summaryrefslogtreecommitdiffstats
path: root/fdk-aac/libAACenc/src/intensity.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'fdk-aac/libAACenc/src/intensity.cpp')
-rw-r--r--fdk-aac/libAACenc/src/intensity.cpp810
1 files changed, 810 insertions, 0 deletions
diff --git a/fdk-aac/libAACenc/src/intensity.cpp b/fdk-aac/libAACenc/src/intensity.cpp
new file mode 100644
index 0000000..8cb1b45
--- /dev/null
+++ b/fdk-aac/libAACenc/src/intensity.cpp
@@ -0,0 +1,810 @@
+/* -----------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
+
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------- */
+
+/**************************** AAC encoder library ******************************
+
+ Author(s): A. Horndasch (code originally from lwr) / Josef Hoepfl (FDK)
+
+ Description: intensity stereo processing
+
+*******************************************************************************/
+
+#include "intensity.h"
+
+#include "interface.h"
+#include "psy_configuration.h"
+#include "psy_const.h"
+#include "qc_main.h"
+#include "bit_cnt.h"
+
+/* only set an IS seed it left/right channel correlation is above IS_CORR_THRESH
+ */
+#define IS_CORR_THRESH FL2FXCONST_DBL(0.95f)
+
+/* when expanding the IS region to more SFBs only accept an error that is
+ * not more than IS_TOTAL_ERROR_THRESH overall and
+ * not more than IS_LOCAL_ERROR_THRESH for the current SFB */
+#define IS_TOTAL_ERROR_THRESH FL2FXCONST_DBL(0.04f)
+#define IS_LOCAL_ERROR_THRESH FL2FXCONST_DBL(0.01f)
+
+/* the maximum allowed change of the intensity direction (unit: IS scale) -
+ * scaled with factor 0.25 - */
+#define IS_DIRECTION_DEVIATION_THRESH_SF 2
+#define IS_DIRECTION_DEVIATION_THRESH \
+ FL2FXCONST_DBL(2.0f / (1 << IS_DIRECTION_DEVIATION_THRESH_SF))
+
+/* IS regions need to have a minimal percentage of the overall loudness, e.g.
+ * 0.06 == 6% */
+#define IS_REGION_MIN_LOUDNESS FL2FXCONST_DBL(0.1f)
+
+/* only perform IS if IS_MIN_SFBS neighboring SFBs can be processed */
+#define IS_MIN_SFBS 6
+
+/* only do IS if
+ * if IS_LEFT_RIGHT_RATIO_THRESH < sfbEnergyLeft[sfb]/sfbEnergyRight[sfb] < 1 /
+ * IS_LEFT_RIGHT_RATIO_THRESH
+ * -> no IS if the panning angle is not far from the middle, MS will do */
+/* this is equivalent to a scale of +/-1.02914634566 */
+#define IS_LEFT_RIGHT_RATIO_THRESH FL2FXCONST_DBL(0.7f)
+
+/* scalefactor of realScale */
+#define REAL_SCALE_SF 1
+
+/* scalefactor overallLoudness */
+#define OVERALL_LOUDNESS_SF 6
+
+/* scalefactor for sum over max samples per goup */
+#define MAX_SFB_PER_GROUP_SF 6
+
+/* scalefactor for sum of mdct spectrum */
+#define MDCT_SPEC_SF 6
+
+typedef struct {
+ FIXP_DBL corr_thresh; /*!< Only set an IS seed it left/right channel
+ correlation is above corr_thresh */
+
+ FIXP_DBL total_error_thresh; /*!< When expanding the IS region to more SFBs
+ only accept an error that is not more than
+ 'total_error_thresh' overall. */
+
+ FIXP_DBL local_error_thresh; /*!< When expanding the IS region to more SFBs
+ only accept an error that is not more than
+ 'local_error_thresh' for the current SFB. */
+
+ FIXP_DBL direction_deviation_thresh; /*!< The maximum allowed change of the
+ intensity direction (unit: IS scale)
+ */
+
+ FIXP_DBL is_region_min_loudness; /*!< IS regions need to have a minimal
+ percentage of the overall loudness, e.g.
+ 0.06 == 6% */
+
+ INT min_is_sfbs; /*!< Only perform IS if 'min_is_sfbs' neighboring SFBs can be
+ processed */
+
+ FIXP_DBL left_right_ratio_threshold; /*!< No IS if the panning angle is not
+ far from the middle, MS will do */
+
+} INTENSITY_PARAMETERS;
+
+/*****************************************************************************
+
+ functionname: calcSfbMaxScale
+
+ description: Calc max value in scalefactor band
+
+ input: *mdctSpectrum
+ l1
+ l2
+
+ output: none
+
+ returns: scalefactor
+
+*****************************************************************************/
+static INT calcSfbMaxScale(const FIXP_DBL *mdctSpectrum, const INT l1,
+ const INT l2) {
+ INT i;
+ INT sfbMaxScale;
+ FIXP_DBL maxSpc;
+
+ maxSpc = FL2FXCONST_DBL(0.0);
+ for (i = l1; i < l2; i++) {
+ FIXP_DBL tmp = fixp_abs((FIXP_DBL)mdctSpectrum[i]);
+ maxSpc = fixMax(maxSpc, tmp);
+ }
+ sfbMaxScale = (maxSpc == FL2FXCONST_DBL(0.0)) ? (DFRACT_BITS - 2)
+ : CntLeadingZeros(maxSpc) - 1;
+
+ return sfbMaxScale;
+}
+
+/*****************************************************************************
+
+ functionname: FDKaacEnc_initIsParams
+
+ description: Initialization of intensity parameters
+
+ input: isParams
+
+ output: isParams
+
+ returns: none
+
+*****************************************************************************/
+static void FDKaacEnc_initIsParams(INTENSITY_PARAMETERS *isParams) {
+ isParams->corr_thresh = IS_CORR_THRESH;
+ isParams->total_error_thresh = IS_TOTAL_ERROR_THRESH;
+ isParams->local_error_thresh = IS_LOCAL_ERROR_THRESH;
+ isParams->direction_deviation_thresh = IS_DIRECTION_DEVIATION_THRESH;
+ isParams->is_region_min_loudness = IS_REGION_MIN_LOUDNESS;
+ isParams->min_is_sfbs = IS_MIN_SFBS;
+ isParams->left_right_ratio_threshold = IS_LEFT_RIGHT_RATIO_THRESH;
+}
+
+/*****************************************************************************
+
+ functionname: FDKaacEnc_prepareIntensityDecision
+
+ description: Prepares intensity decision
+
+ input: sfbEnergyLeft
+ sfbEnergyRight
+ sfbEnergyLdDataLeft
+ sfbEnergyLdDataRight
+ mdctSpectrumLeft
+ sfbEnergyLdDataRight
+ isParams
+
+ output: hrrErr scale: none
+ isMask scale: none
+ realScale scale: LD_DATA_SHIFT + REAL_SCALE_SF
+ normSfbLoudness scale: none
+
+ returns: none
+
+*****************************************************************************/
+static void FDKaacEnc_prepareIntensityDecision(
+ const FIXP_DBL *sfbEnergyLeft, const FIXP_DBL *sfbEnergyRight,
+ const FIXP_DBL *sfbEnergyLdDataLeft, const FIXP_DBL *sfbEnergyLdDataRight,
+ const FIXP_DBL *mdctSpectrumLeft, const FIXP_DBL *mdctSpectrumRight,
+ const INTENSITY_PARAMETERS *isParams, FIXP_DBL *hrrErr, INT *isMask,
+ FIXP_DBL *realScale, FIXP_DBL *normSfbLoudness, const INT sfbCnt,
+ const INT sfbPerGroup, const INT maxSfbPerGroup, const INT *sfbOffset) {
+ INT j, sfb, sfboffs;
+ INT grpCounter;
+
+ /* temporary variables to compute loudness */
+ FIXP_DBL overallLoudness[MAX_NO_OF_GROUPS];
+
+ /* temporary variables to compute correlation */
+ FIXP_DBL channelCorr[MAX_GROUPED_SFB];
+ FIXP_DBL ml, mr;
+ FIXP_DBL prod_lr;
+ FIXP_DBL square_l, square_r;
+ FIXP_DBL tmp_l, tmp_r;
+ FIXP_DBL inv_n;
+
+ FDKmemclear(channelCorr, MAX_GROUPED_SFB * sizeof(FIXP_DBL));
+ FDKmemclear(normSfbLoudness, MAX_GROUPED_SFB * sizeof(FIXP_DBL));
+ FDKmemclear(overallLoudness, MAX_NO_OF_GROUPS * sizeof(FIXP_DBL));
+ FDKmemclear(realScale, MAX_GROUPED_SFB * sizeof(FIXP_DBL));
+
+ for (grpCounter = 0, sfboffs = 0; sfboffs < sfbCnt;
+ sfboffs += sfbPerGroup, grpCounter++) {
+ overallLoudness[grpCounter] = FL2FXCONST_DBL(0.0f);
+ for (sfb = 0; sfb < maxSfbPerGroup; sfb++) {
+ INT sL, sR, s;
+ FIXP_DBL isValue = sfbEnergyLdDataLeft[sfb + sfboffs] -
+ sfbEnergyLdDataRight[sfb + sfboffs];
+
+ /* delimitate intensity scale value to representable range */
+ realScale[sfb + sfboffs] = fixMin(
+ FL2FXCONST_DBL(60.f / (1 << (REAL_SCALE_SF + LD_DATA_SHIFT))),
+ fixMax(FL2FXCONST_DBL(-60.f / (1 << (REAL_SCALE_SF + LD_DATA_SHIFT))),
+ isValue));
+
+ sL = fixMax(0, (CntLeadingZeros(sfbEnergyLeft[sfb + sfboffs]) - 1));
+ sR = fixMax(0, (CntLeadingZeros(sfbEnergyRight[sfb + sfboffs]) - 1));
+ s = (fixMin(sL, sR) >> 2) << 2;
+ normSfbLoudness[sfb + sfboffs] =
+ sqrtFixp(sqrtFixp(((sfbEnergyLeft[sfb + sfboffs] << s) >> 1) +
+ ((sfbEnergyRight[sfb + sfboffs] << s) >> 1))) >>
+ (s >> 2);
+
+ overallLoudness[grpCounter] +=
+ normSfbLoudness[sfb + sfboffs] >> OVERALL_LOUDNESS_SF;
+ /* don't do intensity if
+ * - panning angle is too close to the middle or
+ * - one channel is non-existent or
+ * - if it is dual mono */
+ if ((sfbEnergyLeft[sfb + sfboffs] >=
+ fMult(isParams->left_right_ratio_threshold,
+ sfbEnergyRight[sfb + sfboffs])) &&
+ (fMult(isParams->left_right_ratio_threshold,
+ sfbEnergyLeft[sfb + sfboffs]) <=
+ sfbEnergyRight[sfb + sfboffs])) {
+ /* this will prevent post processing from considering this SFB for
+ * merging */
+ hrrErr[sfb + sfboffs] = FL2FXCONST_DBL(1.0 / 8.0);
+ }
+ }
+ }
+
+ for (grpCounter = 0, sfboffs = 0; sfboffs < sfbCnt;
+ sfboffs += sfbPerGroup, grpCounter++) {
+ INT invOverallLoudnessSF;
+ FIXP_DBL invOverallLoudness;
+
+ if (overallLoudness[grpCounter] == FL2FXCONST_DBL(0.0)) {
+ invOverallLoudness = FL2FXCONST_DBL(0.0);
+ invOverallLoudnessSF = 0;
+ } else {
+ invOverallLoudness =
+ fDivNorm((FIXP_DBL)MAXVAL_DBL, overallLoudness[grpCounter],
+ &invOverallLoudnessSF);
+ invOverallLoudnessSF =
+ invOverallLoudnessSF - OVERALL_LOUDNESS_SF +
+ 1; /* +1: compensate fMultDiv2() in subsequent loop */
+ }
+ invOverallLoudnessSF = fixMin(
+ fixMax(invOverallLoudnessSF, -(DFRACT_BITS - 1)), DFRACT_BITS - 1);
+
+ for (sfb = 0; sfb < maxSfbPerGroup; sfb++) {
+ FIXP_DBL tmp;
+
+ tmp = fMultDiv2((normSfbLoudness[sfb + sfboffs] >> OVERALL_LOUDNESS_SF)
+ << OVERALL_LOUDNESS_SF,
+ invOverallLoudness);
+
+ normSfbLoudness[sfb + sfboffs] = scaleValue(tmp, invOverallLoudnessSF);
+
+ channelCorr[sfb + sfboffs] = FL2FXCONST_DBL(0.0f);
+
+ /* max width of scalefactorband is 96; width's are always even */
+ /* inv_n is scaled with factor 2 to compensate fMultDiv2() in subsequent
+ * loops */
+ inv_n = GetInvInt(
+ (sfbOffset[sfb + sfboffs + 1] - sfbOffset[sfb + sfboffs]) >> 1);
+
+ if (inv_n > FL2FXCONST_DBL(0.0f)) {
+ INT s, sL, sR;
+
+ /* correlation := Pearson's product-moment coefficient */
+ /* compute correlation between channels and check if it is over
+ * threshold */
+ ml = FL2FXCONST_DBL(0.0f);
+ mr = FL2FXCONST_DBL(0.0f);
+ prod_lr = FL2FXCONST_DBL(0.0f);
+ square_l = FL2FXCONST_DBL(0.0f);
+ square_r = FL2FXCONST_DBL(0.0f);
+
+ sL = calcSfbMaxScale(mdctSpectrumLeft, sfbOffset[sfb + sfboffs],
+ sfbOffset[sfb + sfboffs + 1]);
+ sR = calcSfbMaxScale(mdctSpectrumRight, sfbOffset[sfb + sfboffs],
+ sfbOffset[sfb + sfboffs + 1]);
+ s = fixMin(sL, sR);
+
+ for (j = sfbOffset[sfb + sfboffs]; j < sfbOffset[sfb + sfboffs + 1];
+ j++) {
+ ml += fMultDiv2((mdctSpectrumLeft[j] << s),
+ inv_n); // scaled with mdctScale - s + inv_n
+ mr += fMultDiv2((mdctSpectrumRight[j] << s),
+ inv_n); // scaled with mdctScale - s + inv_n
+ }
+ ml = fMultDiv2(ml, inv_n); // scaled with mdctScale - s + inv_n
+ mr = fMultDiv2(mr, inv_n); // scaled with mdctScale - s + inv_n
+
+ for (j = sfbOffset[sfb + sfboffs]; j < sfbOffset[sfb + sfboffs + 1];
+ j++) {
+ tmp_l = fMultDiv2((mdctSpectrumLeft[j] << s), inv_n) -
+ ml; // scaled with mdctScale - s + inv_n
+ tmp_r = fMultDiv2((mdctSpectrumRight[j] << s), inv_n) -
+ mr; // scaled with mdctScale - s + inv_n
+
+ prod_lr += fMultDiv2(
+ tmp_l, tmp_r); // scaled with 2*(mdctScale - s + inv_n) + 1
+ square_l +=
+ fPow2Div2(tmp_l); // scaled with 2*(mdctScale - s + inv_n) + 1
+ square_r +=
+ fPow2Div2(tmp_r); // scaled with 2*(mdctScale - s + inv_n) + 1
+ }
+ prod_lr = prod_lr << 1; // scaled with 2*(mdctScale - s + inv_n)
+ square_l = square_l << 1; // scaled with 2*(mdctScale - s + inv_n)
+ square_r = square_r << 1; // scaled with 2*(mdctScale - s + inv_n)
+
+ if (square_l > FL2FXCONST_DBL(0.0f) &&
+ square_r > FL2FXCONST_DBL(0.0f)) {
+ INT channelCorrSF = 0;
+
+ /* local scaling of square_l and square_r is compensated after sqrt
+ * calculation */
+ sL = fixMax(0, (CntLeadingZeros(square_l) - 1));
+ sR = fixMax(0, (CntLeadingZeros(square_r) - 1));
+ s = ((sL + sR) >> 1) << 1;
+ sL = fixMin(sL, s);
+ sR = s - sL;
+ tmp = fMult(square_l << sL, square_r << sR);
+ tmp = sqrtFixp(tmp);
+
+ FDK_ASSERT(tmp > FL2FXCONST_DBL(0.0f));
+
+ /* numerator and denominator have the same scaling */
+ if (prod_lr < FL2FXCONST_DBL(0.0f)) {
+ channelCorr[sfb + sfboffs] =
+ -(fDivNorm(-prod_lr, tmp, &channelCorrSF));
+
+ } else {
+ channelCorr[sfb + sfboffs] =
+ (fDivNorm(prod_lr, tmp, &channelCorrSF));
+ }
+ channelCorrSF = fixMin(
+ fixMax((channelCorrSF + ((sL + sR) >> 1)), -(DFRACT_BITS - 1)),
+ DFRACT_BITS - 1);
+
+ if (channelCorrSF < 0) {
+ channelCorr[sfb + sfboffs] =
+ channelCorr[sfb + sfboffs] >> (-channelCorrSF);
+ } else {
+ /* avoid overflows due to limited computational accuracy */
+ if (fAbs(channelCorr[sfb + sfboffs]) >
+ (((FIXP_DBL)MAXVAL_DBL) >> channelCorrSF)) {
+ if (channelCorr[sfb + sfboffs] < FL2FXCONST_DBL(0.0f))
+ channelCorr[sfb + sfboffs] = -(FIXP_DBL)MAXVAL_DBL;
+ else
+ channelCorr[sfb + sfboffs] = (FIXP_DBL)MAXVAL_DBL;
+ } else {
+ channelCorr[sfb + sfboffs] = channelCorr[sfb + sfboffs]
+ << channelCorrSF;
+ }
+ }
+ }
+ }
+
+ /* for post processing: hrrErr is the error in terms of (too little)
+ * correlation weighted with the loudness of the SFB; SFBs with small
+ * hrrErr can be merged */
+ if (hrrErr[sfb + sfboffs] == FL2FXCONST_DBL(1.0 / 8.0)) {
+ continue;
+ }
+
+ hrrErr[sfb + sfboffs] =
+ fMultDiv2((FL2FXCONST_DBL(0.25f) - (channelCorr[sfb + sfboffs] >> 2)),
+ normSfbLoudness[sfb + sfboffs]);
+
+ /* set IS mask/vector to 1, if correlation is high enough */
+ if (fAbs(channelCorr[sfb + sfboffs]) >= isParams->corr_thresh) {
+ isMask[sfb + sfboffs] = 1;
+ }
+ }
+ }
+}
+
+/*****************************************************************************
+
+ functionname: FDKaacEnc_finalizeIntensityDecision
+
+ description: Finalizes intensity decision
+
+ input: isParams scale: none
+ hrrErr scale: none
+ realIsScale scale: LD_DATA_SHIFT + REAL_SCALE_SF
+ normSfbLoudness scale: none
+
+ output: isMask scale: none
+
+ returns: none
+
+*****************************************************************************/
+static void FDKaacEnc_finalizeIntensityDecision(
+ const FIXP_DBL *hrrErr, INT *isMask, const FIXP_DBL *realIsScale,
+ const FIXP_DBL *normSfbLoudness, const INTENSITY_PARAMETERS *isParams,
+ const INT sfbCnt, const INT sfbPerGroup, const INT maxSfbPerGroup) {
+ INT sfb, sfboffs, j;
+ FIXP_DBL isScaleLast = FL2FXCONST_DBL(0.0f);
+ INT isStartValueFound = 0;
+
+ for (sfboffs = 0; sfboffs < sfbCnt; sfboffs += sfbPerGroup) {
+ INT startIsSfb = 0;
+ INT inIsBlock = 0;
+ INT currentIsSfbCount = 0;
+ FIXP_DBL overallHrrError = FL2FXCONST_DBL(0.0f);
+ FIXP_DBL isRegionLoudness = FL2FXCONST_DBL(0.0f);
+
+ for (sfb = 0; sfb < maxSfbPerGroup; sfb++) {
+ if (isMask[sfboffs + sfb] == 1) {
+ if (currentIsSfbCount == 0) {
+ startIsSfb = sfboffs + sfb;
+ }
+ if (isStartValueFound == 0) {
+ isScaleLast = realIsScale[sfboffs + sfb];
+ isStartValueFound = 1;
+ }
+ inIsBlock = 1;
+ currentIsSfbCount++;
+ overallHrrError += hrrErr[sfboffs + sfb] >> (MAX_SFB_PER_GROUP_SF - 3);
+ isRegionLoudness +=
+ normSfbLoudness[sfboffs + sfb] >> MAX_SFB_PER_GROUP_SF;
+ } else {
+ /* based on correlation, IS should not be used
+ * -> use it anyway, if overall error is below threshold
+ * and if local error does not exceed threshold
+ * otherwise: check if there are enough IS SFBs
+ */
+ if (inIsBlock) {
+ overallHrrError +=
+ hrrErr[sfboffs + sfb] >> (MAX_SFB_PER_GROUP_SF - 3);
+ isRegionLoudness +=
+ normSfbLoudness[sfboffs + sfb] >> MAX_SFB_PER_GROUP_SF;
+
+ if ((hrrErr[sfboffs + sfb] < (isParams->local_error_thresh >> 3)) &&
+ (overallHrrError <
+ (isParams->total_error_thresh >> MAX_SFB_PER_GROUP_SF))) {
+ currentIsSfbCount++;
+ /* overwrite correlation based decision */
+ isMask[sfboffs + sfb] = 1;
+ } else {
+ inIsBlock = 0;
+ }
+ }
+ }
+ /* check for large direction deviation */
+ if (inIsBlock) {
+ if (fAbs(isScaleLast - realIsScale[sfboffs + sfb]) <
+ (isParams->direction_deviation_thresh >>
+ (REAL_SCALE_SF + LD_DATA_SHIFT -
+ IS_DIRECTION_DEVIATION_THRESH_SF))) {
+ isScaleLast = realIsScale[sfboffs + sfb];
+ } else {
+ isMask[sfboffs + sfb] = 0;
+ inIsBlock = 0;
+ currentIsSfbCount--;
+ }
+ }
+
+ if (currentIsSfbCount > 0 && (!inIsBlock || sfb == maxSfbPerGroup - 1)) {
+ /* not enough SFBs -> do not use IS */
+ if (currentIsSfbCount < isParams->min_is_sfbs ||
+ (isRegionLoudness<isParams->is_region_min_loudness>>
+ MAX_SFB_PER_GROUP_SF)) {
+ for (j = startIsSfb; j <= sfboffs + sfb; j++) {
+ isMask[j] = 0;
+ }
+ isScaleLast = FL2FXCONST_DBL(0.0f);
+ isStartValueFound = 0;
+ for (j = 0; j < startIsSfb; j++) {
+ if (isMask[j] != 0) {
+ isScaleLast = realIsScale[j];
+ isStartValueFound = 1;
+ }
+ }
+ }
+ currentIsSfbCount = 0;
+ overallHrrError = FL2FXCONST_DBL(0.0f);
+ isRegionLoudness = FL2FXCONST_DBL(0.0f);
+ }
+ }
+ }
+}
+
+/*****************************************************************************
+
+ functionname: FDKaacEnc_IntensityStereoProcessing
+
+ description: Intensity stereo processing tool
+
+ input: sfbEnergyLeft
+ sfbEnergyRight
+ mdctSpectrumLeft
+ mdctSpectrumRight
+ sfbThresholdLeft
+ sfbThresholdRight
+ sfbSpreadEnLeft
+ sfbSpreadEnRight
+ sfbEnergyLdDataLeft
+ sfbEnergyLdDataRight
+
+ output: isBook
+ isScale
+ pnsData->pnsFlag
+ msDigest zeroed from start to sfbCnt
+ msMask zeroed from start to sfbCnt
+ mdctSpectrumRight zeroed where isBook!=0
+ sfbEnergyRight zeroed where isBook!=0
+ sfbSpreadEnRight zeroed where isBook!=0
+ sfbThresholdRight zeroed where isBook!=0
+ sfbEnergyLdDataRight FL2FXCONST_DBL(-1.0) where isBook!=0
+ sfbThresholdLdDataRight FL2FXCONST_DBL(-0.515625f) where
+isBook!=0
+
+ returns: none
+
+*****************************************************************************/
+void FDKaacEnc_IntensityStereoProcessing(
+ FIXP_DBL *sfbEnergyLeft, FIXP_DBL *sfbEnergyRight,
+ FIXP_DBL *mdctSpectrumLeft, FIXP_DBL *mdctSpectrumRight,
+ FIXP_DBL *sfbThresholdLeft, FIXP_DBL *sfbThresholdRight,
+ FIXP_DBL *sfbThresholdLdDataRight, FIXP_DBL *sfbSpreadEnLeft,
+ FIXP_DBL *sfbSpreadEnRight, FIXP_DBL *sfbEnergyLdDataLeft,
+ FIXP_DBL *sfbEnergyLdDataRight, INT *msDigest, INT *msMask,
+ const INT sfbCnt, const INT sfbPerGroup, const INT maxSfbPerGroup,
+ const INT *sfbOffset, const INT allowIS, INT *isBook, INT *isScale,
+ PNS_DATA *RESTRICT pnsData[2]) {
+ INT sfb, sfboffs, j;
+ FIXP_DBL scale;
+ FIXP_DBL lr;
+ FIXP_DBL hrrErr[MAX_GROUPED_SFB];
+ FIXP_DBL normSfbLoudness[MAX_GROUPED_SFB];
+ FIXP_DBL realIsScale[MAX_GROUPED_SFB];
+ INTENSITY_PARAMETERS isParams;
+ INT isMask[MAX_GROUPED_SFB];
+
+ FDKmemclear((void *)isBook, sfbCnt * sizeof(INT));
+ FDKmemclear((void *)isMask, sfbCnt * sizeof(INT));
+ FDKmemclear((void *)realIsScale, sfbCnt * sizeof(FIXP_DBL));
+ FDKmemclear((void *)isScale, sfbCnt * sizeof(INT));
+ FDKmemclear((void *)hrrErr, sfbCnt * sizeof(FIXP_DBL));
+
+ if (!allowIS) return;
+
+ FDKaacEnc_initIsParams(&isParams);
+
+ /* compute / set the following values per SFB:
+ * - left/right ratio between channels
+ * - normalized loudness
+ * + loudness == average of energy in channels to 0.25
+ * + normalization: division by sum of all SFB loudnesses
+ * - isMask (is set to 0 if channels are the same or one is 0)
+ */
+ FDKaacEnc_prepareIntensityDecision(
+ sfbEnergyLeft, sfbEnergyRight, sfbEnergyLdDataLeft, sfbEnergyLdDataRight,
+ mdctSpectrumLeft, mdctSpectrumRight, &isParams, hrrErr, isMask,
+ realIsScale, normSfbLoudness, sfbCnt, sfbPerGroup, maxSfbPerGroup,
+ sfbOffset);
+
+ FDKaacEnc_finalizeIntensityDecision(hrrErr, isMask, realIsScale,
+ normSfbLoudness, &isParams, sfbCnt,
+ sfbPerGroup, maxSfbPerGroup);
+
+ for (sfb = 0; sfb < sfbCnt; sfb += sfbPerGroup) {
+ for (sfboffs = 0; sfboffs < maxSfbPerGroup; sfboffs++) {
+ INT sL, sR;
+ FIXP_DBL inv_n;
+
+ msMask[sfb + sfboffs] = 0;
+ if (isMask[sfb + sfboffs] == 0) {
+ continue;
+ }
+
+ if ((sfbEnergyLeft[sfb + sfboffs] < sfbThresholdLeft[sfb + sfboffs]) &&
+ (fMult(FL2FXCONST_DBL(1.0f / 1.5f), sfbEnergyRight[sfb + sfboffs]) >
+ sfbThresholdRight[sfb + sfboffs])) {
+ continue;
+ }
+ /* NEW: if there is a big-enough IS region, switch off PNS */
+ if (pnsData[0]) {
+ if (pnsData[0]->pnsFlag[sfb + sfboffs]) {
+ pnsData[0]->pnsFlag[sfb + sfboffs] = 0;
+ }
+ if (pnsData[1]->pnsFlag[sfb + sfboffs]) {
+ pnsData[1]->pnsFlag[sfb + sfboffs] = 0;
+ }
+ }
+
+ inv_n = GetInvInt(
+ (sfbOffset[sfb + sfboffs + 1] - sfbOffset[sfb + sfboffs]) >>
+ 1); // scaled with 2 to compensate fMultDiv2() in subsequent loop
+ sL = calcSfbMaxScale(mdctSpectrumLeft, sfbOffset[sfb + sfboffs],
+ sfbOffset[sfb + sfboffs + 1]);
+ sR = calcSfbMaxScale(mdctSpectrumRight, sfbOffset[sfb + sfboffs],
+ sfbOffset[sfb + sfboffs + 1]);
+
+ lr = FL2FXCONST_DBL(0.0f);
+ for (j = sfbOffset[sfb + sfboffs]; j < sfbOffset[sfb + sfboffs + 1]; j++)
+ lr += fMultDiv2(
+ fMultDiv2(mdctSpectrumLeft[j] << sL, mdctSpectrumRight[j] << sR),
+ inv_n);
+ lr = lr << 1;
+
+ if (lr < FL2FXCONST_DBL(0.0f)) {
+ /* This means OUT OF phase intensity stereo, cf. standard */
+ INT s0, s1, s2;
+ FIXP_DBL tmp, d, ed = FL2FXCONST_DBL(0.0f);
+
+ s0 = fixMin(sL, sR);
+ for (j = sfbOffset[sfb + sfboffs]; j < sfbOffset[sfb + sfboffs + 1];
+ j++) {
+ d = ((mdctSpectrumLeft[j] << s0) >> 1) -
+ ((mdctSpectrumRight[j] << s0) >> 1);
+ ed += fMultDiv2(d, d) >> (MDCT_SPEC_SF - 1);
+ }
+ msMask[sfb + sfboffs] = 1;
+ tmp = fDivNorm(sfbEnergyLeft[sfb + sfboffs], ed, &s1);
+ s2 = (s1) + (2 * s0) - 2 - MDCT_SPEC_SF;
+ if (s2 & 1) {
+ tmp = tmp >> 1;
+ s2 = s2 + 1;
+ }
+ s2 = (s2 >> 1) + 1; // +1 compensate fMultDiv2() in subsequent loop
+ s2 = fixMin(fixMax(s2, -(DFRACT_BITS - 1)), (DFRACT_BITS - 1));
+ scale = sqrtFixp(tmp);
+ if (s2 < 0) {
+ s2 = -s2;
+ for (j = sfbOffset[sfb + sfboffs]; j < sfbOffset[sfb + sfboffs + 1];
+ j++) {
+ mdctSpectrumLeft[j] = (fMultDiv2(mdctSpectrumLeft[j], scale) -
+ fMultDiv2(mdctSpectrumRight[j], scale)) >>
+ s2;
+ mdctSpectrumRight[j] = FL2FXCONST_DBL(0.0f);
+ }
+ } else {
+ for (j = sfbOffset[sfb + sfboffs]; j < sfbOffset[sfb + sfboffs + 1];
+ j++) {
+ mdctSpectrumLeft[j] = (fMultDiv2(mdctSpectrumLeft[j], scale) -
+ fMultDiv2(mdctSpectrumRight[j], scale))
+ << s2;
+ mdctSpectrumRight[j] = FL2FXCONST_DBL(0.0f);
+ }
+ }
+ } else {
+ /* This means IN phase intensity stereo, cf. standard */
+ INT s0, s1, s2;
+ FIXP_DBL tmp, s, es = FL2FXCONST_DBL(0.0f);
+
+ s0 = fixMin(sL, sR);
+ for (j = sfbOffset[sfb + sfboffs]; j < sfbOffset[sfb + sfboffs + 1];
+ j++) {
+ s = ((mdctSpectrumLeft[j] << s0) >> 1) +
+ ((mdctSpectrumRight[j] << s0) >> 1);
+ es = fAddSaturate(es, fMultDiv2(s, s) >>
+ (MDCT_SPEC_SF -
+ 1)); // scaled 2*(mdctScale - s0 + 1) + MDCT_SPEC_SF
+ }
+ msMask[sfb + sfboffs] = 0;
+ tmp = fDivNorm(sfbEnergyLeft[sfb + sfboffs], es, &s1);
+ s2 = (s1) + (2 * s0) - 2 - MDCT_SPEC_SF;
+ if (s2 & 1) {
+ tmp = tmp >> 1;
+ s2 = s2 + 1;
+ }
+ s2 = (s2 >> 1) + 1; // +1 compensate fMultDiv2() in subsequent loop
+ s2 = fixMin(fixMax(s2, -(DFRACT_BITS - 1)), (DFRACT_BITS - 1));
+ scale = sqrtFixp(tmp);
+ if (s2 < 0) {
+ s2 = -s2;
+ for (j = sfbOffset[sfb + sfboffs]; j < sfbOffset[sfb + sfboffs + 1];
+ j++) {
+ mdctSpectrumLeft[j] = (fMultDiv2(mdctSpectrumLeft[j], scale) +
+ fMultDiv2(mdctSpectrumRight[j], scale)) >>
+ s2;
+ mdctSpectrumRight[j] = FL2FXCONST_DBL(0.0f);
+ }
+ } else {
+ for (j = sfbOffset[sfb + sfboffs]; j < sfbOffset[sfb + sfboffs + 1];
+ j++) {
+ mdctSpectrumLeft[j] = (fMultDiv2(mdctSpectrumLeft[j], scale) +
+ fMultDiv2(mdctSpectrumRight[j], scale))
+ << s2;
+ mdctSpectrumRight[j] = FL2FXCONST_DBL(0.0f);
+ }
+ }
+ }
+
+ isBook[sfb + sfboffs] = CODE_BOOK_IS_IN_PHASE_NO;
+
+ if (realIsScale[sfb + sfboffs] < FL2FXCONST_DBL(0.0f)) {
+ isScale[sfb + sfboffs] =
+ (INT)(((realIsScale[sfb + sfboffs] >> 1) -
+ FL2FXCONST_DBL(
+ 0.5f / (1 << (REAL_SCALE_SF + LD_DATA_SHIFT + 1)))) >>
+ (DFRACT_BITS - 1 - REAL_SCALE_SF - LD_DATA_SHIFT - 1)) +
+ 1;
+ } else {
+ isScale[sfb + sfboffs] =
+ (INT)(((realIsScale[sfb + sfboffs] >> 1) +
+ FL2FXCONST_DBL(
+ 0.5f / (1 << (REAL_SCALE_SF + LD_DATA_SHIFT + 1)))) >>
+ (DFRACT_BITS - 1 - REAL_SCALE_SF - LD_DATA_SHIFT - 1));
+ }
+
+ sfbEnergyRight[sfb + sfboffs] = FL2FXCONST_DBL(0.0f);
+ sfbEnergyLdDataRight[sfb + sfboffs] = FL2FXCONST_DBL(-1.0f);
+ sfbThresholdRight[sfb + sfboffs] = FL2FXCONST_DBL(0.0f);
+ sfbThresholdLdDataRight[sfb + sfboffs] = FL2FXCONST_DBL(-0.515625f);
+ sfbSpreadEnRight[sfb + sfboffs] = FL2FXCONST_DBL(0.0f);
+
+ *msDigest = MS_SOME;
+ }
+ }
+}