summaryrefslogtreecommitdiffstats
path: root/fdk-aac/libFDK/src/fixpoint_math.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'fdk-aac/libFDK/src/fixpoint_math.cpp')
-rw-r--r--fdk-aac/libFDK/src/fixpoint_math.cpp900
1 files changed, 900 insertions, 0 deletions
diff --git a/fdk-aac/libFDK/src/fixpoint_math.cpp b/fdk-aac/libFDK/src/fixpoint_math.cpp
new file mode 100644
index 0000000..6c656fa
--- /dev/null
+++ b/fdk-aac/libFDK/src/fixpoint_math.cpp
@@ -0,0 +1,900 @@
+/* -----------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
+
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------- */
+
+/******************* Library for basic calculation routines ********************
+
+ Author(s): M. Gayer
+
+ Description: Fixed point specific mathematical functions
+
+*******************************************************************************/
+
+#include "fixpoint_math.h"
+
+/*
+ * Hardware specific implementations
+ */
+
+/*
+ * Fallback implementations
+ */
+
+/*****************************************************************************
+ functionname: LdDataVector
+*****************************************************************************/
+LNK_SECTION_CODE_L1
+void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT n) {
+ INT i;
+ for (i = 0; i < n; i++) {
+ destVector[i] = fLog2(srcVector[i], 0);
+ }
+}
+
+#define MAX_POW2_PRECISION 8
+#ifndef SINETABLE_16BIT
+#define POW2_PRECISION MAX_POW2_PRECISION
+#else
+#define POW2_PRECISION 5
+#endif
+
+/*
+ Taylor series coefficients of the function x^2. The first coefficient is
+ ommited (equal to 1.0).
+
+ pow2Coeff[i-1] = (1/i!) d^i(2^x)/dx^i, i=1..MAX_POW2_PRECISION
+ To evaluate the taylor series around x = 0, the coefficients are: 1/!i *
+ ln(2)^i
+ */
+#ifndef POW2COEFF_16BIT
+RAM_ALIGN
+LNK_SECTION_CONSTDATA_L1
+static const FIXP_DBL pow2Coeff[MAX_POW2_PRECISION] = {
+ FL2FXCONST_DBL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */
+ FL2FXCONST_DBL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */
+ FL2FXCONST_DBL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */
+ FL2FXCONST_DBL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */
+ FL2FXCONST_DBL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */
+ FL2FXCONST_DBL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */
+ FL2FXCONST_DBL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */
+ FL2FXCONST_DBL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */
+};
+#else
+RAM_ALIGN
+LNK_SECTION_CONSTDATA_L1
+static const FIXP_SGL pow2Coeff[MAX_POW2_PRECISION] = {
+ FL2FXCONST_SGL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */
+ FL2FXCONST_SGL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */
+ FL2FXCONST_SGL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */
+ FL2FXCONST_SGL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */
+ FL2FXCONST_SGL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */
+ FL2FXCONST_SGL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */
+ FL2FXCONST_SGL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */
+ FL2FXCONST_SGL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */
+};
+#endif
+
+/*****************************************************************************
+
+ functionname: CalcInvLdData
+ description: Delivers the inverse of function CalcLdData().
+ Delivers 2^(op*LD_DATA_SCALING)
+ input: Input op is assumed to be fractional -1.0 < op < 1.0
+ output: For op == 0, the result is MAXVAL_DBL (almost 1.0).
+ For negative input values the output should be treated as a
+positive fractional value. For positive input values the output should be
+treated as a positive integer value. This function does not output negative
+values.
+
+*****************************************************************************/
+/* Date: 06-JULY-2012 Arthur Tritthart, IIS Fraunhofer Erlangen */
+/* Version with 3 table lookup and 1 linear interpolations */
+/* Algorithm: compute power of 2, argument x is in Q7.25 format */
+/* result = 2^(x/64) */
+/* We split exponent (x/64) into 5 components: */
+/* integer part: represented by b31..b25 (exp) */
+/* fractional part 1: represented by b24..b20 (lookup1) */
+/* fractional part 2: represented by b19..b15 (lookup2) */
+/* fractional part 3: represented by b14..b10 (lookup3) */
+/* fractional part 4: represented by b09..b00 (frac) */
+/* => result = (lookup1*lookup2*(lookup3+C1*frac)<<3)>>exp */
+/* Due to the fact, that all lookup values contain a factor 0.5 */
+/* the result has to be shifted by 3 to the right also. */
+/* Table exp2_tab_long contains the log2 for 0 to 1.0 in steps */
+/* of 1/32, table exp2w_tab_long the log2 for 0 to 1/32 in steps*/
+/* of 1/1024, table exp2x_tab_long the log2 for 0 to 1/1024 in */
+/* steps of 1/32768. Since the 2-logarithm of very very small */
+/* negative value is rather linear, we can use interpolation. */
+/* Limitations: */
+/* For x <= 0, the result is fractional positive */
+/* For x > 0, the result is integer in range 1...7FFF.FFFF */
+/* For x < -31/64, we have to clear the result */
+/* For x = 0, the result is ~1.0 (0x7FFF.FFFF) */
+/* For x >= 31/64, the result is 0x7FFF.FFFF */
+
+/* This table is used for lookup 2^x with */
+/* x in range [0...1.0[ in steps of 1/32 */
+LNK_SECTION_DATA_L1
+const UINT exp2_tab_long[32] = {
+ 0x40000000, 0x4166C34C, 0x42D561B4, 0x444C0740, 0x45CAE0F2, 0x47521CC6,
+ 0x48E1E9BA, 0x4A7A77D4, 0x4C1BF829, 0x4DC69CDD, 0x4F7A9930, 0x51382182,
+ 0x52FF6B55, 0x54D0AD5A, 0x56AC1F75, 0x5891FAC1, 0x5A82799A, 0x5C7DD7A4,
+ 0x5E8451D0, 0x60962665, 0x62B39509, 0x64DCDEC3, 0x6712460B, 0x69540EC9,
+ 0x6BA27E65, 0x6DFDDBCC, 0x70666F76, 0x72DC8374, 0x75606374, 0x77F25CCE,
+ 0x7A92BE8B, 0x7D41D96E
+ // 0x80000000
+};
+
+/* This table is used for lookup 2^x with */
+/* x in range [0...1/32[ in steps of 1/1024 */
+LNK_SECTION_DATA_L1
+const UINT exp2w_tab_long[32] = {
+ 0x40000000, 0x400B1818, 0x4016321B, 0x40214E0C, 0x402C6BE9, 0x40378BB4,
+ 0x4042AD6D, 0x404DD113, 0x4058F6A8, 0x40641E2B, 0x406F479E, 0x407A7300,
+ 0x4085A051, 0x4090CF92, 0x409C00C4, 0x40A733E6, 0x40B268FA, 0x40BD9FFF,
+ 0x40C8D8F5, 0x40D413DD, 0x40DF50B8, 0x40EA8F86, 0x40F5D046, 0x410112FA,
+ 0x410C57A2, 0x41179E3D, 0x4122E6CD, 0x412E3152, 0x41397DCC, 0x4144CC3B,
+ 0x41501CA0, 0x415B6EFB,
+ // 0x4166C34C,
+};
+/* This table is used for lookup 2^x with */
+/* x in range [0...1/1024[ in steps of 1/32768 */
+LNK_SECTION_DATA_L1
+const UINT exp2x_tab_long[32] = {
+ 0x40000000, 0x400058B9, 0x4000B173, 0x40010A2D, 0x400162E8, 0x4001BBA3,
+ 0x4002145F, 0x40026D1B, 0x4002C5D8, 0x40031E95, 0x40037752, 0x4003D011,
+ 0x400428CF, 0x4004818E, 0x4004DA4E, 0x4005330E, 0x40058BCE, 0x4005E48F,
+ 0x40063D51, 0x40069613, 0x4006EED5, 0x40074798, 0x4007A05B, 0x4007F91F,
+ 0x400851E4, 0x4008AAA8, 0x4009036E, 0x40095C33, 0x4009B4FA, 0x400A0DC0,
+ 0x400A6688, 0x400ABF4F,
+ // 0x400B1818
+};
+
+/*****************************************************************************
+ functionname: InitLdInt and CalcLdInt
+ description: Create and access table with integer LdData (0 to
+LD_INT_TAB_LEN)
+*****************************************************************************/
+#ifndef LD_INT_TAB_LEN
+#define LD_INT_TAB_LEN \
+ 193 /* Default tab length. Lower value should be set in fix.h */
+#endif
+
+#if (LD_INT_TAB_LEN <= 120)
+LNK_SECTION_CONSTDATA_L1
+static const FIXP_DBL ldIntCoeff[] = {
+ (FIXP_DBL)0x80000001, (FIXP_DBL)0x00000000, (FIXP_DBL)0x02000000,
+ (FIXP_DBL)0x032b8034, (FIXP_DBL)0x04000000, (FIXP_DBL)0x04a4d3c2,
+ (FIXP_DBL)0x052b8034, (FIXP_DBL)0x059d5da0, (FIXP_DBL)0x06000000,
+ (FIXP_DBL)0x06570069, (FIXP_DBL)0x06a4d3c2, (FIXP_DBL)0x06eb3a9f,
+ (FIXP_DBL)0x072b8034, (FIXP_DBL)0x0766a009, (FIXP_DBL)0x079d5da0,
+ (FIXP_DBL)0x07d053f7, (FIXP_DBL)0x08000000, (FIXP_DBL)0x082cc7ee,
+ (FIXP_DBL)0x08570069, (FIXP_DBL)0x087ef05b, (FIXP_DBL)0x08a4d3c2,
+ (FIXP_DBL)0x08c8ddd4, (FIXP_DBL)0x08eb3a9f, (FIXP_DBL)0x090c1050,
+ (FIXP_DBL)0x092b8034, (FIXP_DBL)0x0949a785, (FIXP_DBL)0x0966a009,
+ (FIXP_DBL)0x0982809d, (FIXP_DBL)0x099d5da0, (FIXP_DBL)0x09b74949,
+ (FIXP_DBL)0x09d053f7, (FIXP_DBL)0x09e88c6b, (FIXP_DBL)0x0a000000,
+ (FIXP_DBL)0x0a16bad3, (FIXP_DBL)0x0a2cc7ee, (FIXP_DBL)0x0a423162,
+ (FIXP_DBL)0x0a570069, (FIXP_DBL)0x0a6b3d79, (FIXP_DBL)0x0a7ef05b,
+ (FIXP_DBL)0x0a92203d, (FIXP_DBL)0x0aa4d3c2, (FIXP_DBL)0x0ab7110e,
+ (FIXP_DBL)0x0ac8ddd4, (FIXP_DBL)0x0ada3f60, (FIXP_DBL)0x0aeb3a9f,
+ (FIXP_DBL)0x0afbd42b, (FIXP_DBL)0x0b0c1050, (FIXP_DBL)0x0b1bf312,
+ (FIXP_DBL)0x0b2b8034, (FIXP_DBL)0x0b3abb40, (FIXP_DBL)0x0b49a785,
+ (FIXP_DBL)0x0b584822, (FIXP_DBL)0x0b66a009, (FIXP_DBL)0x0b74b1fd,
+ (FIXP_DBL)0x0b82809d, (FIXP_DBL)0x0b900e61, (FIXP_DBL)0x0b9d5da0,
+ (FIXP_DBL)0x0baa708f, (FIXP_DBL)0x0bb74949, (FIXP_DBL)0x0bc3e9ca,
+ (FIXP_DBL)0x0bd053f7, (FIXP_DBL)0x0bdc899b, (FIXP_DBL)0x0be88c6b,
+ (FIXP_DBL)0x0bf45e09, (FIXP_DBL)0x0c000000, (FIXP_DBL)0x0c0b73cb,
+ (FIXP_DBL)0x0c16bad3, (FIXP_DBL)0x0c21d671, (FIXP_DBL)0x0c2cc7ee,
+ (FIXP_DBL)0x0c379085, (FIXP_DBL)0x0c423162, (FIXP_DBL)0x0c4caba8,
+ (FIXP_DBL)0x0c570069, (FIXP_DBL)0x0c6130af, (FIXP_DBL)0x0c6b3d79,
+ (FIXP_DBL)0x0c7527b9, (FIXP_DBL)0x0c7ef05b, (FIXP_DBL)0x0c88983f,
+ (FIXP_DBL)0x0c92203d, (FIXP_DBL)0x0c9b8926, (FIXP_DBL)0x0ca4d3c2,
+ (FIXP_DBL)0x0cae00d2, (FIXP_DBL)0x0cb7110e, (FIXP_DBL)0x0cc0052b,
+ (FIXP_DBL)0x0cc8ddd4, (FIXP_DBL)0x0cd19bb0, (FIXP_DBL)0x0cda3f60,
+ (FIXP_DBL)0x0ce2c97d, (FIXP_DBL)0x0ceb3a9f, (FIXP_DBL)0x0cf39355,
+ (FIXP_DBL)0x0cfbd42b, (FIXP_DBL)0x0d03fda9, (FIXP_DBL)0x0d0c1050,
+ (FIXP_DBL)0x0d140ca0, (FIXP_DBL)0x0d1bf312, (FIXP_DBL)0x0d23c41d,
+ (FIXP_DBL)0x0d2b8034, (FIXP_DBL)0x0d3327c7, (FIXP_DBL)0x0d3abb40,
+ (FIXP_DBL)0x0d423b08, (FIXP_DBL)0x0d49a785, (FIXP_DBL)0x0d510118,
+ (FIXP_DBL)0x0d584822, (FIXP_DBL)0x0d5f7cff, (FIXP_DBL)0x0d66a009,
+ (FIXP_DBL)0x0d6db197, (FIXP_DBL)0x0d74b1fd, (FIXP_DBL)0x0d7ba190,
+ (FIXP_DBL)0x0d82809d, (FIXP_DBL)0x0d894f75, (FIXP_DBL)0x0d900e61,
+ (FIXP_DBL)0x0d96bdad, (FIXP_DBL)0x0d9d5da0, (FIXP_DBL)0x0da3ee7f,
+ (FIXP_DBL)0x0daa708f, (FIXP_DBL)0x0db0e412, (FIXP_DBL)0x0db74949,
+ (FIXP_DBL)0x0dbda072, (FIXP_DBL)0x0dc3e9ca, (FIXP_DBL)0x0dca258e};
+
+#elif (LD_INT_TAB_LEN <= 193)
+LNK_SECTION_CONSTDATA_L1
+static const FIXP_DBL ldIntCoeff[] = {
+ (FIXP_DBL)0x80000001, (FIXP_DBL)0x00000000, (FIXP_DBL)0x02000000,
+ (FIXP_DBL)0x032b8034, (FIXP_DBL)0x04000000, (FIXP_DBL)0x04a4d3c2,
+ (FIXP_DBL)0x052b8034, (FIXP_DBL)0x059d5da0, (FIXP_DBL)0x06000000,
+ (FIXP_DBL)0x06570069, (FIXP_DBL)0x06a4d3c2, (FIXP_DBL)0x06eb3a9f,
+ (FIXP_DBL)0x072b8034, (FIXP_DBL)0x0766a009, (FIXP_DBL)0x079d5da0,
+ (FIXP_DBL)0x07d053f7, (FIXP_DBL)0x08000000, (FIXP_DBL)0x082cc7ee,
+ (FIXP_DBL)0x08570069, (FIXP_DBL)0x087ef05b, (FIXP_DBL)0x08a4d3c2,
+ (FIXP_DBL)0x08c8ddd4, (FIXP_DBL)0x08eb3a9f, (FIXP_DBL)0x090c1050,
+ (FIXP_DBL)0x092b8034, (FIXP_DBL)0x0949a785, (FIXP_DBL)0x0966a009,
+ (FIXP_DBL)0x0982809d, (FIXP_DBL)0x099d5da0, (FIXP_DBL)0x09b74949,
+ (FIXP_DBL)0x09d053f7, (FIXP_DBL)0x09e88c6b, (FIXP_DBL)0x0a000000,
+ (FIXP_DBL)0x0a16bad3, (FIXP_DBL)0x0a2cc7ee, (FIXP_DBL)0x0a423162,
+ (FIXP_DBL)0x0a570069, (FIXP_DBL)0x0a6b3d79, (FIXP_DBL)0x0a7ef05b,
+ (FIXP_DBL)0x0a92203d, (FIXP_DBL)0x0aa4d3c2, (FIXP_DBL)0x0ab7110e,
+ (FIXP_DBL)0x0ac8ddd4, (FIXP_DBL)0x0ada3f60, (FIXP_DBL)0x0aeb3a9f,
+ (FIXP_DBL)0x0afbd42b, (FIXP_DBL)0x0b0c1050, (FIXP_DBL)0x0b1bf312,
+ (FIXP_DBL)0x0b2b8034, (FIXP_DBL)0x0b3abb40, (FIXP_DBL)0x0b49a785,
+ (FIXP_DBL)0x0b584822, (FIXP_DBL)0x0b66a009, (FIXP_DBL)0x0b74b1fd,
+ (FIXP_DBL)0x0b82809d, (FIXP_DBL)0x0b900e61, (FIXP_DBL)0x0b9d5da0,
+ (FIXP_DBL)0x0baa708f, (FIXP_DBL)0x0bb74949, (FIXP_DBL)0x0bc3e9ca,
+ (FIXP_DBL)0x0bd053f7, (FIXP_DBL)0x0bdc899b, (FIXP_DBL)0x0be88c6b,
+ (FIXP_DBL)0x0bf45e09, (FIXP_DBL)0x0c000000, (FIXP_DBL)0x0c0b73cb,
+ (FIXP_DBL)0x0c16bad3, (FIXP_DBL)0x0c21d671, (FIXP_DBL)0x0c2cc7ee,
+ (FIXP_DBL)0x0c379085, (FIXP_DBL)0x0c423162, (FIXP_DBL)0x0c4caba8,
+ (FIXP_DBL)0x0c570069, (FIXP_DBL)0x0c6130af, (FIXP_DBL)0x0c6b3d79,
+ (FIXP_DBL)0x0c7527b9, (FIXP_DBL)0x0c7ef05b, (FIXP_DBL)0x0c88983f,
+ (FIXP_DBL)0x0c92203d, (FIXP_DBL)0x0c9b8926, (FIXP_DBL)0x0ca4d3c2,
+ (FIXP_DBL)0x0cae00d2, (FIXP_DBL)0x0cb7110e, (FIXP_DBL)0x0cc0052b,
+ (FIXP_DBL)0x0cc8ddd4, (FIXP_DBL)0x0cd19bb0, (FIXP_DBL)0x0cda3f60,
+ (FIXP_DBL)0x0ce2c97d, (FIXP_DBL)0x0ceb3a9f, (FIXP_DBL)0x0cf39355,
+ (FIXP_DBL)0x0cfbd42b, (FIXP_DBL)0x0d03fda9, (FIXP_DBL)0x0d0c1050,
+ (FIXP_DBL)0x0d140ca0, (FIXP_DBL)0x0d1bf312, (FIXP_DBL)0x0d23c41d,
+ (FIXP_DBL)0x0d2b8034, (FIXP_DBL)0x0d3327c7, (FIXP_DBL)0x0d3abb40,
+ (FIXP_DBL)0x0d423b08, (FIXP_DBL)0x0d49a785, (FIXP_DBL)0x0d510118,
+ (FIXP_DBL)0x0d584822, (FIXP_DBL)0x0d5f7cff, (FIXP_DBL)0x0d66a009,
+ (FIXP_DBL)0x0d6db197, (FIXP_DBL)0x0d74b1fd, (FIXP_DBL)0x0d7ba190,
+ (FIXP_DBL)0x0d82809d, (FIXP_DBL)0x0d894f75, (FIXP_DBL)0x0d900e61,
+ (FIXP_DBL)0x0d96bdad, (FIXP_DBL)0x0d9d5da0, (FIXP_DBL)0x0da3ee7f,
+ (FIXP_DBL)0x0daa708f, (FIXP_DBL)0x0db0e412, (FIXP_DBL)0x0db74949,
+ (FIXP_DBL)0x0dbda072, (FIXP_DBL)0x0dc3e9ca, (FIXP_DBL)0x0dca258e,
+ (FIXP_DBL)0x0dd053f7, (FIXP_DBL)0x0dd6753e, (FIXP_DBL)0x0ddc899b,
+ (FIXP_DBL)0x0de29143, (FIXP_DBL)0x0de88c6b, (FIXP_DBL)0x0dee7b47,
+ (FIXP_DBL)0x0df45e09, (FIXP_DBL)0x0dfa34e1, (FIXP_DBL)0x0e000000,
+ (FIXP_DBL)0x0e05bf94, (FIXP_DBL)0x0e0b73cb, (FIXP_DBL)0x0e111cd2,
+ (FIXP_DBL)0x0e16bad3, (FIXP_DBL)0x0e1c4dfb, (FIXP_DBL)0x0e21d671,
+ (FIXP_DBL)0x0e275460, (FIXP_DBL)0x0e2cc7ee, (FIXP_DBL)0x0e323143,
+ (FIXP_DBL)0x0e379085, (FIXP_DBL)0x0e3ce5d8, (FIXP_DBL)0x0e423162,
+ (FIXP_DBL)0x0e477346, (FIXP_DBL)0x0e4caba8, (FIXP_DBL)0x0e51daa8,
+ (FIXP_DBL)0x0e570069, (FIXP_DBL)0x0e5c1d0b, (FIXP_DBL)0x0e6130af,
+ (FIXP_DBL)0x0e663b74, (FIXP_DBL)0x0e6b3d79, (FIXP_DBL)0x0e7036db,
+ (FIXP_DBL)0x0e7527b9, (FIXP_DBL)0x0e7a1030, (FIXP_DBL)0x0e7ef05b,
+ (FIXP_DBL)0x0e83c857, (FIXP_DBL)0x0e88983f, (FIXP_DBL)0x0e8d602e,
+ (FIXP_DBL)0x0e92203d, (FIXP_DBL)0x0e96d888, (FIXP_DBL)0x0e9b8926,
+ (FIXP_DBL)0x0ea03232, (FIXP_DBL)0x0ea4d3c2, (FIXP_DBL)0x0ea96df0,
+ (FIXP_DBL)0x0eae00d2, (FIXP_DBL)0x0eb28c7f, (FIXP_DBL)0x0eb7110e,
+ (FIXP_DBL)0x0ebb8e96, (FIXP_DBL)0x0ec0052b, (FIXP_DBL)0x0ec474e4,
+ (FIXP_DBL)0x0ec8ddd4, (FIXP_DBL)0x0ecd4012, (FIXP_DBL)0x0ed19bb0,
+ (FIXP_DBL)0x0ed5f0c4, (FIXP_DBL)0x0eda3f60, (FIXP_DBL)0x0ede8797,
+ (FIXP_DBL)0x0ee2c97d, (FIXP_DBL)0x0ee70525, (FIXP_DBL)0x0eeb3a9f,
+ (FIXP_DBL)0x0eef69ff, (FIXP_DBL)0x0ef39355, (FIXP_DBL)0x0ef7b6b4,
+ (FIXP_DBL)0x0efbd42b, (FIXP_DBL)0x0effebcd, (FIXP_DBL)0x0f03fda9,
+ (FIXP_DBL)0x0f0809cf, (FIXP_DBL)0x0f0c1050, (FIXP_DBL)0x0f10113b,
+ (FIXP_DBL)0x0f140ca0, (FIXP_DBL)0x0f18028d, (FIXP_DBL)0x0f1bf312,
+ (FIXP_DBL)0x0f1fde3d, (FIXP_DBL)0x0f23c41d, (FIXP_DBL)0x0f27a4c0,
+ (FIXP_DBL)0x0f2b8034};
+
+#else
+#error "ldInt table size too small"
+
+#endif
+
+LNK_SECTION_INITCODE
+void InitLdInt() { /* nothing to do! Use preinitialized logarithm table */
+}
+
+#if (LD_INT_TAB_LEN != 0)
+
+LNK_SECTION_CODE_L1
+FIXP_DBL CalcLdInt(INT i) {
+ /* calculates ld(op)/LD_DATA_SCALING */
+ /* op is assumed to be an integer value between 1 and LD_INT_TAB_LEN */
+
+ FDK_ASSERT((LD_INT_TAB_LEN > 0) &&
+ ((FIXP_DBL)ldIntCoeff[0] ==
+ (FIXP_DBL)0x80000001)); /* tab has to be initialized */
+
+ if ((i > 0) && (i < LD_INT_TAB_LEN))
+ return ldIntCoeff[i];
+ else {
+ return (0);
+ }
+}
+#endif /* (LD_INT_TAB_LEN!=0) */
+
+#if !defined(FUNCTION_schur_div)
+/*****************************************************************************
+
+ functionname: schur_div
+ description: delivers op1/op2 with op3-bit accuracy
+
+*****************************************************************************/
+
+FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count) {
+ INT L_num = (LONG)num >> 1;
+ INT L_denum = (LONG)denum >> 1;
+ INT div = 0;
+ INT k = count;
+
+ FDK_ASSERT(num >= (FIXP_DBL)0);
+ FDK_ASSERT(denum > (FIXP_DBL)0);
+ FDK_ASSERT(num <= denum);
+
+ if (L_num != 0)
+ while (--k) {
+ div <<= 1;
+ L_num <<= 1;
+ if (L_num >= L_denum) {
+ L_num -= L_denum;
+ div++;
+ }
+ }
+ return (FIXP_DBL)(div << (DFRACT_BITS - count));
+}
+
+#endif /* !defined(FUNCTION_schur_div) */
+
+#ifndef FUNCTION_fMultNorm
+FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2, INT *result_e) {
+ INT product = 0;
+ INT norm_f1, norm_f2;
+
+ if ((f1 == (FIXP_DBL)0) || (f2 == (FIXP_DBL)0)) {
+ *result_e = 0;
+ return (FIXP_DBL)0;
+ }
+ norm_f1 = CountLeadingBits(f1);
+ f1 = f1 << norm_f1;
+ norm_f2 = CountLeadingBits(f2);
+ f2 = f2 << norm_f2;
+
+ if ((f1 == (FIXP_DBL)MINVAL_DBL) && (f2 == (FIXP_DBL)MINVAL_DBL)) {
+ product = -((FIXP_DBL)MINVAL_DBL >> 1);
+ *result_e = -(norm_f1 + norm_f2 - 1);
+ } else {
+ product = fMult(f1, f2);
+ *result_e = -(norm_f1 + norm_f2);
+ }
+
+ return (FIXP_DBL)product;
+}
+#endif
+
+#ifndef FUNCTION_fDivNorm
+FIXP_DBL fDivNorm(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e) {
+ FIXP_DBL div;
+ INT norm_num, norm_den;
+
+ FDK_ASSERT(L_num >= (FIXP_DBL)0);
+ FDK_ASSERT(L_denum > (FIXP_DBL)0);
+
+ if (L_num == (FIXP_DBL)0) {
+ *result_e = 0;
+ return ((FIXP_DBL)0);
+ }
+
+ norm_num = CountLeadingBits(L_num);
+ L_num = L_num << norm_num;
+ L_num = L_num >> 1;
+ *result_e = -norm_num + 1;
+
+ norm_den = CountLeadingBits(L_denum);
+ L_denum = L_denum << norm_den;
+ *result_e -= -norm_den;
+
+ div = schur_div(L_num, L_denum, FRACT_BITS);
+
+ return div;
+}
+#endif /* !FUNCTION_fDivNorm */
+
+#ifndef FUNCTION_fDivNorm
+FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom) {
+ INT e;
+ FIXP_DBL res;
+
+ FDK_ASSERT(denom >= num);
+
+ res = fDivNorm(num, denom, &e);
+
+ /* Avoid overflow since we must output a value with exponent 0
+ there is no other choice than saturating to almost 1.0f */
+ if (res == (FIXP_DBL)(1 << (DFRACT_BITS - 2)) && e == 1) {
+ res = (FIXP_DBL)MAXVAL_DBL;
+ } else {
+ res = scaleValue(res, e);
+ }
+
+ return res;
+}
+#endif /* !FUNCTION_fDivNorm */
+
+#ifndef FUNCTION_fDivNormSigned
+FIXP_DBL fDivNormSigned(FIXP_DBL num, FIXP_DBL denom) {
+ INT e;
+ FIXP_DBL res;
+ int sign;
+
+ if (denom == (FIXP_DBL)0) {
+ return (FIXP_DBL)MAXVAL_DBL;
+ }
+
+ sign = ((num >= (FIXP_DBL)0) != (denom >= (FIXP_DBL)0));
+ res = fDivNormSigned(num, denom, &e);
+
+ /* Saturate since we must output a value with exponent 0 */
+ if ((e > 0) && (fAbs(res) >= FL2FXCONST_DBL(0.5))) {
+ if (sign) {
+ res = (FIXP_DBL)MINVAL_DBL;
+ } else {
+ res = (FIXP_DBL)MAXVAL_DBL;
+ }
+ } else {
+ res = scaleValue(res, e);
+ }
+
+ return res;
+}
+FIXP_DBL fDivNormSigned(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e) {
+ FIXP_DBL div;
+ INT norm_num, norm_den;
+ int sign;
+
+ sign = ((L_num >= (FIXP_DBL)0) != (L_denum >= (FIXP_DBL)0));
+
+ if (L_num == (FIXP_DBL)0) {
+ *result_e = 0;
+ return ((FIXP_DBL)0);
+ }
+ if (L_denum == (FIXP_DBL)0) {
+ *result_e = 14;
+ return ((FIXP_DBL)MAXVAL_DBL);
+ }
+
+ norm_num = CountLeadingBits(L_num);
+ L_num = L_num << norm_num;
+ L_num = L_num >> 2;
+ L_num = fAbs(L_num);
+ *result_e = -norm_num + 1;
+
+ norm_den = CountLeadingBits(L_denum);
+ L_denum = L_denum << norm_den;
+ L_denum = L_denum >> 1;
+ L_denum = fAbs(L_denum);
+ *result_e -= -norm_den;
+
+ div = schur_div(L_num, L_denum, FRACT_BITS);
+
+ if (sign) {
+ div = -div;
+ }
+
+ return div;
+}
+#endif /* FUNCTION_fDivNormSigned */
+
+#ifndef FUNCTION_fDivNormHighPrec
+FIXP_DBL fDivNormHighPrec(FIXP_DBL num, FIXP_DBL denom, INT *result_e) {
+ FIXP_DBL div;
+ INT norm_num, norm_den;
+
+ FDK_ASSERT(num >= (FIXP_DBL)0);
+ FDK_ASSERT(denom > (FIXP_DBL)0);
+
+ if (num == (FIXP_DBL)0) {
+ *result_e = 0;
+ return ((FIXP_DBL)0);
+ }
+
+ norm_num = CountLeadingBits(num);
+ num = num << norm_num;
+ num = num >> 1;
+ *result_e = -norm_num + 1;
+
+ norm_den = CountLeadingBits(denom);
+ denom = denom << norm_den;
+ *result_e -= -norm_den;
+
+ div = schur_div(num, denom, 31);
+ return div;
+}
+#endif /* !FUNCTION_fDivNormHighPrec */
+
+#ifndef FUNCTION_fPow
+FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e) {
+ FIXP_DBL frac_part, result_m;
+ INT int_part;
+
+ if (exp_e > 0) {
+ INT exp_bits = DFRACT_BITS - 1 - exp_e;
+ int_part = exp_m >> exp_bits;
+ frac_part = exp_m - (FIXP_DBL)(int_part << exp_bits);
+ frac_part = frac_part << exp_e;
+ } else {
+ int_part = 0;
+ frac_part = exp_m >> -exp_e;
+ }
+
+ /* Best accuracy is around 0, so try to get there with the fractional part. */
+ if (frac_part > FL2FXCONST_DBL(0.5f)) {
+ int_part = int_part + 1;
+ frac_part = frac_part + FL2FXCONST_DBL(-1.0f);
+ }
+ if (frac_part < FL2FXCONST_DBL(-0.5f)) {
+ int_part = int_part - 1;
+ frac_part = -(FL2FXCONST_DBL(-1.0f) - frac_part);
+ }
+
+ /* "+ 1" compensates fMultAddDiv2() of the polynomial evaluation below. */
+ *result_e = int_part + 1;
+
+ /* Evaluate taylor polynomial which approximates 2^x */
+ {
+ FIXP_DBL p;
+
+ /* result_m ~= 2^frac_part */
+ p = frac_part;
+ /* First taylor series coefficient a_0 = 1.0, scaled by 0.5 due to
+ * fMultDiv2(). */
+ result_m = FL2FXCONST_DBL(1.0f / 2.0f);
+ for (INT i = 0; i < POW2_PRECISION; i++) {
+ /* next taylor series term: a_i * x^i, x=0 */
+ result_m = fMultAddDiv2(result_m, pow2Coeff[i], p);
+ p = fMult(p, frac_part);
+ }
+ }
+ return result_m;
+}
+
+FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e) {
+ FIXP_DBL result_m;
+ INT result_e;
+
+ result_m = f2Pow(exp_m, exp_e, &result_e);
+ result_e = fixMin(DFRACT_BITS - 1, fixMax(-(DFRACT_BITS - 1), result_e));
+
+ return scaleValue(result_m, result_e);
+}
+
+FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e,
+ INT *result_e) {
+ INT ans_lg2_e, baselg2_e;
+ FIXP_DBL base_lg2, ans_lg2, result;
+
+ /* Calc log2 of base */
+ base_lg2 = fLog2(base_m, base_e, &baselg2_e);
+
+ /* Prepare exp */
+ {
+ INT leadingBits;
+
+ leadingBits = CountLeadingBits(fAbs(exp_m));
+ exp_m = exp_m << leadingBits;
+ exp_e -= leadingBits;
+ }
+
+ /* Calc base pow exp */
+ ans_lg2 = fMult(base_lg2, exp_m);
+ ans_lg2_e = exp_e + baselg2_e;
+
+ /* Calc antilog */
+ result = f2Pow(ans_lg2, ans_lg2_e, result_e);
+
+ return result;
+}
+
+FIXP_DBL fLdPow(FIXP_DBL baseLd_m, INT baseLd_e, FIXP_DBL exp_m, INT exp_e,
+ INT *result_e) {
+ INT ans_lg2_e;
+ FIXP_DBL ans_lg2, result;
+
+ /* Prepare exp */
+ {
+ INT leadingBits;
+
+ leadingBits = CountLeadingBits(fAbs(exp_m));
+ exp_m = exp_m << leadingBits;
+ exp_e -= leadingBits;
+ }
+
+ /* Calc base pow exp */
+ ans_lg2 = fMult(baseLd_m, exp_m);
+ ans_lg2_e = exp_e + baseLd_e;
+
+ /* Calc antilog */
+ result = f2Pow(ans_lg2, ans_lg2_e, result_e);
+
+ return result;
+}
+
+FIXP_DBL fLdPow(FIXP_DBL baseLd_m, INT baseLd_e, FIXP_DBL exp_m, INT exp_e) {
+ FIXP_DBL result_m;
+ int result_e;
+
+ result_m = fLdPow(baseLd_m, baseLd_e, exp_m, exp_e, &result_e);
+
+ return SATURATE_SHIFT(result_m, -result_e, DFRACT_BITS);
+}
+
+FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT exp, INT *pResult_e) {
+ FIXP_DBL result;
+
+ if (exp != 0) {
+ INT result_e = 0;
+
+ if (base_m != (FIXP_DBL)0) {
+ {
+ INT leadingBits;
+ leadingBits = CountLeadingBits(base_m);
+ base_m <<= leadingBits;
+ base_e -= leadingBits;
+ }
+
+ result = base_m;
+
+ {
+ int i;
+ for (i = 1; i < fAbs(exp); i++) {
+ result = fMult(result, base_m);
+ }
+ }
+
+ if (exp < 0) {
+ /* 1.0 / ans */
+ result = fDivNorm(FL2FXCONST_DBL(0.5f), result, &result_e);
+ result_e++;
+ } else {
+ int ansScale = CountLeadingBits(result);
+ result <<= ansScale;
+ result_e -= ansScale;
+ }
+
+ result_e += exp * base_e;
+
+ } else {
+ result = (FIXP_DBL)0;
+ }
+ *pResult_e = result_e;
+ } else {
+ result = FL2FXCONST_DBL(0.5f);
+ *pResult_e = 1;
+ }
+
+ return result;
+}
+#endif /* FUNCTION_fPow */
+
+#ifndef FUNCTION_fLog2
+FIXP_DBL CalcLog2(FIXP_DBL base_m, INT base_e, INT *result_e) {
+ return fLog2(base_m, base_e, result_e);
+}
+#endif /* FUNCTION_fLog2 */
+
+INT fixp_floorToInt(FIXP_DBL f_inp, INT sf) {
+ FDK_ASSERT(sf >= 0);
+ INT floorInt = (INT)(f_inp >> ((DFRACT_BITS - 1) - sf));
+ return floorInt;
+}
+
+FIXP_DBL fixp_floor(FIXP_DBL f_inp, INT sf) {
+ FDK_ASSERT(sf >= 0);
+ INT floorInt = fixp_floorToInt(f_inp, sf);
+ FIXP_DBL f_floor = (FIXP_DBL)(floorInt << ((DFRACT_BITS - 1) - sf));
+ return f_floor;
+}
+
+INT fixp_ceilToInt(FIXP_DBL f_inp, INT sf) // sf mantissaBits left of dot
+{
+ FDK_ASSERT(sf >= 0);
+ INT sx = (DFRACT_BITS - 1) - sf; // sx mantissaBits right of dot
+ INT inpINT = (INT)f_inp;
+
+ INT mask = (0x1 << sx) - 1;
+ INT ceilInt = (INT)(f_inp >> sx);
+
+ if (inpINT & mask) {
+ ceilInt++; // increment only, if there is at least one set mantissaBit
+ // right of dot [in inpINT]
+ }
+
+ return ceilInt;
+}
+
+FIXP_DBL fixp_ceil(FIXP_DBL f_inp, INT sf) {
+ FDK_ASSERT(sf >= 0);
+ INT sx = (DFRACT_BITS - 1) - sf;
+ INT ceilInt = fixp_ceilToInt(f_inp, sf);
+ ULONG mask = (ULONG)0x1 << (DFRACT_BITS - 1); // 0x80000000
+ ceilInt = ceilInt
+ << sx; // no fract warn bec. shift into saturation done on int side
+
+ if ((f_inp > FL2FXCONST_DBL(0.0f)) && (ceilInt & mask)) {
+ --ceilInt;
+ }
+ FIXP_DBL f_ceil = (FIXP_DBL)ceilInt;
+
+ return f_ceil;
+}
+
+/*****************************************************************************
+ fixp_truncateToInt()
+ Just remove the fractional part which is located right of decimal point
+ Same as which is done when a float is casted to (INT) :
+ result_INTtype = (INT)b_floatTypeInput;
+
+ returns INT
+*****************************************************************************/
+INT fixp_truncateToInt(FIXP_DBL f_inp, INT sf) // sf mantissaBits left of dot
+ // (without sign) e.g. at width
+ // 32 this would be [sign]7.
+ // supposed sf equals 8.
+{
+ FDK_ASSERT(sf >= 0);
+ INT sx = (DFRACT_BITS - 1) - sf; // sx mantissaBits right of dot
+ // at width 32 this would be .24
+ // supposed sf equals 8.
+ INT fbaccu = (INT)f_inp;
+ INT mask = (0x1 << sx);
+
+ if ((fbaccu < 0) && (fbaccu & (mask - 1))) {
+ fbaccu = fbaccu + mask;
+ }
+
+ fbaccu = fbaccu >> sx;
+ return fbaccu;
+}
+
+/*****************************************************************************
+ fixp_truncate()
+ Just remove the fractional part which is located right of decimal point
+
+ returns FIXP_DBL
+*****************************************************************************/
+FIXP_DBL fixp_truncate(FIXP_DBL f_inp, INT sf) {
+ FDK_ASSERT(sf >= 0);
+ INT truncateInt = fixp_truncateToInt(f_inp, sf);
+ FIXP_DBL f_truncate = (FIXP_DBL)(truncateInt << ((DFRACT_BITS - 1) - sf));
+ return f_truncate;
+}
+
+/*****************************************************************************
+ fixp_roundToInt()
+ round [typical rounding]
+
+ See fct roundRef() [which is the reference]
+ returns INT
+*****************************************************************************/
+INT fixp_roundToInt(FIXP_DBL f_inp, INT sf) {
+ FDK_ASSERT(sf >= 0);
+ INT sx = DFRACT_BITS - 1 - sf;
+ INT inp = (INT)f_inp;
+ INT mask1 = (0x1 << (sx - 1));
+ INT mask2 = (0x1 << (sx)) - 1;
+ INT mask3 = 0x7FFFFFFF;
+ INT iam = inp & mask2;
+ INT rnd;
+
+ if ((inp < 0) && !(iam == mask1))
+ rnd = inp + mask1;
+ else if ((inp > 0) && !(inp == mask3))
+ rnd = inp + mask1;
+ else
+ rnd = inp;
+
+ rnd = rnd >> sx;
+
+ if (inp == mask3) rnd++;
+
+ return rnd;
+}
+
+/*****************************************************************************
+ fixp_round()
+ round [typical rounding]
+
+ See fct roundRef() [which is the reference]
+ returns FIXP_DBL
+*****************************************************************************/
+FIXP_DBL fixp_round(FIXP_DBL f_inp, INT sf) {
+ FDK_ASSERT(sf >= 0);
+ INT sx = DFRACT_BITS - 1 - sf;
+ INT r = fixp_roundToInt(f_inp, sf);
+ ULONG mask = (ULONG)0x1 << (DFRACT_BITS - 1); // 0x80000000
+ r = r << sx;
+
+ if ((f_inp > FL2FXCONST_DBL(0.0f)) && (r & mask)) {
+ --r;
+ }
+
+ FIXP_DBL f_round = (FIXP_DBL)r;
+ return f_round;
+}