfy the following conditions: + +You must retain the complete text of this software license in redistributions of +the FDK AAC Codec or your modifications thereto in source code form. + +You must retain the complete text of this software license in the documentation +and/or other materials provided with redistributions of the FDK AAC Codec or +your modifications thereto in binary form. You must make available free of +charge copies of the complete source code of the FDK AAC Codec and your +modifications thereto to recipients of copies in binary form. + +The name of Fraunhofer may not be used to endorse or promote products derived +from this library without prior written permission. + +You may not charge copyright license fees for anyone to use, copy or distribute +the FDK AAC Codec software or your modifications thereto. + +Your modified versions of the FDK AAC Codec must carry prominent notices stating +that you changed the software and the date of any change. For modified versions +of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" +must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK +AAC Codec Library for Android." + +3. NO PATENT LICENSE + +NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without +limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. +Fraunhofer provides no warranty of patent non-infringement with respect to this +software. + +You may use this FDK AAC Codec software or modifications thereto only for +purposes that are authorized by appropriate patent licenses. + +4. DISCLAIMER + +This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright +holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, +including but not limited to the implied warranties of merchantability and +fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR +CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, +or consequential damages, including but not limited to procurement of substitute +goods or services; loss of use, data, or profits, or business interruption, +however caused and on any theory of liability, whether in contract, strict +liability, or tort (including negligence), arising in any way out of the use of +this software, even if advised of the possibility of such damage. + +5. CONTACT INFORMATION + +Fraunhofer Institute for Integrated Circuits IIS +Attention: Audio and Multimedia Departments - FDK AAC LL +Am Wolfsmantel 33 +91058 Erlangen, Germany + +www.iis.fraunhofer.de/amm +amm-info@iis.fraunhofer.de +----------------------------------------------------------------------------- */ + +/******************* Library for basic calculation routines ******************** + + Author(s): + + Description: Scaling operations + +*******************************************************************************/ + +#include "common_fix.h" + +#include "genericStds.h" + +/************************************************** + * Inline definitions + **************************************************/ + +#include "scale.h" + +#if defined(__mips__) +#include "mips/scale_mips.cpp" + +#elif defined(__arm__) +#include "arm/scale_arm.cpp" + +#endif + +#ifndef FUNCTION_scaleValues_SGL +/*! + * + * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ + * \param len must be larger than 4 + * \return void + * + */ +#define FUNCTION_scaleValues_SGL +void scaleValues(FIXP_SGL *vector, /*!< Vector */ + INT len, /*!< Length */ + INT scalefactor /*!< Scalefactor */ +) { + INT i; + + /* Return if scalefactor is Zero */ + if (scalefactor == 0) return; + + if (scalefactor > 0) { + scalefactor = fixmin_I(scalefactor, (INT)(FRACT_BITS - 1)); + for (i = len & 3; i--;) { + *(vector++) <<= scalefactor; + } + for (i = len >> 2; i--;) { + *(vector++) <<= scalefactor; + *(vector++) <<= scalefactor; + *(vector++) <<= scalefactor; + *(vector++) <<= scalefactor; + } + } else { + INT negScalefactor = fixmin_I(-scalefactor, (INT)FRACT_BITS - 1); + for (i = len & 3; i--;) { + *(vector++) >>= negScalefactor; + } + for (i = len >> 2; i--;) { + *(vector++) >>= negScalefactor; + *(vector++) >>= negScalefactor; + *(vector++) >>= negScalefactor; + *(vector++) >>= negScalefactor; + } + } +} +#endif + +#ifndef FUNCTION_scaleValues_DBL +/*! + * + * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ + * \param len must be larger than 4 + * \return void + * + */ +#define FUNCTION_scaleValues_DBL +SCALE_INLINE +void scaleValues(FIXP_DBL *vector, /*!< Vector */ + INT len, /*!< Length */ + INT scalefactor /*!< Scalefactor */ +) { + INT i; + + /* Return if scalefactor is Zero */ + if (scalefactor == 0) return; + + if (scalefactor > 0) { + scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1); + for (i = len & 3; i--;) { + *(vector++) <<= scalefactor; + } + for (i = len >> 2; i--;) { + *(vector++) <<= scalefactor; + *(vector++) <<= scalefactor; + *(vector++) <<= scalefactor; + *(vector++) <<= scalefactor; + } + } else { + INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1); + for (i = len & 3; i--;) { + *(vector++) >>= negScalefactor; + } + for (i = len >> 2; i--;) { + *(vector++) >>= negScalefactor; + *(vector++) >>= negScalefactor; + *(vector++) >>= negScalefactor; + *(vector++) >>= negScalefactor; + } + } +} +#endif + +#ifndef FUNCTION_scaleValuesSaturate_DBL +/*! + * + * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ + * \param vector source/destination buffer + * \param len length of vector + * \param scalefactor amount of shifts to be applied + * \return void + * + */ +#define FUNCTION_scaleValuesSaturate_DBL +SCALE_INLINE +void scaleValuesSaturate(FIXP_DBL *vector, /*!< Vector */ + INT len, /*!< Length */ + INT scalefactor /*!< Scalefactor */ +) { + INT i; + + /* Return if scalefactor is Zero */ + if (scalefactor == 0) return; + + scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1), + (INT) - (DFRACT_BITS - 1)); + + for (i = 0; i < len; i++) { + vector[i] = scaleValueSaturate(vector[i], scalefactor); + } +} +#endif /* FUNCTION_scaleValuesSaturate_DBL */ + +#ifndef FUNCTION_scaleValuesSaturate_DBL_DBL +/*! + * + * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ + * \param dst destination buffer + * \param src source buffer + * \param len length of vector + * \param scalefactor amount of shifts to be applied + * \return void + * + */ +#define FUNCTION_scaleValuesSaturate_DBL_DBL +SCALE_INLINE +void scaleValuesSaturate(FIXP_DBL *dst, /*!< Output */ + FIXP_DBL *src, /*!< Input */ + INT len, /*!< Length */ + INT scalefactor /*!< Scalefactor */ +) { + INT i; + + /* Return if scalefactor is Zero */ + if (scalefactor == 0) { + FDKmemmove(dst, src, len * sizeof(FIXP_DBL)); + return; + } + + scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1), + (INT) - (DFRACT_BITS - 1)); + + for (i = 0; i < len; i++) { + dst[i] = scaleValueSaturate(src[i], scalefactor); + } +} +#endif /* FUNCTION_scaleValuesSaturate_DBL_DBL */ + +#ifndef FUNCTION_scaleValuesSaturate_SGL_DBL +/*! + * + * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ + * \param dst destination buffer (FIXP_SGL) + * \param src source buffer (FIXP_DBL) + * \param len length of vector + * \param scalefactor amount of shifts to be applied + * \return void + * + */ +#define FUNCTION_scaleValuesSaturate_SGL_DBL +SCALE_INLINE +void scaleValuesSaturate(FIXP_SGL *dst, /*!< Output */ + FIXP_DBL *src, /*!< Input */ + INT len, /*!< Length */ + INT scalefactor) /*!< Scalefactor */ +{ + INT i; + scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1), + (INT) - (DFRACT_BITS - 1)); + + for (i = 0; i < len; i++) { + dst[i] = FX_DBL2FX_SGL(fAddSaturate(scaleValueSaturate(src[i], scalefactor), + (FIXP_DBL)0x8000)); + } +} +#endif /* FUNCTION_scaleValuesSaturate_SGL_DBL */ + +#ifndef FUNCTION_scaleValuesSaturate_SGL +/*! + * + * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ + * \param vector source/destination buffer + * \param len length of vector + * \param scalefactor amount of shifts to be applied + * \return void + * + */ +#define FUNCTION_scaleValuesSaturate_SGL +SCALE_INLINE +void scaleValuesSaturate(FIXP_SGL *vector, /*!< Vector */ + INT len, /*!< Length */ + INT scalefactor /*!< Scalefactor */ +) { + INT i; + + /* Return if scalefactor is Zero */ + if (scalefactor == 0) return; + + scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1), + (INT) - (DFRACT_BITS - 1)); + + for (i = 0; i < len; i++) { + vector[i] = FX_DBL2FX_SGL( + scaleValueSaturate(FX_SGL2FX_DBL(vector[i]), scalefactor)); + } +} +#endif /* FUNCTION_scaleValuesSaturate_SGL */ + +#ifndef FUNCTION_scaleValuesSaturate_SGL_SGL +/*! + * + * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ + * \param dst destination buffer + * \param src source buffer + * \param len length of vector + * \param scalefactor amount of shifts to be applied + * \return void + * + */ +#define FUNCTION_scaleValuesSaturate_SGL_SGL +SCALE_INLINE +void scaleValuesSaturate(FIXP_SGL *dst, /*!< Output */ + FIXP_SGL *src, /*!< Input */ + INT len, /*!< Length */ + INT scalefactor /*!< Scalefactor */ +) { + INT i; + + /* Return if scalefactor is Zero */ + if (scalefactor == 0) { + FDKmemmove(dst, src, len * sizeof(FIXP_SGL)); + return; + } + + scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1), + (INT) - (DFRACT_BITS - 1)); + + for (i = 0; i < len; i++) { + dst[i] = + FX_DBL2FX_SGL(scaleValueSaturate(FX_SGL2FX_DBL(src[i]), scalefactor)); + } +} +#endif /* FUNCTION_scaleValuesSaturate_SGL_SGL */ + +#ifndef FUNCTION_scaleValues_DBLDBL +/*! + * + * \brief Multiply input vector src by \f$ 2^{scalefactor} \f$ + * and place result into dst + * \param dst detination buffer + * \param src source buffer + * \param len must be larger than 4 + * \param scalefactor amount of left shifts to be applied + * \return void + * + */ +#define FUNCTION_scaleValues_DBLDBL +SCALE_INLINE +void scaleValues(FIXP_DBL *dst, /*!< dst Vector */ + const FIXP_DBL *src, /*!< src Vector */ + INT len, /*!< Length */ + INT scalefactor /*!< Scalefactor */ +) { + INT i; + + /* Return if scalefactor is Zero */ + if (scalefactor == 0) { + if (dst != src) FDKmemmove(dst, src, len * sizeof(FIXP_DBL)); + } else { + if (scalefactor > 0) { + scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1); + for (i = len & 3; i--;) { + *(dst++) = *(src++) << scalefactor; + } + for (i = len >> 2; i--;) { + *(dst++) = *(src++) << scalefactor; + *(dst++) = *(src++) << scalefactor; + *(dst++) = *(src++) << scalefactor; + *(dst++) = *(src++) << scalefactor; + } + } else { + INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1); + for (i = len & 3; i--;) { + *(dst++) = *(src++) >> negScalefactor; + } + for (i = len >> 2; i--;) { + *(dst++) = *(src++) >> negScalefactor; + *(dst++) = *(src++) >> negScalefactor; + *(dst++) = *(src++) >> negScalefactor; + *(dst++) = *(src++) >> negScalefactor; + } + } + } +} +#endif + +#if (SAMPLE_BITS == 16) +#ifndef FUNCTION_scaleValues_PCMDBL +/*! + * + * \brief Multiply input vector src by \f$ 2^{scalefactor} \f$ + * and place result into dst + * \param dst detination buffer + * \param src source buffer + * \param len must be larger than 4 + * \param scalefactor amount of left shifts to be applied + * \return void + * + */ +#define FUNCTION_scaleValues_PCMDBL +SCALE_INLINE +void scaleValues(FIXP_PCM *dst, /*!< dst Vector */ + const FIXP_DBL *src, /*!< src Vector */ + INT len, /*!< Length */ + INT scalefactor /*!< Scalefactor */ +) { + INT i; + + scalefactor -= DFRACT_BITS - SAMPLE_BITS; + + /* Return if scalefactor is Zero */ + { + if (scalefactor > 0) { + scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1); + for (i = len & 3; i--;) { + *(dst++) = (FIXP_PCM)(*(src++) << scalefactor); + } + for (i = len >> 2; i--;) { + *(dst++) = (FIXP_PCM)(*(src++) << scalefactor); + *(dst++) = (FIXP_PCM)(*(src++) << scalefactor); + *(dst++) = (FIXP_PCM)(*(src++) << scalefactor); + *(dst++) = (FIXP_PCM)(*(src++) << scalefactor); + } + } else { + INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1); + for (i = len & 3; i--;) { + *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor); + } + for (i = len >> 2; i--;) { + *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor); + *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor); + *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor); + *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor); + } + } + } +} +#endif +#endif /* (SAMPLE_BITS == 16) */ + +#ifndef FUNCTION_scaleValues_SGLSGL +/*! + * + * \brief Multiply input vector src by \f$ 2^{scalefactor} \f$ + * and place result into dst + * \param dst detination buffer + * \param src source buffer + * \param len must be larger than 4 + * \param scalefactor amount of left shifts to be applied + * \return void + * + */ +#define FUNCTION_scaleValues_SGLSGL +SCALE_INLINE +void scaleValues(FIXP_SGL *dst, /*!< dst Vector */ + const FIXP_SGL *src, /*!< src Vector */ + INT len, /*!< Length */ + INT scalefactor /*!< Scalefactor */ +) { + INT i; + + /* Return if scalefactor is Zero */ + if (scalefactor == 0) { + if (dst != src) FDKmemmove(dst, src, len * sizeof(FIXP_DBL)); + } else { + if (scalefactor > 0) { + scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1); + for (i = len & 3; i--;) { + *(dst++) = *(src++) << scalefactor; + } + for (i = len >> 2; i--;) { + *(dst++) = *(src++) << scalefactor; + *(dst++) = *(src++) << scalefactor; + *(dst++) = *(src++) << scalefactor; + *(dst++) = *(src++) << scalefactor; + } + } else { + INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1); + for (i = len & 3; i--;) { + *(dst++) = *(src++) >> negScalefactor; + } + for (i = len >> 2; i--;) { + *(dst++) = *(src++) >> negScalefactor; + *(dst++) = *(src++) >> negScalefactor; + *(dst++) = *(src++) >> negScalefactor; + *(dst++) = *(src++) >> negScalefactor; + } + } + } +} +#endif + +#ifndef FUNCTION_scaleValuesWithFactor_DBL +/*! + * + * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ + * \param len must be larger than 4 + * \return void + * + */ +#define FUNCTION_scaleValuesWithFactor_DBL +SCALE_INLINE +void scaleValuesWithFactor(FIXP_DBL *vector, FIXP_DBL factor, INT len, + INT scalefactor) { + INT i; + + /* Compensate fMultDiv2 */ + scalefactor++; + + if (scalefactor > 0) { + scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1); + for (i = len & 3; i--;) { + *vector = fMultDiv2(*vector, factor) << scalefactor; + vector++; + } + for (i = len >> 2; i--;) { + *vector = fMultDiv2(*vector, factor) << scalefactor; + vector++; + *vector = fMultDiv2(*vector, factor) << scalefactor; + vector++; + *vector = fMultDiv2(*vector, factor) << scalefactor; + vector++; + *vector = fMultDiv2(*vector, factor) << scalefactor; + vector++; + } + } else { + INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1); + for (i = len & 3; i--;) { + *vector = fMultDiv2(*vector, factor) >> negScalefactor; + vector++; + } + for (i = len >> 2; i--;) { + *vector = fMultDiv2(*vector, factor) >> negScalefactor; + vector++; + *vector = fMultDiv2(*vector, factor) >> negScalefactor; + vector++; + *vector = fMultDiv2(*vector, factor) >> negScalefactor; + vector++; + *vector = fMultDiv2(*vector, factor) >> negScalefactor; + vector++; + } + } +} +#endif /* FUNCTION_scaleValuesWithFactor_DBL */ + + /******************************************* + + IMPORTANT NOTE for usage of getScalefactor() + + If the input array contains negative values too, then these functions may + sometimes return the actual maximum value minus 1, due to the nature of the + applied algorithm. So be careful with possible fractional -1 values that may + lead to overflows when being fPow2()'ed. + + ********************************************/ + +#ifndef FUNCTION_getScalefactorShort +/*! + * + * \brief Calculate max possible scale factor for input vector of shorts + * + * \return Maximum scale factor / possible left shift + * + */ +#define FUNCTION_getScalefactorShort +SCALE_INLINE +INT getScalefactorShort(const SHORT *vector, /*!< Pointer to input vector */ + INT len /*!< Length of input vector */ +) { + INT i; + SHORT temp, maxVal = 0; + + for (i = len; i != 0; i--) { + temp = (SHORT)(*vector++); + maxVal |= (temp ^ (temp >> (SHORT_BITS - 1))); + } + + return fixmax_I((INT)0, (INT)(fixnormz_D((INT)maxVal) - (INT)1 - + (INT)(DFRACT_BITS - SHORT_BITS))); +} +#endif + +#ifndef FUNCTION_getScalefactorPCM +/*! + * + * \brief Calculate max possible scale factor for input vector of shorts + * + * \return Maximum scale factor + * + */ +#define FUNCTION_getScalefactorPCM +SCALE_INLINE +INT getScalefactorPCM(const INT_PCM *vector, /*!< Pointer to input vector */ + INT len, /*!< Length of input vector */ + INT stride) { + INT i; + INT_PCM temp, maxVal = 0; + + for (i = len; i != 0; i--) { + temp = (INT_PCM)(*vector); + vector += stride; + maxVal |= (temp ^ (temp >> ((sizeof(INT_PCM) * 8) - 1))); + } + return fixmax_I((INT)0, (INT)(fixnormz_D((INT)maxVal) - (INT)1 - + (INT)(DFRACT_BITS - SAMPLE_BITS))); +} +#endif + +#ifndef FUNCTION_getScalefactorShort +/*! + * + * \brief Calculate max possible scale factor for input vector of shorts + * \param stride, item increment between vector members. + * \return Maximum scale factor + * + */ +#define FUNCTION_getScalefactorShort +SCALE_INLINE +INT getScalefactorShort(const SHORT *vector, /*!< Pointer to input vector */ + INT len, /*!< Length of input vector */ + INT stride) { + INT i; + SHORT temp, maxVal = 0; + + for (i = len; i != 0; i--) { + temp = (SHORT)(*vector); + vector += stride; + maxVal |= (temp ^ (temp >> (SHORT_BITS - 1))); + } + + return fixmax_I((INT)0, (INT)(fixnormz_D((INT)maxVal) - (INT)1 - + (INT)(DFRACT_BITS - SHORT_BITS))); +} +#endif + +#ifndef FUNCTION_getScalefactor_DBL +/*! + * + * \brief Calculate max possible scale factor for input vector + * + * \return Maximum scale factor + * + * This function can constitute a significant amount of computational + * complexity - very much depending on the bitrate. Since it is a rather small + * function, effective assembler optimization might be possible. + * + * If all data is 0xFFFF.FFFF or 0x0000.0000 function returns 31 + * Note: You can skip data normalization only if return value is 0 + * + */ +#define FUNCTION_getScalefactor_DBL +SCALE_INLINE +INT getScalefactor(const FIXP_DBL *vector, /*!< Pointer to input vector */ + INT len) /*!< Length of input vector */ +{ + INT i; + FIXP_DBL temp, maxVal = (FIXP_DBL)0; + + for (i = len; i != 0; i--) { + temp = (LONG)(*vector++); + maxVal |= (FIXP_DBL)((LONG)temp ^ (LONG)(temp >> (DFRACT_BITS - 1))); + } + + return fixmax_I((INT)0, (INT)(fixnormz_D(maxVal) - 1)); +} +#endif + +#ifndef FUNCTION_getScalefactor_SGL +#define FUNCTION_getScalefactor_SGL +SCALE_INLINE +INT getScalefactor(const FIXP_SGL *vector, /*!< Pointer to input vector */ + INT len) /*!< Length of input vector */ +{ + INT i; + SHORT temp, maxVal = (FIXP_SGL)0; + + for (i = len; i != 0; i--) { + temp = (SHORT)(*vector++); + maxVal |= (temp ^ (temp >> (FRACT_BITS - 1))); + } + + return fixmax_I((INT)0, (INT)(fixnormz_S((FIXP_SGL)maxVal)) - 1); +} +#endif |