summaryrefslogtreecommitdiffstats
path: root/fdk-aac/libFDK/src/FDK_hybrid.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'fdk-aac/libFDK/src/FDK_hybrid.cpp')
-rw-r--r--fdk-aac/libFDK/src/FDK_hybrid.cpp813
1 files changed, 813 insertions, 0 deletions
diff --git a/fdk-aac/libFDK/src/FDK_hybrid.cpp b/fdk-aac/libFDK/src/FDK_hybrid.cpp
new file mode 100644
index 0000000..b661f82
--- /dev/null
+++ b/fdk-aac/libFDK/src/FDK_hybrid.cpp
@@ -0,0 +1,813 @@
+/* -----------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
+
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------- */
+
+/******************* Library for basic calculation routines ********************
+
+ Author(s): Markus Lohwasser
+
+ Description: FDK Tools Hybrid Filterbank
+
+*******************************************************************************/
+
+#include "FDK_hybrid.h"
+
+#include "fft.h"
+
+/*--------------- defines -----------------------------*/
+#define FFT_IDX_R(a) (2 * a)
+#define FFT_IDX_I(a) (2 * a + 1)
+
+#define HYB_COEF8_0 (0.00746082949812f)
+#define HYB_COEF8_1 (0.02270420949825f)
+#define HYB_COEF8_2 (0.04546865930473f)
+#define HYB_COEF8_3 (0.07266113929591f)
+#define HYB_COEF8_4 (0.09885108575264f)
+#define HYB_COEF8_5 (0.11793710567217f)
+#define HYB_COEF8_6 (0.12500000000000f)
+#define HYB_COEF8_7 (HYB_COEF8_5)
+#define HYB_COEF8_8 (HYB_COEF8_4)
+#define HYB_COEF8_9 (HYB_COEF8_3)
+#define HYB_COEF8_10 (HYB_COEF8_2)
+#define HYB_COEF8_11 (HYB_COEF8_1)
+#define HYB_COEF8_12 (HYB_COEF8_0)
+
+/*--------------- structure definitions ---------------*/
+
+#if defined(ARCH_PREFER_MULT_32x16)
+#define FIXP_HTB FIXP_SGL /* SGL data type. */
+#define FIXP_HTP FIXP_SPK /* Packed SGL data type. */
+#define HTC(a) (FX_DBL2FXCONST_SGL(a)) /* Cast to SGL */
+#define FL2FXCONST_HTB FL2FXCONST_SGL
+#else
+#define FIXP_HTB FIXP_DBL /* SGL data type. */
+#define FIXP_HTP FIXP_DPK /* Packed DBL data type. */
+#define HTC(a) ((FIXP_DBL)(LONG)(a)) /* Cast to DBL */
+#define FL2FXCONST_HTB FL2FXCONST_DBL
+#endif
+
+#define HTCP(real, imag) \
+ { \
+ { HTC(real), HTC(imag) } \
+ } /* How to arrange the packed values. */
+
+struct FDK_HYBRID_SETUP {
+ UCHAR nrQmfBands; /*!< Number of QMF bands to be converted to hybrid. */
+ UCHAR nHybBands[3]; /*!< Number of Hybrid bands generated by nrQmfBands. */
+ SCHAR kHybrid[3]; /*!< Filter configuration of each QMF band. */
+ UCHAR protoLen; /*!< Prototype filter length. */
+ UCHAR filterDelay; /*!< Delay caused by hybrid filter. */
+ const INT
+ *pReadIdxTable; /*!< Helper table to access input data ringbuffer. */
+};
+
+/*--------------- constants ---------------------------*/
+static const INT ringbuffIdxTab[2 * 13] = {0, 1, 2, 3, 4, 5, 6, 7, 8,
+ 9, 10, 11, 12, 0, 1, 2, 3, 4,
+ 5, 6, 7, 8, 9, 10, 11, 12};
+
+static const FDK_HYBRID_SETUP setup_3_16 = {3, {8, 4, 4}, {8, 4, 4},
+ 13, (13 - 1) / 2, ringbuffIdxTab};
+static const FDK_HYBRID_SETUP setup_3_12 = {3, {8, 2, 2}, {8, 2, 2},
+ 13, (13 - 1) / 2, ringbuffIdxTab};
+static const FDK_HYBRID_SETUP setup_3_10 = {3, {6, 2, 2}, {-8, -2, 2},
+ 13, (13 - 1) / 2, ringbuffIdxTab};
+
+static const FIXP_HTP HybFilterCoef8[] = {
+ HTCP(0x10000000, 0x00000000), HTCP(0x0df26407, 0xfa391882),
+ HTCP(0xff532109, 0x00acdef7), HTCP(0x08f26d36, 0xf70d92ca),
+ HTCP(0xfee34b5f, 0x02af570f), HTCP(0x038f276e, 0xf7684793),
+ HTCP(0x00000000, 0x05d1eac2), HTCP(0x00000000, 0x05d1eac2),
+ HTCP(0x038f276e, 0x0897b86d), HTCP(0xfee34b5f, 0xfd50a8f1),
+ HTCP(0x08f26d36, 0x08f26d36), HTCP(0xff532109, 0xff532109),
+ HTCP(0x0df26407, 0x05c6e77e)};
+
+static const FIXP_HTB HybFilterCoef2[3] = {FL2FXCONST_HTB(0.01899487526049f),
+ FL2FXCONST_HTB(-0.07293139167538f),
+ FL2FXCONST_HTB(0.30596630545168f)};
+
+static const FIXP_HTB HybFilterCoef4[13] = {FL2FXCONST_HTB(-0.00305151927305f),
+ FL2FXCONST_HTB(-0.00794862316203f),
+ FL2FXCONST_HTB(0.0f),
+ FL2FXCONST_HTB(0.04318924038756f),
+ FL2FXCONST_HTB(0.12542448210445f),
+ FL2FXCONST_HTB(0.21227807049160f),
+ FL2FXCONST_HTB(0.25f),
+ FL2FXCONST_HTB(0.21227807049160f),
+ FL2FXCONST_HTB(0.12542448210445f),
+ FL2FXCONST_HTB(0.04318924038756f),
+ FL2FXCONST_HTB(0.0f),
+ FL2FXCONST_HTB(-0.00794862316203f),
+ FL2FXCONST_HTB(-0.00305151927305f)};
+
+/*--------------- function declarations ---------------*/
+static INT kChannelFiltering(const FIXP_DBL *const pQmfReal,
+ const FIXP_DBL *const pQmfImag,
+ const INT *const pReadIdx,
+ FIXP_DBL *const mHybridReal,
+ FIXP_DBL *const mHybridImag,
+ const SCHAR hybridConfig);
+
+/*--------------- function definitions ----------------*/
+
+INT FDKhybridAnalysisOpen(HANDLE_FDK_ANA_HYB_FILTER hAnalysisHybFilter,
+ FIXP_DBL *const pLFmemory, const UINT LFmemorySize,
+ FIXP_DBL *const pHFmemory, const UINT HFmemorySize) {
+ INT err = 0;
+
+ /* Save pointer to extern memory. */
+ hAnalysisHybFilter->pLFmemory = pLFmemory;
+ hAnalysisHybFilter->LFmemorySize = LFmemorySize;
+
+ hAnalysisHybFilter->pHFmemory = pHFmemory;
+ hAnalysisHybFilter->HFmemorySize = HFmemorySize;
+
+ return err;
+}
+
+INT FDKhybridAnalysisInit(HANDLE_FDK_ANA_HYB_FILTER hAnalysisHybFilter,
+ const FDK_HYBRID_MODE mode, const INT qmfBands,
+ const INT cplxBands, const INT initStatesFlag) {
+ int k;
+ INT err = 0;
+ FIXP_DBL *pMem = NULL;
+ HANDLE_FDK_HYBRID_SETUP setup = NULL;
+
+ switch (mode) {
+ case THREE_TO_TEN:
+ setup = &setup_3_10;
+ break;
+ case THREE_TO_TWELVE:
+ setup = &setup_3_12;
+ break;
+ case THREE_TO_SIXTEEN:
+ setup = &setup_3_16;
+ break;
+ default:
+ err = -1;
+ goto bail;
+ }
+
+ /* Initialize handle. */
+ hAnalysisHybFilter->pSetup = setup;
+ if (initStatesFlag) {
+ hAnalysisHybFilter->bufferLFpos = setup->protoLen - 1;
+ hAnalysisHybFilter->bufferHFpos = 0;
+ }
+ hAnalysisHybFilter->nrBands = qmfBands;
+ hAnalysisHybFilter->cplxBands = cplxBands;
+ hAnalysisHybFilter->hfMode = 0;
+
+ /* Check available memory. */
+ if (((2 * setup->nrQmfBands * setup->protoLen * sizeof(FIXP_DBL)) >
+ hAnalysisHybFilter->LFmemorySize)) {
+ err = -2;
+ goto bail;
+ }
+ if (hAnalysisHybFilter->HFmemorySize != 0) {
+ if (((setup->filterDelay *
+ ((qmfBands - setup->nrQmfBands) + (cplxBands - setup->nrQmfBands)) *
+ sizeof(FIXP_DBL)) > hAnalysisHybFilter->HFmemorySize)) {
+ err = -3;
+ goto bail;
+ }
+ }
+
+ /* Distribute LF memory. */
+ pMem = hAnalysisHybFilter->pLFmemory;
+ for (k = 0; k < setup->nrQmfBands; k++) {
+ hAnalysisHybFilter->bufferLFReal[k] = pMem;
+ pMem += setup->protoLen;
+ hAnalysisHybFilter->bufferLFImag[k] = pMem;
+ pMem += setup->protoLen;
+ }
+
+ /* Distribute HF memory. */
+ if (hAnalysisHybFilter->HFmemorySize != 0) {
+ pMem = hAnalysisHybFilter->pHFmemory;
+ for (k = 0; k < setup->filterDelay; k++) {
+ hAnalysisHybFilter->bufferHFReal[k] = pMem;
+ pMem += (qmfBands - setup->nrQmfBands);
+ hAnalysisHybFilter->bufferHFImag[k] = pMem;
+ pMem += (cplxBands - setup->nrQmfBands);
+ }
+ }
+
+ if (initStatesFlag) {
+ /* Clear LF buffer */
+ for (k = 0; k < setup->nrQmfBands; k++) {
+ FDKmemclear(hAnalysisHybFilter->bufferLFReal[k],
+ setup->protoLen * sizeof(FIXP_DBL));
+ FDKmemclear(hAnalysisHybFilter->bufferLFImag[k],
+ setup->protoLen * sizeof(FIXP_DBL));
+ }
+
+ if (hAnalysisHybFilter->HFmemorySize != 0) {
+ if (qmfBands > setup->nrQmfBands) {
+ /* Clear HF buffer */
+ for (k = 0; k < setup->filterDelay; k++) {
+ FDKmemclear(hAnalysisHybFilter->bufferHFReal[k],
+ (qmfBands - setup->nrQmfBands) * sizeof(FIXP_DBL));
+ FDKmemclear(hAnalysisHybFilter->bufferHFImag[k],
+ (cplxBands - setup->nrQmfBands) * sizeof(FIXP_DBL));
+ }
+ }
+ }
+ }
+
+bail:
+ return err;
+}
+
+INT FDKhybridAnalysisScaleStates(HANDLE_FDK_ANA_HYB_FILTER hAnalysisHybFilter,
+ const INT scalingValue) {
+ INT err = 0;
+
+ if (hAnalysisHybFilter == NULL) {
+ err = 1; /* invalid handle */
+ } else {
+ int k;
+ HANDLE_FDK_HYBRID_SETUP setup = hAnalysisHybFilter->pSetup;
+
+ /* Scale LF buffer */
+ for (k = 0; k < setup->nrQmfBands; k++) {
+ scaleValues(hAnalysisHybFilter->bufferLFReal[k], setup->protoLen,
+ scalingValue);
+ scaleValues(hAnalysisHybFilter->bufferLFImag[k], setup->protoLen,
+ scalingValue);
+ }
+ if (hAnalysisHybFilter->nrBands > setup->nrQmfBands) {
+ /* Scale HF buffer */
+ for (k = 0; k < setup->filterDelay; k++) {
+ scaleValues(hAnalysisHybFilter->bufferHFReal[k],
+ (hAnalysisHybFilter->nrBands - setup->nrQmfBands),
+ scalingValue);
+ scaleValues(hAnalysisHybFilter->bufferHFImag[k],
+ (hAnalysisHybFilter->cplxBands - setup->nrQmfBands),
+ scalingValue);
+ }
+ }
+ }
+ return err;
+}
+
+INT FDKhybridAnalysisApply(HANDLE_FDK_ANA_HYB_FILTER hAnalysisHybFilter,
+ const FIXP_DBL *const pQmfReal,
+ const FIXP_DBL *const pQmfImag,
+ FIXP_DBL *const pHybridReal,
+ FIXP_DBL *const pHybridImag) {
+ int k, hybOffset = 0;
+ INT err = 0;
+ const int nrQmfBandsLF =
+ hAnalysisHybFilter->pSetup
+ ->nrQmfBands; /* number of QMF bands to be converted to hybrid */
+
+ const int writIndex = hAnalysisHybFilter->bufferLFpos;
+ int readIndex = hAnalysisHybFilter->bufferLFpos;
+
+ if (++readIndex >= hAnalysisHybFilter->pSetup->protoLen) readIndex = 0;
+ const INT *pBufferLFreadIdx =
+ &hAnalysisHybFilter->pSetup->pReadIdxTable[readIndex];
+
+ /*
+ * LF buffer.
+ */
+ for (k = 0; k < nrQmfBandsLF; k++) {
+ /* New input sample. */
+ hAnalysisHybFilter->bufferLFReal[k][writIndex] = pQmfReal[k];
+ hAnalysisHybFilter->bufferLFImag[k][writIndex] = pQmfImag[k];
+
+ /* Perform hybrid filtering. */
+ err |=
+ kChannelFiltering(hAnalysisHybFilter->bufferLFReal[k],
+ hAnalysisHybFilter->bufferLFImag[k], pBufferLFreadIdx,
+ pHybridReal + hybOffset, pHybridImag + hybOffset,
+ hAnalysisHybFilter->pSetup->kHybrid[k]);
+
+ hybOffset += hAnalysisHybFilter->pSetup->nHybBands[k];
+ }
+
+ hAnalysisHybFilter->bufferLFpos =
+ readIndex; /* Index where to write next input sample. */
+
+ if (hAnalysisHybFilter->nrBands > nrQmfBandsLF) {
+ /*
+ * HF buffer.
+ */
+ if (hAnalysisHybFilter->hfMode != 0) {
+ /* HF delay compensation was applied outside. */
+ FDKmemcpy(
+ pHybridReal + hybOffset, &pQmfReal[nrQmfBandsLF],
+ (hAnalysisHybFilter->nrBands - nrQmfBandsLF) * sizeof(FIXP_DBL));
+ FDKmemcpy(
+ pHybridImag + hybOffset, &pQmfImag[nrQmfBandsLF],
+ (hAnalysisHybFilter->cplxBands - nrQmfBandsLF) * sizeof(FIXP_DBL));
+ } else {
+ FDK_ASSERT(hAnalysisHybFilter->HFmemorySize != 0);
+ /* HF delay compensation, filterlength/2. */
+ FDKmemcpy(
+ pHybridReal + hybOffset,
+ hAnalysisHybFilter->bufferHFReal[hAnalysisHybFilter->bufferHFpos],
+ (hAnalysisHybFilter->nrBands - nrQmfBandsLF) * sizeof(FIXP_DBL));
+ FDKmemcpy(
+ pHybridImag + hybOffset,
+ hAnalysisHybFilter->bufferHFImag[hAnalysisHybFilter->bufferHFpos],
+ (hAnalysisHybFilter->cplxBands - nrQmfBandsLF) * sizeof(FIXP_DBL));
+
+ FDKmemcpy(
+ hAnalysisHybFilter->bufferHFReal[hAnalysisHybFilter->bufferHFpos],
+ &pQmfReal[nrQmfBandsLF],
+ (hAnalysisHybFilter->nrBands - nrQmfBandsLF) * sizeof(FIXP_DBL));
+ FDKmemcpy(
+ hAnalysisHybFilter->bufferHFImag[hAnalysisHybFilter->bufferHFpos],
+ &pQmfImag[nrQmfBandsLF],
+ (hAnalysisHybFilter->cplxBands - nrQmfBandsLF) * sizeof(FIXP_DBL));
+
+ if (++hAnalysisHybFilter->bufferHFpos >=
+ hAnalysisHybFilter->pSetup->filterDelay)
+ hAnalysisHybFilter->bufferHFpos = 0;
+ }
+ } /* process HF part*/
+
+ return err;
+}
+
+INT FDKhybridAnalysisClose(HANDLE_FDK_ANA_HYB_FILTER hAnalysisHybFilter) {
+ INT err = 0;
+
+ if (hAnalysisHybFilter != NULL) {
+ hAnalysisHybFilter->pLFmemory = NULL;
+ hAnalysisHybFilter->pHFmemory = NULL;
+ hAnalysisHybFilter->LFmemorySize = 0;
+ hAnalysisHybFilter->HFmemorySize = 0;
+ }
+
+ return err;
+}
+
+INT FDKhybridSynthesisInit(HANDLE_FDK_SYN_HYB_FILTER hSynthesisHybFilter,
+ const FDK_HYBRID_MODE mode, const INT qmfBands,
+ const INT cplxBands) {
+ INT err = 0;
+ HANDLE_FDK_HYBRID_SETUP setup = NULL;
+
+ switch (mode) {
+ case THREE_TO_TEN:
+ setup = &setup_3_10;
+ break;
+ case THREE_TO_TWELVE:
+ setup = &setup_3_12;
+ break;
+ case THREE_TO_SIXTEEN:
+ setup = &setup_3_16;
+ break;
+ default:
+ err = -1;
+ goto bail;
+ }
+
+ hSynthesisHybFilter->pSetup = setup;
+ hSynthesisHybFilter->nrBands = qmfBands;
+ hSynthesisHybFilter->cplxBands = cplxBands;
+
+bail:
+ return err;
+}
+
+void FDKhybridSynthesisApply(HANDLE_FDK_SYN_HYB_FILTER hSynthesisHybFilter,
+ const FIXP_DBL *const pHybridReal,
+ const FIXP_DBL *const pHybridImag,
+ FIXP_DBL *const pQmfReal,
+ FIXP_DBL *const pQmfImag) {
+ int k, n, hybOffset = 0;
+ const INT nrQmfBandsLF = hSynthesisHybFilter->pSetup->nrQmfBands;
+
+ /*
+ * LF buffer.
+ */
+ for (k = 0; k < nrQmfBandsLF; k++) {
+ const int nHybBands = hSynthesisHybFilter->pSetup->nHybBands[k];
+
+ FIXP_DBL accu1 = FL2FXCONST_DBL(0.f);
+ FIXP_DBL accu2 = FL2FXCONST_DBL(0.f);
+
+ /* Perform hybrid filtering. */
+ for (n = 0; n < nHybBands; n++) {
+ accu1 += pHybridReal[hybOffset + n];
+ accu2 += pHybridImag[hybOffset + n];
+ }
+ pQmfReal[k] = accu1;
+ pQmfImag[k] = accu2;
+
+ hybOffset += nHybBands;
+ }
+
+ if (hSynthesisHybFilter->nrBands > nrQmfBandsLF) {
+ /*
+ * HF buffer.
+ */
+ FDKmemcpy(&pQmfReal[nrQmfBandsLF], &pHybridReal[hybOffset],
+ (hSynthesisHybFilter->nrBands - nrQmfBandsLF) * sizeof(FIXP_DBL));
+ FDKmemcpy(
+ &pQmfImag[nrQmfBandsLF], &pHybridImag[hybOffset],
+ (hSynthesisHybFilter->cplxBands - nrQmfBandsLF) * sizeof(FIXP_DBL));
+ }
+
+ return;
+}
+
+static void dualChannelFiltering(const FIXP_DBL *const pQmfReal,
+ const FIXP_DBL *const pQmfImag,
+ const INT *const pReadIdx,
+ FIXP_DBL *const mHybridReal,
+ FIXP_DBL *const mHybridImag,
+ const INT invert) {
+ FIXP_DBL r1, r6;
+ FIXP_DBL i1, i6;
+
+ const FIXP_HTB f0 = HybFilterCoef2[0]; /* corresponds to p1 and p11 */
+ const FIXP_HTB f1 = HybFilterCoef2[1]; /* corresponds to p3 and p9 */
+ const FIXP_HTB f2 = HybFilterCoef2[2]; /* corresponds to p5 and p7 */
+
+ /* symmetric filter coefficients */
+ r1 = fMultDiv2(f0, pQmfReal[pReadIdx[1]]) +
+ fMultDiv2(f0, pQmfReal[pReadIdx[11]]);
+ i1 = fMultDiv2(f0, pQmfImag[pReadIdx[1]]) +
+ fMultDiv2(f0, pQmfImag[pReadIdx[11]]);
+ r1 += fMultDiv2(f1, pQmfReal[pReadIdx[3]]) +
+ fMultDiv2(f1, pQmfReal[pReadIdx[9]]);
+ i1 += fMultDiv2(f1, pQmfImag[pReadIdx[3]]) +
+ fMultDiv2(f1, pQmfImag[pReadIdx[9]]);
+ r1 += fMultDiv2(f2, pQmfReal[pReadIdx[5]]) +
+ fMultDiv2(f2, pQmfReal[pReadIdx[7]]);
+ i1 += fMultDiv2(f2, pQmfImag[pReadIdx[5]]) +
+ fMultDiv2(f2, pQmfImag[pReadIdx[7]]);
+
+ r6 = pQmfReal[pReadIdx[6]] >> 2;
+ i6 = pQmfImag[pReadIdx[6]] >> 2;
+
+ FDK_ASSERT((invert == 0) || (invert == 1));
+ mHybridReal[0 + invert] = (r6 + r1) << 1;
+ mHybridImag[0 + invert] = (i6 + i1) << 1;
+
+ mHybridReal[1 - invert] = (r6 - r1) << 1;
+ mHybridImag[1 - invert] = (i6 - i1) << 1;
+}
+
+static void fourChannelFiltering(const FIXP_DBL *const pQmfReal,
+ const FIXP_DBL *const pQmfImag,
+ const INT *const pReadIdx,
+ FIXP_DBL *const mHybridReal,
+ FIXP_DBL *const mHybridImag,
+ const INT invert) {
+ const FIXP_HTB *p = HybFilterCoef4;
+
+ FIXP_DBL fft[8];
+
+ static const FIXP_DBL cr[13] = {
+ FL2FXCONST_DBL(0.f), FL2FXCONST_DBL(-0.70710678118655f),
+ FL2FXCONST_DBL(-1.f), FL2FXCONST_DBL(-0.70710678118655f),
+ FL2FXCONST_DBL(0.f), FL2FXCONST_DBL(0.70710678118655f),
+ FL2FXCONST_DBL(1.f), FL2FXCONST_DBL(0.70710678118655f),
+ FL2FXCONST_DBL(0.f), FL2FXCONST_DBL(-0.70710678118655f),
+ FL2FXCONST_DBL(-1.f), FL2FXCONST_DBL(-0.70710678118655f),
+ FL2FXCONST_DBL(0.f)};
+ static const FIXP_DBL ci[13] = {
+ FL2FXCONST_DBL(-1.f), FL2FXCONST_DBL(-0.70710678118655f),
+ FL2FXCONST_DBL(0.f), FL2FXCONST_DBL(0.70710678118655f),
+ FL2FXCONST_DBL(1.f), FL2FXCONST_DBL(0.70710678118655f),
+ FL2FXCONST_DBL(0.f), FL2FXCONST_DBL(-0.70710678118655f),
+ FL2FXCONST_DBL(-1.f), FL2FXCONST_DBL(-0.70710678118655f),
+ FL2FXCONST_DBL(0.f), FL2FXCONST_DBL(0.70710678118655f),
+ FL2FXCONST_DBL(1.f)};
+
+ /* FIR filter. */
+ /* pre twiddeling with pre-twiddling coefficients c[n] */
+ /* multiplication with filter coefficients p[n] */
+ /* hint: (a + ib)*(c + id) = (a*c - b*d) + i(a*d + b*c) */
+ /* write to fft coefficient n' */
+ fft[FFT_IDX_R(0)] =
+ (fMult(p[10], (fMultSub(fMultDiv2(cr[2], pQmfReal[pReadIdx[2]]), ci[2],
+ pQmfImag[pReadIdx[2]]))) +
+ fMult(p[6], (fMultSub(fMultDiv2(cr[6], pQmfReal[pReadIdx[6]]), ci[6],
+ pQmfImag[pReadIdx[6]]))) +
+ fMult(p[2], (fMultSub(fMultDiv2(cr[10], pQmfReal[pReadIdx[10]]), ci[10],
+ pQmfImag[pReadIdx[10]]))));
+ fft[FFT_IDX_I(0)] =
+ (fMult(p[10], (fMultAdd(fMultDiv2(ci[2], pQmfReal[pReadIdx[2]]), cr[2],
+ pQmfImag[pReadIdx[2]]))) +
+ fMult(p[6], (fMultAdd(fMultDiv2(ci[6], pQmfReal[pReadIdx[6]]), cr[6],
+ pQmfImag[pReadIdx[6]]))) +
+ fMult(p[2], (fMultAdd(fMultDiv2(ci[10], pQmfReal[pReadIdx[10]]), cr[10],
+ pQmfImag[pReadIdx[10]]))));
+
+ /* twiddle dee dum */
+ fft[FFT_IDX_R(1)] =
+ (fMult(p[9], (fMultSub(fMultDiv2(cr[3], pQmfReal[pReadIdx[3]]), ci[3],
+ pQmfImag[pReadIdx[3]]))) +
+ fMult(p[5], (fMultSub(fMultDiv2(cr[7], pQmfReal[pReadIdx[7]]), ci[7],
+ pQmfImag[pReadIdx[7]]))) +
+ fMult(p[1], (fMultSub(fMultDiv2(cr[11], pQmfReal[pReadIdx[11]]), ci[11],
+ pQmfImag[pReadIdx[11]]))));
+ fft[FFT_IDX_I(1)] =
+ (fMult(p[9], (fMultAdd(fMultDiv2(ci[3], pQmfReal[pReadIdx[3]]), cr[3],
+ pQmfImag[pReadIdx[3]]))) +
+ fMult(p[5], (fMultAdd(fMultDiv2(ci[7], pQmfReal[pReadIdx[7]]), cr[7],
+ pQmfImag[pReadIdx[7]]))) +
+ fMult(p[1], (fMultAdd(fMultDiv2(ci[11], pQmfReal[pReadIdx[11]]), cr[11],
+ pQmfImag[pReadIdx[11]]))));
+
+ /* twiddle dee dee */
+ fft[FFT_IDX_R(2)] =
+ (fMult(p[12], (fMultSub(fMultDiv2(cr[0], pQmfReal[pReadIdx[0]]), ci[0],
+ pQmfImag[pReadIdx[0]]))) +
+ fMult(p[8], (fMultSub(fMultDiv2(cr[4], pQmfReal[pReadIdx[4]]), ci[4],
+ pQmfImag[pReadIdx[4]]))) +
+ fMult(p[4], (fMultSub(fMultDiv2(cr[8], pQmfReal[pReadIdx[8]]), ci[8],
+ pQmfImag[pReadIdx[8]]))) +
+ fMult(p[0], (fMultSub(fMultDiv2(cr[12], pQmfReal[pReadIdx[12]]), ci[12],
+ pQmfImag[pReadIdx[12]]))));
+ fft[FFT_IDX_I(2)] =
+ (fMult(p[12], (fMultAdd(fMultDiv2(ci[0], pQmfReal[pReadIdx[0]]), cr[0],
+ pQmfImag[pReadIdx[0]]))) +
+ fMult(p[8], (fMultAdd(fMultDiv2(ci[4], pQmfReal[pReadIdx[4]]), cr[4],
+ pQmfImag[pReadIdx[4]]))) +
+ fMult(p[4], (fMultAdd(fMultDiv2(ci[8], pQmfReal[pReadIdx[8]]), cr[8],
+ pQmfImag[pReadIdx[8]]))) +
+ fMult(p[0], (fMultAdd(fMultDiv2(ci[12], pQmfReal[pReadIdx[12]]), cr[12],
+ pQmfImag[pReadIdx[12]]))));
+
+ fft[FFT_IDX_R(3)] =
+ (fMult(p[11], (fMultSub(fMultDiv2(cr[1], pQmfReal[pReadIdx[1]]), ci[1],
+ pQmfImag[pReadIdx[1]]))) +
+ fMult(p[7], (fMultSub(fMultDiv2(cr[5], pQmfReal[pReadIdx[5]]), ci[5],
+ pQmfImag[pReadIdx[5]]))) +
+ fMult(p[3], (fMultSub(fMultDiv2(cr[9], pQmfReal[pReadIdx[9]]), ci[9],
+ pQmfImag[pReadIdx[9]]))));
+ fft[FFT_IDX_I(3)] =
+ (fMult(p[11], (fMultAdd(fMultDiv2(ci[1], pQmfReal[pReadIdx[1]]), cr[1],
+ pQmfImag[pReadIdx[1]]))) +
+ fMult(p[7], (fMultAdd(fMultDiv2(ci[5], pQmfReal[pReadIdx[5]]), cr[5],
+ pQmfImag[pReadIdx[5]]))) +
+ fMult(p[3], (fMultAdd(fMultDiv2(ci[9], pQmfReal[pReadIdx[9]]), cr[9],
+ pQmfImag[pReadIdx[9]]))));
+
+ /* fft modulation */
+ /* here: fast manual fft modulation for a fft of length M=4 */
+ /* fft_4{x[n]} = x[0]*exp(-i*2*pi/4*m*0) + x[1]*exp(-i*2*pi/4*m*1) +
+ x[2]*exp(-i*2*pi/4*m*2) + x[3]*exp(-i*2*pi/4*m*3) */
+
+ /*
+ fft bin m=0:
+ X[0, n] = x[0] + x[1] + x[2] + x[3]
+ */
+ mHybridReal[0] = fft[FFT_IDX_R(0)] + fft[FFT_IDX_R(1)] + fft[FFT_IDX_R(2)] +
+ fft[FFT_IDX_R(3)];
+ mHybridImag[0] = fft[FFT_IDX_I(0)] + fft[FFT_IDX_I(1)] + fft[FFT_IDX_I(2)] +
+ fft[FFT_IDX_I(3)];
+
+ /*
+ fft bin m=1:
+ X[1, n] = x[0] - i*x[1] - x[2] + i*x[3]
+ */
+ mHybridReal[1] = fft[FFT_IDX_R(0)] + fft[FFT_IDX_I(1)] - fft[FFT_IDX_R(2)] -
+ fft[FFT_IDX_I(3)];
+ mHybridImag[1] = fft[FFT_IDX_I(0)] - fft[FFT_IDX_R(1)] - fft[FFT_IDX_I(2)] +
+ fft[FFT_IDX_R(3)];
+
+ /*
+ fft bin m=2:
+ X[2, n] = x[0] - x[1] + x[2] - x[3]
+ */
+ mHybridReal[2] = fft[FFT_IDX_R(0)] - fft[FFT_IDX_R(1)] + fft[FFT_IDX_R(2)] -
+ fft[FFT_IDX_R(3)];
+ mHybridImag[2] = fft[FFT_IDX_I(0)] - fft[FFT_IDX_I(1)] + fft[FFT_IDX_I(2)] -
+ fft[FFT_IDX_I(3)];
+
+ /*
+ fft bin m=3:
+ X[3, n] = x[0] + j*x[1] - x[2] - j*x[3]
+ */
+ mHybridReal[3] = fft[FFT_IDX_R(0)] - fft[FFT_IDX_I(1)] - fft[FFT_IDX_R(2)] +
+ fft[FFT_IDX_I(3)];
+ mHybridImag[3] = fft[FFT_IDX_I(0)] + fft[FFT_IDX_R(1)] - fft[FFT_IDX_I(2)] -
+ fft[FFT_IDX_R(3)];
+}
+
+static void eightChannelFiltering(const FIXP_DBL *const pQmfReal,
+ const FIXP_DBL *const pQmfImag,
+ const INT *const pReadIdx,
+ FIXP_DBL *const mHybridReal,
+ FIXP_DBL *const mHybridImag,
+ const INT invert) {
+ const FIXP_HTP *p = HybFilterCoef8;
+ INT k, sc;
+
+ FIXP_DBL mfft[16 + ALIGNMENT_DEFAULT];
+ FIXP_DBL *pfft = (FIXP_DBL *)ALIGN_PTR(mfft);
+
+ FIXP_DBL accu1, accu2, accu3, accu4;
+
+ /* pre twiddeling */
+ pfft[FFT_IDX_R(0)] =
+ pQmfReal[pReadIdx[6]] >>
+ (3 + 1); /* fMultDiv2(p[0].v.re, pQmfReal[pReadIdx[6]]); */
+ pfft[FFT_IDX_I(0)] =
+ pQmfImag[pReadIdx[6]] >>
+ (3 + 1); /* fMultDiv2(p[0].v.re, pQmfImag[pReadIdx[6]]); */
+
+ cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[7]], pQmfImag[pReadIdx[7]],
+ p[1]);
+ pfft[FFT_IDX_R(1)] = accu1;
+ pfft[FFT_IDX_I(1)] = accu2;
+
+ cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[0]], pQmfImag[pReadIdx[0]],
+ p[2]);
+ cplxMultDiv2(&accu3, &accu4, pQmfReal[pReadIdx[8]], pQmfImag[pReadIdx[8]],
+ p[3]);
+ pfft[FFT_IDX_R(2)] = accu1 + accu3;
+ pfft[FFT_IDX_I(2)] = accu2 + accu4;
+
+ cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[1]], pQmfImag[pReadIdx[1]],
+ p[4]);
+ cplxMultDiv2(&accu3, &accu4, pQmfReal[pReadIdx[9]], pQmfImag[pReadIdx[9]],
+ p[5]);
+ pfft[FFT_IDX_R(3)] = accu1 + accu3;
+ pfft[FFT_IDX_I(3)] = accu2 + accu4;
+
+ pfft[FFT_IDX_R(4)] = fMultDiv2(pQmfImag[pReadIdx[10]], p[7].v.im) -
+ fMultDiv2(pQmfImag[pReadIdx[2]], p[6].v.im);
+ pfft[FFT_IDX_I(4)] = fMultDiv2(pQmfReal[pReadIdx[2]], p[6].v.im) -
+ fMultDiv2(pQmfReal[pReadIdx[10]], p[7].v.im);
+
+ cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[3]], pQmfImag[pReadIdx[3]],
+ p[8]);
+ cplxMultDiv2(&accu3, &accu4, pQmfReal[pReadIdx[11]], pQmfImag[pReadIdx[11]],
+ p[9]);
+ pfft[FFT_IDX_R(5)] = accu1 + accu3;
+ pfft[FFT_IDX_I(5)] = accu2 + accu4;
+
+ cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[4]], pQmfImag[pReadIdx[4]],
+ p[10]);
+ cplxMultDiv2(&accu3, &accu4, pQmfReal[pReadIdx[12]], pQmfImag[pReadIdx[12]],
+ p[11]);
+ pfft[FFT_IDX_R(6)] = accu1 + accu3;
+ pfft[FFT_IDX_I(6)] = accu2 + accu4;
+
+ cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[5]], pQmfImag[pReadIdx[5]],
+ p[12]);
+ pfft[FFT_IDX_R(7)] = accu1;
+ pfft[FFT_IDX_I(7)] = accu2;
+
+ /* fft modulation */
+ fft_8(pfft);
+ sc = 1 + 2;
+
+ if (invert) {
+ mHybridReal[0] = pfft[FFT_IDX_R(7)] << sc;
+ mHybridImag[0] = pfft[FFT_IDX_I(7)] << sc;
+ mHybridReal[1] = pfft[FFT_IDX_R(0)] << sc;
+ mHybridImag[1] = pfft[FFT_IDX_I(0)] << sc;
+
+ mHybridReal[2] = pfft[FFT_IDX_R(6)] << sc;
+ mHybridImag[2] = pfft[FFT_IDX_I(6)] << sc;
+ mHybridReal[3] = pfft[FFT_IDX_R(1)] << sc;
+ mHybridImag[3] = pfft[FFT_IDX_I(1)] << sc;
+
+ mHybridReal[4] = pfft[FFT_IDX_R(2)] << sc;
+ mHybridReal[4] += pfft[FFT_IDX_R(5)] << sc;
+ mHybridImag[4] = pfft[FFT_IDX_I(2)] << sc;
+ mHybridImag[4] += pfft[FFT_IDX_I(5)] << sc;
+
+ mHybridReal[5] = pfft[FFT_IDX_R(3)] << sc;
+ mHybridReal[5] += pfft[FFT_IDX_R(4)] << sc;
+ mHybridImag[5] = pfft[FFT_IDX_I(3)] << sc;
+ mHybridImag[5] += pfft[FFT_IDX_I(4)] << sc;
+ } else {
+ for (k = 0; k < 8; k++) {
+ mHybridReal[k] = pfft[FFT_IDX_R(k)] << sc;
+ mHybridImag[k] = pfft[FFT_IDX_I(k)] << sc;
+ }
+ }
+}
+
+static INT kChannelFiltering(const FIXP_DBL *const pQmfReal,
+ const FIXP_DBL *const pQmfImag,
+ const INT *const pReadIdx,
+ FIXP_DBL *const mHybridReal,
+ FIXP_DBL *const mHybridImag,
+ const SCHAR hybridConfig) {
+ INT err = 0;
+
+ switch (hybridConfig) {
+ case 2:
+ case -2:
+ dualChannelFiltering(pQmfReal, pQmfImag, pReadIdx, mHybridReal,
+ mHybridImag, (hybridConfig < 0) ? 1 : 0);
+ break;
+ case 4:
+ case -4:
+ fourChannelFiltering(pQmfReal, pQmfImag, pReadIdx, mHybridReal,
+ mHybridImag, (hybridConfig < 0) ? 1 : 0);
+ break;
+ case 8:
+ case -8:
+ eightChannelFiltering(pQmfReal, pQmfImag, pReadIdx, mHybridReal,
+ mHybridImag, (hybridConfig < 0) ? 1 : 0);
+ break;
+ default:
+ err = -1;
+ }
+
+ return err;
+}