summaryrefslogtreecommitdiffstats
path: root/fdk-aac/libFDK/include/fixpoint_math.h
diff options
context:
space:
mode:
Diffstat (limited to 'fdk-aac/libFDK/include/fixpoint_math.h')
-rw-r--r--fdk-aac/libFDK/include/fixpoint_math.h921
1 files changed, 921 insertions, 0 deletions
diff --git a/fdk-aac/libFDK/include/fixpoint_math.h b/fdk-aac/libFDK/include/fixpoint_math.h
new file mode 100644
index 0000000..3805892
--- /dev/null
+++ b/fdk-aac/libFDK/include/fixpoint_math.h
@@ -0,0 +1,921 @@
+/* -----------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
+
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------- */
+
+/******************* Library for basic calculation routines ********************
+
+ Author(s): M. Gayer
+
+ Description: Fixed point specific mathematical functions
+
+*******************************************************************************/
+
+#ifndef FIXPOINT_MATH_H
+#define FIXPOINT_MATH_H
+
+#include "common_fix.h"
+#include "scale.h"
+
+/*
+ * Data definitions
+ */
+
+#define LD_DATA_SCALING (64.0f)
+#define LD_DATA_SHIFT 6 /* pow(2, LD_DATA_SHIFT) = LD_DATA_SCALING */
+
+#define MAX_LD_PRECISION 10
+#define LD_PRECISION 10
+
+/* Taylor series coefficients for ln(1-x), centered at 0 (MacLaurin polynomial).
+ */
+#ifndef LDCOEFF_16BIT
+LNK_SECTION_CONSTDATA_L1
+static const FIXP_DBL ldCoeff[MAX_LD_PRECISION] = {
+ FL2FXCONST_DBL(-1.0), FL2FXCONST_DBL(-1.0 / 2.0),
+ FL2FXCONST_DBL(-1.0 / 3.0), FL2FXCONST_DBL(-1.0 / 4.0),
+ FL2FXCONST_DBL(-1.0 / 5.0), FL2FXCONST_DBL(-1.0 / 6.0),
+ FL2FXCONST_DBL(-1.0 / 7.0), FL2FXCONST_DBL(-1.0 / 8.0),
+ FL2FXCONST_DBL(-1.0 / 9.0), FL2FXCONST_DBL(-1.0 / 10.0)};
+#else /* LDCOEFF_16BIT */
+LNK_SECTION_CONSTDATA_L1
+static const FIXP_SGL ldCoeff[MAX_LD_PRECISION] = {
+ FL2FXCONST_SGL(-1.0), FL2FXCONST_SGL(-1.0 / 2.0),
+ FL2FXCONST_SGL(-1.0 / 3.0), FL2FXCONST_SGL(-1.0 / 4.0),
+ FL2FXCONST_SGL(-1.0 / 5.0), FL2FXCONST_SGL(-1.0 / 6.0),
+ FL2FXCONST_SGL(-1.0 / 7.0), FL2FXCONST_SGL(-1.0 / 8.0),
+ FL2FXCONST_SGL(-1.0 / 9.0), FL2FXCONST_SGL(-1.0 / 10.0)};
+#endif /* LDCOEFF_16BIT */
+
+/*****************************************************************************
+
+ functionname: invSqrtNorm2
+ description: delivers 1/sqrt(op) normalized to .5...1 and the shift value
+of the OUTPUT
+
+*****************************************************************************/
+#define SQRT_BITS 7
+#define SQRT_VALUES (128 + 2)
+#define SQRT_BITS_MASK 0x7f
+#define SQRT_FRACT_BITS_MASK 0x007FFFFF
+
+extern const FIXP_DBL invSqrtTab[SQRT_VALUES];
+
+/*
+ * Hardware specific implementations
+ */
+
+#if defined(__x86__)
+#include "x86/fixpoint_math_x86.h"
+#endif /* target architecture selector */
+
+/*
+ * Fallback implementations
+ */
+#if !defined(FUNCTION_fIsLessThan)
+/**
+ * \brief Compares two fixpoint values incl. scaling.
+ * \param a_m mantissa of the first input value.
+ * \param a_e exponent of the first input value.
+ * \param b_m mantissa of the second input value.
+ * \param b_e exponent of the second input value.
+ * \return non-zero if (a_m*2^a_e) < (b_m*2^b_e), 0 otherwise
+ */
+FDK_INLINE INT fIsLessThan(FIXP_DBL a_m, INT a_e, FIXP_DBL b_m, INT b_e) {
+ if (a_e > b_e) {
+ return ((b_m >> fMin(a_e - b_e, DFRACT_BITS - 1)) > a_m);
+ } else {
+ return ((a_m >> fMin(b_e - a_e, DFRACT_BITS - 1)) < b_m);
+ }
+}
+
+FDK_INLINE INT fIsLessThan(FIXP_SGL a_m, INT a_e, FIXP_SGL b_m, INT b_e) {
+ if (a_e > b_e) {
+ return ((b_m >> fMin(a_e - b_e, FRACT_BITS - 1)) > a_m);
+ } else {
+ return ((a_m >> fMin(b_e - a_e, FRACT_BITS - 1)) < b_m);
+ }
+}
+#endif
+
+/**
+ * \brief deprecated. Use fLog2() instead.
+ */
+#define CalcLdData(op) fLog2(op, 0)
+
+void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT number);
+
+extern const UINT exp2_tab_long[32];
+extern const UINT exp2w_tab_long[32];
+extern const UINT exp2x_tab_long[32];
+
+LNK_SECTION_CODE_L1
+FDK_INLINE FIXP_DBL CalcInvLdData(const FIXP_DBL x) {
+ int set_zero = (x < FL2FXCONST_DBL(-31.0 / 64.0)) ? 0 : 1;
+ int set_max = (x >= FL2FXCONST_DBL(31.0 / 64.0)) | (x == FL2FXCONST_DBL(0.0));
+
+ FIXP_SGL frac = (FIXP_SGL)((LONG)x & 0x3FF);
+ UINT index3 = (UINT)(LONG)(x >> 10) & 0x1F;
+ UINT index2 = (UINT)(LONG)(x >> 15) & 0x1F;
+ UINT index1 = (UINT)(LONG)(x >> 20) & 0x1F;
+ int exp = fMin(31, ((x > FL2FXCONST_DBL(0.0f)) ? (31 - (int)(x >> 25))
+ : (int)(-(x >> 25))));
+
+ UINT lookup1 = exp2_tab_long[index1] * set_zero;
+ UINT lookup2 = exp2w_tab_long[index2];
+ UINT lookup3 = exp2x_tab_long[index3];
+ UINT lookup3f =
+ lookup3 + (UINT)(LONG)fMultDiv2((FIXP_DBL)(0x0016302F), (FIXP_SGL)frac);
+
+ UINT lookup12 = (UINT)(LONG)fMult((FIXP_DBL)lookup1, (FIXP_DBL)lookup2);
+ UINT lookup = (UINT)(LONG)fMult((FIXP_DBL)lookup12, (FIXP_DBL)lookup3f);
+
+ FIXP_DBL retVal = (lookup << 3) >> exp;
+
+ if (set_max) {
+ retVal = (FIXP_DBL)MAXVAL_DBL;
+ }
+
+ return retVal;
+}
+
+void InitLdInt();
+FIXP_DBL CalcLdInt(INT i);
+
+extern const USHORT sqrt_tab[49];
+
+inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x) {
+ UINT y = (INT)x;
+ UCHAR is_zero = (y == 0);
+ INT zeros = fixnormz_D(y) & 0x1e;
+ y <<= zeros;
+ UINT idx = (y >> 26) - 16;
+ USHORT frac = (y >> 10) & 0xffff;
+ USHORT nfrac = 0xffff ^ frac;
+ UINT t = (UINT)nfrac * sqrt_tab[idx] + (UINT)frac * sqrt_tab[idx + 1];
+ t = t >> (zeros >> 1);
+ return (is_zero ? 0 : t);
+}
+
+inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x, INT *x_e) {
+ UINT y = (INT)x;
+ INT e;
+
+ if (x == (FIXP_DBL)0) {
+ return x;
+ }
+
+ /* Normalize */
+ e = fixnormz_D(y);
+ y <<= e;
+ e = *x_e - e + 2;
+
+ /* Correct odd exponent. */
+ if (e & 1) {
+ y >>= 1;
+ e++;
+ }
+ /* Get square root */
+ UINT idx = (y >> 26) - 16;
+ USHORT frac = (y >> 10) & 0xffff;
+ USHORT nfrac = 0xffff ^ frac;
+ UINT t = (UINT)nfrac * sqrt_tab[idx] + (UINT)frac * sqrt_tab[idx + 1];
+
+ /* Write back exponent */
+ *x_e = e >> 1;
+ return (FIXP_DBL)(LONG)(t >> 1);
+}
+
+void InitInvSqrtTab();
+
+#ifndef FUNCTION_invSqrtNorm2
+/**
+ * \brief calculate 1.0/sqrt(op)
+ * \param op_m mantissa of input value.
+ * \param result_e pointer to return the exponent of the result
+ * \return mantissa of the result
+ */
+/*****************************************************************************
+ delivers 1/sqrt(op) normalized to .5...1 and the shift value of the OUTPUT,
+ i.e. the denormalized result is 1/sqrt(op) = invSqrtNorm(op) * 2^(shift)
+ uses Newton-iteration for approximation
+ Q(n+1) = Q(n) + Q(n) * (0.5 - 2 * V * Q(n)^2)
+ with Q = 0.5* V ^-0.5; 0.5 <= V < 1.0
+*****************************************************************************/
+static FDK_FORCEINLINE FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift) {
+ FIXP_DBL val = op;
+ FIXP_DBL reg1, reg2;
+
+ if (val == FL2FXCONST_DBL(0.0)) {
+ *shift = 16;
+ return ((LONG)MAXVAL_DBL); /* maximum positive value */
+ }
+
+#define INVSQRTNORM2_LINEAR_INTERPOLATE
+#define INVSQRTNORM2_LINEAR_INTERPOLATE_HQ
+
+ /* normalize input, calculate shift value */
+ FDK_ASSERT(val > FL2FXCONST_DBL(0.0));
+ *shift = fNormz(val) - 1; /* CountLeadingBits() is not necessary here since
+ test value is always > 0 */
+ val <<= *shift; /* normalized input V */
+ *shift += 2; /* bias for exponent */
+
+#if defined(INVSQRTNORM2_LINEAR_INTERPOLATE)
+ INT index =
+ (INT)(val >> (DFRACT_BITS - 1 - (SQRT_BITS + 1))) & SQRT_BITS_MASK;
+ FIXP_DBL Fract =
+ (FIXP_DBL)(((INT)val & SQRT_FRACT_BITS_MASK) << (SQRT_BITS + 1));
+ FIXP_DBL diff = invSqrtTab[index + 1] - invSqrtTab[index];
+ reg1 = invSqrtTab[index] + (fMultDiv2(diff, Fract) << 1);
+#if defined(INVSQRTNORM2_LINEAR_INTERPOLATE_HQ)
+ /* reg1 = t[i] + (t[i+1]-t[i])*fract ... already computed ...
+ + (1-fract)fract*(t[i+2]-t[i+1])/2 */
+ if (Fract != (FIXP_DBL)0) {
+ /* fract = fract * (1 - fract) */
+ Fract = fMultDiv2(Fract, (FIXP_DBL)((ULONG)0x80000000 - (ULONG)Fract)) << 1;
+ diff = diff - (invSqrtTab[index + 2] - invSqrtTab[index + 1]);
+ reg1 = fMultAddDiv2(reg1, Fract, diff);
+ }
+#endif /* INVSQRTNORM2_LINEAR_INTERPOLATE_HQ */
+#else
+#error \
+ "Either define INVSQRTNORM2_NEWTON_ITERATE or INVSQRTNORM2_LINEAR_INTERPOLATE"
+#endif
+ /* calculate the output exponent = input exp/2 */
+ if (*shift & 0x00000001) { /* odd shift values ? */
+ /* Note: Do not use rounded value 0x5A82799A to avoid overflow with
+ * shift-by-2 */
+ reg2 = (FIXP_DBL)0x5A827999;
+ /* FL2FXCONST_DBL(0.707106781186547524400844362104849f);*/ /* 1/sqrt(2);
+ */
+ reg1 = fMultDiv2(reg1, reg2) << 2;
+ }
+
+ *shift = *shift >> 1;
+
+ return (reg1);
+}
+#endif /* FUNCTION_invSqrtNorm2 */
+
+#ifndef FUNCTION_sqrtFixp
+static FDK_FORCEINLINE FIXP_DBL sqrtFixp(FIXP_DBL op) {
+ INT tmp_exp = 0;
+ FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp);
+
+ FDK_ASSERT(tmp_exp > 0);
+ return ((FIXP_DBL)(fMultDiv2((op << (tmp_exp - 1)), tmp_inv) << 2));
+}
+#endif /* FUNCTION_sqrtFixp */
+
+#ifndef FUNCTION_invFixp
+/**
+ * \brief calculate 1.0/op
+ * \param op mantissa of the input value.
+ * \return mantissa of the result with implicit exponent of 31
+ * \exceptions are provided for op=0,1 setting max. positive value
+ */
+static inline FIXP_DBL invFixp(FIXP_DBL op) {
+ if ((op == (FIXP_DBL)0x00000000) || (op == (FIXP_DBL)0x00000001)) {
+ return ((LONG)MAXVAL_DBL);
+ }
+ INT tmp_exp;
+ FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp);
+ FDK_ASSERT((31 - (2 * tmp_exp + 1)) >= 0);
+ int shift = 31 - (2 * tmp_exp + 1);
+ tmp_inv = fPow2Div2(tmp_inv);
+ if (shift) {
+ tmp_inv = ((tmp_inv >> (shift - 1)) + (FIXP_DBL)1) >> 1;
+ }
+ return tmp_inv;
+}
+
+/**
+ * \brief calculate 1.0/(op_m * 2^op_e)
+ * \param op_m mantissa of the input value.
+ * \param op_e pointer into were the exponent of the input value is stored, and
+ * the result will be stored into.
+ * \return mantissa of the result
+ */
+static inline FIXP_DBL invFixp(FIXP_DBL op_m, int *op_e) {
+ if ((op_m == (FIXP_DBL)0x00000000) || (op_m == (FIXP_DBL)0x00000001)) {
+ *op_e = 31 - *op_e;
+ return ((LONG)MAXVAL_DBL);
+ }
+
+ INT tmp_exp;
+ FIXP_DBL tmp_inv = invSqrtNorm2(op_m, &tmp_exp);
+
+ *op_e = (tmp_exp << 1) - *op_e + 1;
+ return fPow2Div2(tmp_inv);
+}
+#endif /* FUNCTION_invFixp */
+
+#ifndef FUNCTION_schur_div
+
+/**
+ * \brief Divide two FIXP_DBL values with given precision.
+ * \param num dividend
+ * \param denum divisor
+ * \param count amount of significant bits of the result (starting to the MSB)
+ * \return num/divisor
+ */
+
+FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count);
+
+#endif /* FUNCTION_schur_div */
+
+FIXP_DBL mul_dbl_sgl_rnd(const FIXP_DBL op1, const FIXP_SGL op2);
+
+#ifndef FUNCTION_fMultNorm
+/**
+ * \brief multiply two values with normalization, thus max precision.
+ * Author: Robert Weidner
+ *
+ * \param f1 first factor
+ * \param f2 second factor
+ * \param result_e pointer to an INT where the exponent of the result is stored
+ * into
+ * \return mantissa of the product f1*f2
+ */
+FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2, INT *result_e);
+
+/**
+ * \brief Multiply 2 values using maximum precision. The exponent of the result
+ * is 0.
+ * \param f1_m mantissa of factor 1
+ * \param f2_m mantissa of factor 2
+ * \return mantissa of the result with exponent equal to 0
+ */
+inline FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2) {
+ FIXP_DBL m;
+ INT e;
+
+ m = fMultNorm(f1, f2, &e);
+
+ m = scaleValueSaturate(m, e);
+
+ return m;
+}
+
+/**
+ * \brief Multiply 2 values with exponent and use given exponent for the
+ * mantissa of the result.
+ * \param f1_m mantissa of factor 1
+ * \param f1_e exponent of factor 1
+ * \param f2_m mantissa of factor 2
+ * \param f2_e exponent of factor 2
+ * \param result_e exponent for the returned mantissa of the result
+ * \return mantissa of the result with exponent equal to result_e
+ */
+inline FIXP_DBL fMultNorm(FIXP_DBL f1_m, INT f1_e, FIXP_DBL f2_m, INT f2_e,
+ INT result_e) {
+ FIXP_DBL m;
+ INT e;
+
+ m = fMultNorm(f1_m, f2_m, &e);
+
+ m = scaleValueSaturate(m, e + f1_e + f2_e - result_e);
+
+ return m;
+}
+#endif /* FUNCTION_fMultNorm */
+
+#ifndef FUNCTION_fMultI
+/**
+ * \brief Multiplies a fractional value and a integer value and performs
+ * rounding to nearest
+ * \param a fractional value
+ * \param b integer value
+ * \return integer value
+ */
+inline INT fMultI(FIXP_DBL a, INT b) {
+ FIXP_DBL m, mi;
+ INT m_e;
+
+ m = fMultNorm(a, (FIXP_DBL)b, &m_e);
+
+ if (m_e < (INT)0) {
+ if (m_e > (INT)-DFRACT_BITS) {
+ m = m >> ((-m_e) - 1);
+ mi = (m + (FIXP_DBL)1) >> 1;
+ } else {
+ mi = (FIXP_DBL)0;
+ }
+ } else {
+ mi = scaleValueSaturate(m, m_e);
+ }
+
+ return ((INT)mi);
+}
+#endif /* FUNCTION_fMultI */
+
+#ifndef FUNCTION_fMultIfloor
+/**
+ * \brief Multiplies a fractional value and a integer value and performs floor
+ * rounding
+ * \param a fractional value
+ * \param b integer value
+ * \return integer value
+ */
+inline INT fMultIfloor(FIXP_DBL a, INT b) {
+ FIXP_DBL m, mi;
+ INT m_e;
+
+ m = fMultNorm(a, (FIXP_DBL)b, &m_e);
+
+ if (m_e < (INT)0) {
+ if (m_e > (INT)-DFRACT_BITS) {
+ mi = m >> (-m_e);
+ } else {
+ mi = (FIXP_DBL)0;
+ if (m < (FIXP_DBL)0) {
+ mi = (FIXP_DBL)-1;
+ }
+ }
+ } else {
+ mi = scaleValueSaturate(m, m_e);
+ }
+
+ return ((INT)mi);
+}
+#endif /* FUNCTION_fMultIfloor */
+
+#ifndef FUNCTION_fMultIceil
+/**
+ * \brief Multiplies a fractional value and a integer value and performs ceil
+ * rounding
+ * \param a fractional value
+ * \param b integer value
+ * \return integer value
+ */
+inline INT fMultIceil(FIXP_DBL a, INT b) {
+ FIXP_DBL m, mi;
+ INT m_e;
+
+ m = fMultNorm(a, (FIXP_DBL)b, &m_e);
+
+ if (m_e < (INT)0) {
+ if (m_e > (INT)-DFRACT_BITS) {
+ mi = (m >> (-m_e));
+ if ((LONG)m & ((1 << (-m_e)) - 1)) {
+ mi = mi + (FIXP_DBL)1;
+ }
+ } else {
+ mi = (FIXP_DBL)1;
+ if (m < (FIXP_DBL)0) {
+ mi = (FIXP_DBL)0;
+ }
+ }
+ } else {
+ mi = scaleValueSaturate(m, m_e);
+ }
+
+ return ((INT)mi);
+}
+#endif /* FUNCTION_fMultIceil */
+
+#ifndef FUNCTION_fDivNorm
+/**
+ * \brief Divide 2 FIXP_DBL values with normalization of input values.
+ * \param num numerator
+ * \param denum denominator
+ * \param result_e pointer to an INT where the exponent of the result is stored
+ * into
+ * \return num/denum with exponent = *result_e
+ */
+FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom, INT *result_e);
+
+/**
+ * \brief Divide 2 positive FIXP_DBL values with normalization of input values.
+ * \param num numerator
+ * \param denum denominator
+ * \return num/denum with exponent = 0
+ */
+FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom);
+
+/**
+ * \brief Divide 2 signed FIXP_DBL values with normalization of input values.
+ * \param num numerator
+ * \param denum denominator
+ * \param result_e pointer to an INT where the exponent of the result is stored
+ * into
+ * \return num/denum with exponent = *result_e
+ */
+FIXP_DBL fDivNormSigned(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e);
+
+/**
+ * \brief Divide 2 signed FIXP_DBL values with normalization of input values.
+ * \param num numerator
+ * \param denum denominator
+ * \return num/denum with exponent = 0
+ */
+FIXP_DBL fDivNormSigned(FIXP_DBL num, FIXP_DBL denom);
+#endif /* FUNCTION_fDivNorm */
+
+/**
+ * \brief Adjust mantissa to exponent -1
+ * \param a_m mantissa of value to be adjusted
+ * \param pA_e pointer to the exponen of a_m
+ * \return adjusted mantissa
+ */
+inline FIXP_DBL fAdjust(FIXP_DBL a_m, INT *pA_e) {
+ INT shift;
+
+ shift = fNorm(a_m) - 1;
+ *pA_e -= shift;
+
+ return scaleValue(a_m, shift);
+}
+
+#ifndef FUNCTION_fAddNorm
+/**
+ * \brief Add two values with normalization
+ * \param a_m mantissa of first summand
+ * \param a_e exponent of first summand
+ * \param a_m mantissa of second summand
+ * \param a_e exponent of second summand
+ * \param pResult_e pointer to where the exponent of the result will be stored
+ * to.
+ * \return mantissa of result
+ */
+inline FIXP_DBL fAddNorm(FIXP_DBL a_m, INT a_e, FIXP_DBL b_m, INT b_e,
+ INT *pResult_e) {
+ INT result_e;
+ FIXP_DBL result_m;
+
+ /* If one of the summands is zero, return the other.
+ This is necessary for the summation of a very small number to zero */
+ if (a_m == (FIXP_DBL)0) {
+ *pResult_e = b_e;
+ return b_m;
+ }
+ if (b_m == (FIXP_DBL)0) {
+ *pResult_e = a_e;
+ return a_m;
+ }
+
+ a_m = fAdjust(a_m, &a_e);
+ b_m = fAdjust(b_m, &b_e);
+
+ if (a_e > b_e) {
+ result_m = a_m + (b_m >> fMin(a_e - b_e, DFRACT_BITS - 1));
+ result_e = a_e;
+ } else {
+ result_m = (a_m >> fMin(b_e - a_e, DFRACT_BITS - 1)) + b_m;
+ result_e = b_e;
+ }
+
+ *pResult_e = result_e;
+ return result_m;
+}
+
+inline FIXP_DBL fAddNorm(FIXP_DBL a_m, INT a_e, FIXP_DBL b_m, INT b_e,
+ INT result_e) {
+ FIXP_DBL result_m;
+
+ a_m = scaleValue(a_m, a_e - result_e);
+ b_m = scaleValue(b_m, b_e - result_e);
+
+ result_m = a_m + b_m;
+
+ return result_m;
+}
+#endif /* FUNCTION_fAddNorm */
+
+/**
+ * \brief Divide 2 FIXP_DBL values with normalization of input values.
+ * \param num numerator
+ * \param denum denomintator
+ * \return num/denum with exponent = 0
+ */
+FIXP_DBL fDivNormHighPrec(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e);
+
+#ifndef FUNCTION_fPow
+/**
+ * \brief return 2 ^ (exp_m * 2^exp_e)
+ * \param exp_m mantissa of the exponent to 2.0f
+ * \param exp_e exponent of the exponent to 2.0f
+ * \param result_e pointer to a INT where the exponent of the result will be
+ * stored into
+ * \return mantissa of the result
+ */
+FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e);
+
+/**
+ * \brief return 2 ^ (exp_m * 2^exp_e). This version returns only the mantissa
+ * with implicit exponent of zero.
+ * \param exp_m mantissa of the exponent to 2.0f
+ * \param exp_e exponent of the exponent to 2.0f
+ * \return mantissa of the result
+ */
+FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e);
+
+/**
+ * \brief return x ^ (exp_m * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e).
+ * This saves the need to compute log2() of constant values (when x is a
+ * constant).
+ * \param baseLd_m mantissa of log2() of x.
+ * \param baseLd_e exponent of log2() of x.
+ * \param exp_m mantissa of the exponent to 2.0f
+ * \param exp_e exponent of the exponent to 2.0f
+ * \param result_e pointer to a INT where the exponent of the result will be
+ * stored into
+ * \return mantissa of the result
+ */
+FIXP_DBL fLdPow(FIXP_DBL baseLd_m, INT baseLd_e, FIXP_DBL exp_m, INT exp_e,
+ INT *result_e);
+
+/**
+ * \brief return x ^ (exp_m * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e).
+ * This saves the need to compute log2() of constant values (when x is a
+ * constant). This version does not return an exponent, which is
+ * implicitly 0.
+ * \param baseLd_m mantissa of log2() of x.
+ * \param baseLd_e exponent of log2() of x.
+ * \param exp_m mantissa of the exponent to 2.0f
+ * \param exp_e exponent of the exponent to 2.0f
+ * \return mantissa of the result
+ */
+FIXP_DBL fLdPow(FIXP_DBL baseLd_m, INT baseLd_e, FIXP_DBL exp_m, INT exp_e);
+
+/**
+ * \brief return (base_m * 2^base_e) ^ (exp * 2^exp_e). Use fLdPow() instead
+ * whenever possible.
+ * \param base_m mantissa of the base.
+ * \param base_e exponent of the base.
+ * \param exp_m mantissa of power to be calculated of the base.
+ * \param exp_e exponent of power to be calculated of the base.
+ * \param result_e pointer to a INT where the exponent of the result will be
+ * stored into.
+ * \return mantissa of the result.
+ */
+FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e,
+ INT *result_e);
+
+/**
+ * \brief return (base_m * 2^base_e) ^ N
+ * \param base_m mantissa of the base
+ * \param base_e exponent of the base
+ * \param N power to be calculated of the base
+ * \param result_e pointer to a INT where the exponent of the result will be
+ * stored into
+ * \return mantissa of the result
+ */
+FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT N, INT *result_e);
+#endif /* #ifndef FUNCTION_fPow */
+
+#ifndef FUNCTION_fLog2
+/**
+ * \brief Calculate log(argument)/log(2) (logarithm with base 2). deprecated.
+ * Use fLog2() instead.
+ * \param arg mantissa of the argument
+ * \param arg_e exponent of the argument
+ * \param result_e pointer to an INT to store the exponent of the result
+ * \return the mantissa of the result.
+ * \param
+ */
+FIXP_DBL CalcLog2(FIXP_DBL arg, INT arg_e, INT *result_e);
+
+/**
+ * \brief calculate logarithm of base 2 of x_m * 2^(x_e)
+ * \param x_m mantissa of the input value.
+ * \param x_e exponent of the input value.
+ * \param pointer to an INT where the exponent of the result is returned into.
+ * \return mantissa of the result.
+ */
+FDK_INLINE FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e) {
+ FIXP_DBL result_m;
+
+ /* Short cut for zero and negative numbers. */
+ if (x_m <= FL2FXCONST_DBL(0.0f)) {
+ *result_e = DFRACT_BITS - 1;
+ return FL2FXCONST_DBL(-1.0f);
+ }
+
+ /* Calculate log2() */
+ {
+ FIXP_DBL x2_m;
+
+ /* Move input value x_m * 2^x_e toward 1.0, where the taylor approximation
+ of the function log(1-x) centered at 0 is most accurate. */
+ {
+ INT b_norm;
+
+ b_norm = fNormz(x_m) - 1;
+ x2_m = x_m << b_norm;
+ x_e = x_e - b_norm;
+ }
+
+ /* map x from log(x) domain to log(1-x) domain. */
+ x2_m = -(x2_m + FL2FXCONST_DBL(-1.0));
+
+ /* Taylor polynomial approximation of ln(1-x) */
+ {
+ FIXP_DBL px2_m;
+ result_m = FL2FXCONST_DBL(0.0);
+ px2_m = x2_m;
+ for (int i = 0; i < LD_PRECISION; i++) {
+ result_m = fMultAddDiv2(result_m, ldCoeff[i], px2_m);
+ px2_m = fMult(px2_m, x2_m);
+ }
+ }
+ /* Multiply result with 1/ln(2) = 1.0 + 0.442695040888 (get log2(x) from
+ * ln(x) result). */
+ result_m =
+ fMultAddDiv2(result_m, result_m,
+ FL2FXCONST_DBL(2.0 * 0.4426950408889634073599246810019));
+
+ /* Add exponent part. log2(x_m * 2^x_e) = log2(x_m) + x_e */
+ if (x_e != 0) {
+ int enorm;
+
+ enorm = DFRACT_BITS - fNorm((FIXP_DBL)x_e);
+ /* The -1 in the right shift of result_m compensates the fMultDiv2() above
+ * in the taylor polynomial evaluation loop.*/
+ result_m = (result_m >> (enorm - 1)) +
+ ((FIXP_DBL)x_e << (DFRACT_BITS - 1 - enorm));
+
+ *result_e = enorm;
+ } else {
+ /* 1 compensates the fMultDiv2() above in the taylor polynomial evaluation
+ * loop.*/
+ *result_e = 1;
+ }
+ }
+
+ return result_m;
+}
+
+/**
+ * \brief calculate logarithm of base 2 of x_m * 2^(x_e)
+ * \param x_m mantissa of the input value.
+ * \param x_e exponent of the input value.
+ * \return mantissa of the result with implicit exponent of LD_DATA_SHIFT.
+ */
+FDK_INLINE FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e) {
+ if (x_m <= FL2FXCONST_DBL(0.0f)) {
+ x_m = FL2FXCONST_DBL(-1.0f);
+ } else {
+ INT result_e;
+ x_m = fLog2(x_m, x_e, &result_e);
+ x_m = scaleValue(x_m, result_e - LD_DATA_SHIFT);
+ }
+ return x_m;
+}
+
+#endif /* FUNCTION_fLog2 */
+
+#ifndef FUNCTION_fAddSaturate
+/**
+ * \brief Add with saturation of the result.
+ * \param a first summand
+ * \param b second summand
+ * \return saturated sum of a and b.
+ */
+inline FIXP_SGL fAddSaturate(const FIXP_SGL a, const FIXP_SGL b) {
+ LONG sum;
+
+ sum = (LONG)(SHORT)a + (LONG)(SHORT)b;
+ sum = fMax(fMin((INT)sum, (INT)MAXVAL_SGL), (INT)MINVAL_SGL);
+ return (FIXP_SGL)(SHORT)sum;
+}
+
+/**
+ * \brief Add with saturation of the result.
+ * \param a first summand
+ * \param b second summand
+ * \return saturated sum of a and b.
+ */
+inline FIXP_DBL fAddSaturate(const FIXP_DBL a, const FIXP_DBL b) {
+ LONG sum;
+
+ sum = (LONG)(a >> 1) + (LONG)(b >> 1);
+ sum = fMax(fMin((INT)sum, (INT)(MAXVAL_DBL >> 1)), (INT)(MINVAL_DBL >> 1));
+ return (FIXP_DBL)(LONG)(sum << 1);
+}
+#endif /* FUNCTION_fAddSaturate */
+
+INT fixp_floorToInt(FIXP_DBL f_inp, INT sf);
+FIXP_DBL fixp_floor(FIXP_DBL f_inp, INT sf);
+
+INT fixp_ceilToInt(FIXP_DBL f_inp, INT sf);
+FIXP_DBL fixp_ceil(FIXP_DBL f_inp, INT sf);
+
+INT fixp_truncateToInt(FIXP_DBL f_inp, INT sf);
+FIXP_DBL fixp_truncate(FIXP_DBL f_inp, INT sf);
+
+INT fixp_roundToInt(FIXP_DBL f_inp, INT sf);
+FIXP_DBL fixp_round(FIXP_DBL f_inp, INT sf);
+
+/*****************************************************************************
+
+ array for 1/n, n=1..80
+
+****************************************************************************/
+
+extern const FIXP_DBL invCount[80];
+
+LNK_SECTION_INITCODE
+inline void InitInvInt(void) {}
+
+/**
+ * \brief Calculate the value of 1/i where i is a integer value. It supports
+ * input values from 1 upto (80-1).
+ * \param intValue Integer input value.
+ * \param FIXP_DBL representation of 1/intValue
+ */
+inline FIXP_DBL GetInvInt(int intValue) {
+ return invCount[fMin(fMax(intValue, 0), 80 - 1)];
+}
+
+#endif /* FIXPOINT_MATH_H */