aboutsummaryrefslogtreecommitdiffstats
path: root/libFDK/src/fixpoint_math.cpp
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2016-09-10 20:15:44 +0200
committerMatthias P. Braendli <matthias.braendli@mpb.li>2016-09-10 20:15:44 +0200
commit14c7b800eaa23e9da7c92c7c4df397d0c191f097 (patch)
treed840b6ec41ff74d1184ca1dcd7731d08f1e9ebbb /libFDK/src/fixpoint_math.cpp
parent78a801e4d716c6f2403cc56cf6c5b6f138f24b2f (diff)
downloadODR-AudioEnc-14c7b800eaa23e9da7c92c7c4df397d0c191f097.tar.gz
ODR-AudioEnc-14c7b800eaa23e9da7c92c7c4df397d0c191f097.tar.bz2
ODR-AudioEnc-14c7b800eaa23e9da7c92c7c4df397d0c191f097.zip
Remove FDK-AAC
Diffstat (limited to 'libFDK/src/fixpoint_math.cpp')
-rw-r--r--libFDK/src/fixpoint_math.cpp895
1 files changed, 0 insertions, 895 deletions
diff --git a/libFDK/src/fixpoint_math.cpp b/libFDK/src/fixpoint_math.cpp
deleted file mode 100644
index 30283ff..0000000
--- a/libFDK/src/fixpoint_math.cpp
+++ /dev/null
@@ -1,895 +0,0 @@
-
-/* -----------------------------------------------------------------------------------------------------------
-Software License for The Fraunhofer FDK AAC Codec Library for Android
-
-© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- All rights reserved.
-
- 1. INTRODUCTION
-The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
-the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
-This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
-
-AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
-audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
-independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
-of the MPEG specifications.
-
-Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
-may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
-individually for the purpose of encoding or decoding bit streams in products that are compliant with
-the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
-these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
-software may already be covered under those patent licenses when it is used for those licensed purposes only.
-
-Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
-are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
-applications information and documentation.
-
-2. COPYRIGHT LICENSE
-
-Redistribution and use in source and binary forms, with or without modification, are permitted without
-payment of copyright license fees provided that you satisfy the following conditions:
-
-You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
-your modifications thereto in source code form.
-
-You must retain the complete text of this software license in the documentation and/or other materials
-provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
-You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
-modifications thereto to recipients of copies in binary form.
-
-The name of Fraunhofer may not be used to endorse or promote products derived from this library without
-prior written permission.
-
-You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
-software or your modifications thereto.
-
-Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
-and the date of any change. For modified versions of the FDK AAC Codec, the term
-"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
-"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
-
-3. NO PATENT LICENSE
-
-NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
-ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
-respect to this software.
-
-You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
-by appropriate patent licenses.
-
-4. DISCLAIMER
-
-This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
-"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
-of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
-CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
-including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
-or business interruption, however caused and on any theory of liability, whether in contract, strict
-liability, or tort (including negligence), arising in any way out of the use of this software, even if
-advised of the possibility of such damage.
-
-5. CONTACT INFORMATION
-
-Fraunhofer Institute for Integrated Circuits IIS
-Attention: Audio and Multimedia Departments - FDK AAC LL
-Am Wolfsmantel 33
-91058 Erlangen, Germany
-
-www.iis.fraunhofer.de/amm
-amm-info@iis.fraunhofer.de
------------------------------------------------------------------------------------------------------------ */
-
-/*************************** Fraunhofer IIS FDK Tools **********************
-
- Author(s): M. Gayer
- Description: Fixed point specific mathematical functions
-
-******************************************************************************/
-
-#include "fixpoint_math.h"
-
-
-#define MAX_LD_PRECISION 10
-#define LD_PRECISION 10
-
-/* Taylor series coeffcients for ln(1-x), centered at 0 (MacLaurin polinomial). */
-#ifndef LDCOEFF_16BIT
-LNK_SECTION_CONSTDATA_L1
-static const FIXP_DBL ldCoeff[MAX_LD_PRECISION] = {
- FL2FXCONST_DBL(-1.0),
- FL2FXCONST_DBL(-1.0/2.0),
- FL2FXCONST_DBL(-1.0/3.0),
- FL2FXCONST_DBL(-1.0/4.0),
- FL2FXCONST_DBL(-1.0/5.0),
- FL2FXCONST_DBL(-1.0/6.0),
- FL2FXCONST_DBL(-1.0/7.0),
- FL2FXCONST_DBL(-1.0/8.0),
- FL2FXCONST_DBL(-1.0/9.0),
- FL2FXCONST_DBL(-1.0/10.0)
-};
-#else
-LNK_SECTION_CONSTDATA_L1
-static const FIXP_SGL ldCoeff[MAX_LD_PRECISION] = {
- FL2FXCONST_SGL(-1.0),
- FL2FXCONST_SGL(-1.0/2.0),
- FL2FXCONST_SGL(-1.0/3.0),
- FL2FXCONST_SGL(-1.0/4.0),
- FL2FXCONST_SGL(-1.0/5.0),
- FL2FXCONST_SGL(-1.0/6.0),
- FL2FXCONST_SGL(-1.0/7.0),
- FL2FXCONST_SGL(-1.0/8.0),
- FL2FXCONST_SGL(-1.0/9.0),
- FL2FXCONST_SGL(-1.0/10.0)
-};
-#endif
-
-/*****************************************************************************
-
- functionname: CalcLdData
- description: Delivers the Logarithm Dualis ld(op)/LD_DATA_SCALING with polynomial approximation.
- input: Input op is assumed to be double precision fractional 0 < op < 1.0
- This function does not accept negative values.
- output: For op == 0, the result is saturated to -1.0
- This function does not return positive values since input values are treated as fractional values.
- It does not make sense to input an integer value into this function (and expect a positive output value)
- since input values are treated as fractional values.
-
-*****************************************************************************/
-
-LNK_SECTION_CODE_L1
-FIXP_DBL CalcLdData(FIXP_DBL op)
-{
- return fLog2(op, 0);
-}
-
-
-/*****************************************************************************
- functionname: LdDataVector
-*****************************************************************************/
-LNK_SECTION_CODE_L1
-void LdDataVector( FIXP_DBL *srcVector,
- FIXP_DBL *destVector,
- INT n)
-{
- INT i;
- for ( i=0; i<n; i++) {
- destVector[i] = CalcLdData(srcVector[i]);
- }
-}
-
-
-
-#define MAX_POW2_PRECISION 8
-#ifndef SINETABLE_16BIT
- #define POW2_PRECISION MAX_POW2_PRECISION
-#else
- #define POW2_PRECISION 5
-#endif
-
-/*
- Taylor series coefficients of the function x^2. The first coefficient is
- ommited (equal to 1.0).
-
- pow2Coeff[i-1] = (1/i!) d^i(2^x)/dx^i, i=1..MAX_POW2_PRECISION
- To evaluate the taylor series around x = 0, the coefficients are: 1/!i * ln(2)^i
- */
-#ifndef POW2COEFF_16BIT
-LNK_SECTION_CONSTDATA_L1
-static const FIXP_DBL pow2Coeff[MAX_POW2_PRECISION] = {
- FL2FXCONST_DBL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */
- FL2FXCONST_DBL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */
- FL2FXCONST_DBL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */
- FL2FXCONST_DBL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */
- FL2FXCONST_DBL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */
- FL2FXCONST_DBL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */
- FL2FXCONST_DBL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */
- FL2FXCONST_DBL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */
-};
-#else
-LNK_SECTION_CONSTDATA_L1
-static const FIXP_SGL pow2Coeff[MAX_POW2_PRECISION] = {
- FL2FXCONST_SGL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */
- FL2FXCONST_SGL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */
- FL2FXCONST_SGL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */
- FL2FXCONST_SGL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */
- FL2FXCONST_SGL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */
- FL2FXCONST_SGL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */
- FL2FXCONST_SGL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */
- FL2FXCONST_SGL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */
-};
-#endif
-
-
-
-/*****************************************************************************
-
- functionname: mul_dbl_sgl_rnd
- description: Multiply with round.
-*****************************************************************************/
-
-/* for rounding a dfract to fract */
-#define ACCU_R (LONG) 0x00008000
-
-LNK_SECTION_CODE_L1
-FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1, const FIXP_SGL op2)
-{
- FIXP_DBL prod;
- LONG v = (LONG)(op1);
- SHORT u = (SHORT)(op2);
-
- LONG low = u*(v&SGL_MASK);
- low = (low+(ACCU_R>>1)) >> (FRACT_BITS-1); /* round */
- LONG high = u * ((v>>FRACT_BITS)<<1);
-
- prod = (LONG)(high+low);
-
- return((FIXP_DBL)prod);
-}
-
-
-/*****************************************************************************
-
- functionname: CalcInvLdData
- description: Delivers the inverse of function CalcLdData().
- Delivers 2^(op*LD_DATA_SCALING)
- input: Input op is assumed to be fractional -1.0 < op < 1.0
- output: For op == 0, the result is MAXVAL_DBL (almost 1.0).
- For negative input values the output should be treated as a positive fractional value.
- For positive input values the output should be treated as a positive integer value.
- This function does not output negative values.
-
-*****************************************************************************/
-LNK_SECTION_CODE_L1
-/* This table is used for lookup 2^x with */
-/* x in range [0...1.0[ in steps of 1/32 */
-LNK_SECTION_DATA_L1 static const UINT exp2_tab_long[32]={
-0x40000000,0x4166C34C,0x42D561B4,0x444C0740,
-0x45CAE0F2,0x47521CC6,0x48E1E9BA,0x4A7A77D4,
-0x4C1BF829,0x4DC69CDD,0x4F7A9930,0x51382182,
-0x52FF6B55,0x54D0AD5A,0x56AC1F75,0x5891FAC1,
-0x5A82799A,0x5C7DD7A4,0x5E8451D0,0x60962665,
-0x62B39509,0x64DCDEC3,0x6712460B,0x69540EC9,
-0x6BA27E65,0x6DFDDBCC,0x70666F76,0x72DC8374,
-0x75606374,0x77F25CCE,0x7A92BE8B,0x7D41D96E
-// 0x80000000
-};
-
-/* This table is used for lookup 2^x with */
-/* x in range [0...1/32[ in steps of 1/1024 */
-LNK_SECTION_DATA_L1 static const UINT exp2w_tab_long[32]={
-0x40000000,0x400B1818,0x4016321B,0x40214E0C,
-0x402C6BE9,0x40378BB4,0x4042AD6D,0x404DD113,
-0x4058F6A8,0x40641E2B,0x406F479E,0x407A7300,
-0x4085A051,0x4090CF92,0x409C00C4,0x40A733E6,
-0x40B268FA,0x40BD9FFF,0x40C8D8F5,0x40D413DD,
-0x40DF50B8,0x40EA8F86,0x40F5D046,0x410112FA,
-0x410C57A2,0x41179E3D,0x4122E6CD,0x412E3152,
-0x41397DCC,0x4144CC3B,0x41501CA0,0x415B6EFB,
-// 0x4166C34C,
-};
-/* This table is used for lookup 2^x with */
-/* x in range [0...1/1024[ in steps of 1/32768 */
-LNK_SECTION_DATA_L1 static const UINT exp2x_tab_long[32]={
-0x40000000,0x400058B9,0x4000B173,0x40010A2D,
-0x400162E8,0x4001BBA3,0x4002145F,0x40026D1B,
-0x4002C5D8,0x40031E95,0x40037752,0x4003D011,
-0x400428CF,0x4004818E,0x4004DA4E,0x4005330E,
-0x40058BCE,0x4005E48F,0x40063D51,0x40069613,
-0x4006EED5,0x40074798,0x4007A05B,0x4007F91F,
-0x400851E4,0x4008AAA8,0x4009036E,0x40095C33,
-0x4009B4FA,0x400A0DC0,0x400A6688,0x400ABF4F,
-//0x400B1818
-};
-
-LNK_SECTION_CODE_L1 FIXP_DBL CalcInvLdData(FIXP_DBL x)
-{
- int set_zero = (x < FL2FXCONST_DBL(-31.0/64.0))? 0 : 1;
- int set_max = (x >= FL2FXCONST_DBL( 31.0/64.0)) | (x == FL2FXCONST_DBL(0.0));
-
- FIXP_SGL frac = (FIXP_SGL)(LONG)(x & 0x3FF);
- UINT index3 = (UINT)(LONG)(x >> 10) & 0x1F;
- UINT index2 = (UINT)(LONG)(x >> 15) & 0x1F;
- UINT index1 = (UINT)(LONG)(x >> 20) & 0x1F;
- int exp = (x > FL2FXCONST_DBL(0.0f)) ? (31 - (int)(x>>25)) : (int)(-(x>>25));
-
- UINT lookup1 = exp2_tab_long[index1]*set_zero;
- UINT lookup2 = exp2w_tab_long[index2];
- UINT lookup3 = exp2x_tab_long[index3];
- UINT lookup3f = lookup3 + (UINT)(LONG)fMultDiv2((FIXP_DBL)(0x0016302F),(FIXP_SGL)frac);
-
- UINT lookup12 = (UINT)(LONG)fMult((FIXP_DBL)lookup1, (FIXP_DBL) lookup2);
- UINT lookup = (UINT)(LONG)fMult((FIXP_DBL)lookup12, (FIXP_DBL) lookup3f);
-
- FIXP_DBL retVal = (lookup<<3) >> exp;
-
- if (set_max)
- retVal=FL2FXCONST_DBL(1.0f);
-
- return retVal;
-}
-
-
-
-
-
-/*****************************************************************************
- functionname: InitLdInt and CalcLdInt
- description: Create and access table with integer LdData (0 to 193)
-*****************************************************************************/
-
-
- LNK_SECTION_CONSTDATA_L1
- static const FIXP_DBL ldIntCoeff[] = {
- 0x80000001, 0x00000000, 0x02000000, 0x032b8034, 0x04000000, 0x04a4d3c2, 0x052b8034, 0x059d5da0,
- 0x06000000, 0x06570069, 0x06a4d3c2, 0x06eb3a9f, 0x072b8034, 0x0766a009, 0x079d5da0, 0x07d053f7,
- 0x08000000, 0x082cc7ee, 0x08570069, 0x087ef05b, 0x08a4d3c2, 0x08c8ddd4, 0x08eb3a9f, 0x090c1050,
- 0x092b8034, 0x0949a785, 0x0966a009, 0x0982809d, 0x099d5da0, 0x09b74949, 0x09d053f7, 0x09e88c6b,
- 0x0a000000, 0x0a16bad3, 0x0a2cc7ee, 0x0a423162, 0x0a570069, 0x0a6b3d79, 0x0a7ef05b, 0x0a92203d,
- 0x0aa4d3c2, 0x0ab7110e, 0x0ac8ddd4, 0x0ada3f60, 0x0aeb3a9f, 0x0afbd42b, 0x0b0c1050, 0x0b1bf312,
- 0x0b2b8034, 0x0b3abb40, 0x0b49a785, 0x0b584822, 0x0b66a009, 0x0b74b1fd, 0x0b82809d, 0x0b900e61,
- 0x0b9d5da0, 0x0baa708f, 0x0bb74949, 0x0bc3e9ca, 0x0bd053f7, 0x0bdc899b, 0x0be88c6b, 0x0bf45e09,
- 0x0c000000, 0x0c0b73cb, 0x0c16bad3, 0x0c21d671, 0x0c2cc7ee, 0x0c379085, 0x0c423162, 0x0c4caba8,
- 0x0c570069, 0x0c6130af, 0x0c6b3d79, 0x0c7527b9, 0x0c7ef05b, 0x0c88983f, 0x0c92203d, 0x0c9b8926,
- 0x0ca4d3c2, 0x0cae00d2, 0x0cb7110e, 0x0cc0052b, 0x0cc8ddd4, 0x0cd19bb0, 0x0cda3f60, 0x0ce2c97d,
- 0x0ceb3a9f, 0x0cf39355, 0x0cfbd42b, 0x0d03fda9, 0x0d0c1050, 0x0d140ca0, 0x0d1bf312, 0x0d23c41d,
- 0x0d2b8034, 0x0d3327c7, 0x0d3abb40, 0x0d423b08, 0x0d49a785, 0x0d510118, 0x0d584822, 0x0d5f7cff,
- 0x0d66a009, 0x0d6db197, 0x0d74b1fd, 0x0d7ba190, 0x0d82809d, 0x0d894f75, 0x0d900e61, 0x0d96bdad,
- 0x0d9d5da0, 0x0da3ee7f, 0x0daa708f, 0x0db0e412, 0x0db74949, 0x0dbda072, 0x0dc3e9ca, 0x0dca258e,
- 0x0dd053f7, 0x0dd6753e, 0x0ddc899b, 0x0de29143, 0x0de88c6b, 0x0dee7b47, 0x0df45e09, 0x0dfa34e1,
- 0x0e000000, 0x0e05bf94, 0x0e0b73cb, 0x0e111cd2, 0x0e16bad3, 0x0e1c4dfb, 0x0e21d671, 0x0e275460,
- 0x0e2cc7ee, 0x0e323143, 0x0e379085, 0x0e3ce5d8, 0x0e423162, 0x0e477346, 0x0e4caba8, 0x0e51daa8,
- 0x0e570069, 0x0e5c1d0b, 0x0e6130af, 0x0e663b74, 0x0e6b3d79, 0x0e7036db, 0x0e7527b9, 0x0e7a1030,
- 0x0e7ef05b, 0x0e83c857, 0x0e88983f, 0x0e8d602e, 0x0e92203d, 0x0e96d888, 0x0e9b8926, 0x0ea03232,
- 0x0ea4d3c2, 0x0ea96df0, 0x0eae00d2, 0x0eb28c7f, 0x0eb7110e, 0x0ebb8e96, 0x0ec0052b, 0x0ec474e4,
- 0x0ec8ddd4, 0x0ecd4012, 0x0ed19bb0, 0x0ed5f0c4, 0x0eda3f60, 0x0ede8797, 0x0ee2c97d, 0x0ee70525,
- 0x0eeb3a9f, 0x0eef69ff, 0x0ef39355, 0x0ef7b6b4, 0x0efbd42b, 0x0effebcd, 0x0f03fda9, 0x0f0809cf,
- 0x0f0c1050, 0x0f10113b, 0x0f140ca0, 0x0f18028d, 0x0f1bf312, 0x0f1fde3d, 0x0f23c41d, 0x0f27a4c0,
- 0x0f2b8034
- };
-
-
- LNK_SECTION_INITCODE
- void InitLdInt()
- {
- /* nothing to do! Use preinitialized logarithm table */
- }
-
-
-
-LNK_SECTION_CODE_L1
-FIXP_DBL CalcLdInt(INT i)
-{
- /* calculates ld(op)/LD_DATA_SCALING */
- /* op is assumed to be an integer value between 1 and 193 */
-
- FDK_ASSERT((193>0) && ((FIXP_DBL)ldIntCoeff[0]==(FIXP_DBL)0x80000001)); /* tab has to be initialized */
-
- if ((i>0)&&(i<193))
- return ldIntCoeff[i];
- else
- {
- return (0);
- }
-}
-
-
-/*****************************************************************************
-
- functionname: invSqrtNorm2
- description: delivers 1/sqrt(op) normalized to .5...1 and the shift value of the OUTPUT
-
-*****************************************************************************/
-#define SQRT_BITS 7
-#define SQRT_VALUES 128
-#define SQRT_BITS_MASK 0x7f
-
-LNK_SECTION_CONSTDATA_L1
-static const FIXP_DBL invSqrtTab[SQRT_VALUES] = {
- 0x5a827999, 0x5a287e03, 0x59cf8cbb, 0x5977a0ab, 0x5920b4de, 0x58cac480, 0x5875cade, 0x5821c364,
- 0x57cea99c, 0x577c792f, 0x572b2ddf, 0x56dac38d, 0x568b3631, 0x563c81df, 0x55eea2c3, 0x55a19521,
- 0x55555555, 0x5509dfd0, 0x54bf311a, 0x547545d0, 0x542c1aa3, 0x53e3ac5a, 0x539bf7cc, 0x5354f9e6,
- 0x530eafa4, 0x52c91617, 0x52842a5e, 0x523fe9ab, 0x51fc513f, 0x51b95e6b, 0x51770e8e, 0x51355f19,
- 0x50f44d88, 0x50b3d768, 0x5073fa4f, 0x5034b3e6, 0x4ff601df, 0x4fb7e1f9, 0x4f7a5201, 0x4f3d4fce,
- 0x4f00d943, 0x4ec4ec4e, 0x4e8986e9, 0x4e4ea718, 0x4e144ae8, 0x4dda7072, 0x4da115d9, 0x4d683948,
- 0x4d2fd8f4, 0x4cf7f31b, 0x4cc08604, 0x4c898fff, 0x4c530f64, 0x4c1d0293, 0x4be767f5, 0x4bb23df9,
- 0x4b7d8317, 0x4b4935ce, 0x4b1554a6, 0x4ae1de2a, 0x4aaed0f0, 0x4a7c2b92, 0x4a49ecb3, 0x4a1812fa,
- 0x49e69d16, 0x49b589bb, 0x4984d7a4, 0x49548591, 0x49249249, 0x48f4fc96, 0x48c5c34a, 0x4896e53c,
- 0x48686147, 0x483a364c, 0x480c6331, 0x47dee6e0, 0x47b1c049, 0x4784ee5f, 0x4758701c, 0x472c447c,
- 0x47006a80, 0x46d4e130, 0x46a9a793, 0x467ebcb9, 0x46541fb3, 0x4629cf98, 0x45ffcb80, 0x45d61289,
- 0x45aca3d5, 0x45837e88, 0x455aa1ca, 0x45320cc8, 0x4509beb0, 0x44e1b6b4, 0x44b9f40b, 0x449275ec,
- 0x446b3b95, 0x44444444, 0x441d8f3b, 0x43f71bbe, 0x43d0e917, 0x43aaf68e, 0x43854373, 0x435fcf14,
- 0x433a98c5, 0x43159fdb, 0x42f0e3ae, 0x42cc6397, 0x42a81ef5, 0x42841527, 0x4260458d, 0x423caf8c,
- 0x4219528b, 0x41f62df1, 0x41d3412a, 0x41b08ba1, 0x418e0cc7, 0x416bc40d, 0x4149b0e4, 0x4127d2c3,
- 0x41062920, 0x40e4b374, 0x40c3713a, 0x40a261ef, 0x40818511, 0x4060da21, 0x404060a1, 0x40201814
-};
-
-LNK_SECTION_INITCODE
-void InitInvSqrtTab()
-{
- /* nothing to do !
- use preinitialized square root table
- */
-}
-
-
-
-#if !defined(FUNCTION_invSqrtNorm2)
-/*****************************************************************************
- delivers 1/sqrt(op) normalized to .5...1 and the shift value of the OUTPUT,
- i.e. the denormalized result is 1/sqrt(op) = invSqrtNorm(op) * 2^(shift)
- uses Newton-iteration for approximation
- Q(n+1) = Q(n) + Q(n) * (0.5 - 2 * V * Q(n)^2)
- with Q = 0.5* V ^-0.5; 0.5 <= V < 1.0
-*****************************************************************************/
-FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift)
-{
-
- FIXP_DBL val = op ;
- FIXP_DBL reg1, reg2, regtmp ;
-
- if (val == FL2FXCONST_DBL(0.0)) {
- *shift = 1 ;
- return((LONG)1); /* minimum positive value */
- }
-
-
- /* normalize input, calculate shift value */
- FDK_ASSERT(val > FL2FXCONST_DBL(0.0));
- *shift = fNormz(val) - 1; /* CountLeadingBits() is not necessary here since test value is always > 0 */
- val <<=*shift ; /* normalized input V */
- *shift+=2 ; /* bias for exponent */
-
- /* Newton iteration of 1/sqrt(V) */
- reg1 = invSqrtTab[ (INT)(val>>(DFRACT_BITS-1-(SQRT_BITS+1))) & SQRT_BITS_MASK ];
- reg2 = FL2FXCONST_DBL(0.0625f); /* 0.5 >> 3 */
-
- regtmp= fPow2Div2(reg1); /* a = Q^2 */
- regtmp= reg2 - fMultDiv2(regtmp, val); /* b = 0.5 - 2 * V * Q^2 */
- reg1 += (fMultDiv2(regtmp, reg1)<<4); /* Q = Q + Q*b */
-
- /* calculate the output exponent = input exp/2 */
- if (*shift & 0x00000001) { /* odd shift values ? */
- reg2 = FL2FXCONST_DBL(0.707106781186547524400844362104849f); /* 1/sqrt(2); */
- reg1 = fMultDiv2(reg1, reg2) << 2;
- }
-
- *shift = *shift>>1;
-
- return(reg1);
-}
-#endif /* !defined(FUNCTION_invSqrtNorm2) */
-
-/*****************************************************************************
-
- functionname: sqrtFixp
- description: delivers sqrt(op)
-
-*****************************************************************************/
-FIXP_DBL sqrtFixp(FIXP_DBL op)
-{
- INT tmp_exp = 0;
- FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp);
-
- FDK_ASSERT(tmp_exp > 0) ;
- return( (FIXP_DBL) ( fMultDiv2( (op<<(tmp_exp-1)), tmp_inv ) << 2 ));
-}
-
-
-#if !defined(FUNCTION_schur_div)
-/*****************************************************************************
-
- functionname: schur_div
- description: delivers op1/op2 with op3-bit accuracy
-
-*****************************************************************************/
-
-
-FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count)
-{
- INT L_num = (LONG)num>>1;
- INT L_denum = (LONG)denum>>1;
- INT div = 0;
- INT k = count;
-
- FDK_ASSERT (num>=(FIXP_DBL)0);
- FDK_ASSERT (denum>(FIXP_DBL)0);
- FDK_ASSERT (num <= denum);
-
- if (L_num != 0)
- while (--k)
- {
- div <<= 1;
- L_num <<= 1;
- if (L_num >= L_denum)
- {
- L_num -= L_denum;
- div++;
- }
- }
- return (FIXP_DBL)(div << (DFRACT_BITS - count));
-}
-
-
-#endif /* !defined(FUNCTION_schur_div) */
-
-
-#ifndef FUNCTION_fMultNorm
-FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2, INT *result_e)
-{
- INT product = 0;
- INT norm_f1, norm_f2;
-
- if ( (f1 == (FIXP_DBL)0) || (f2 == (FIXP_DBL)0) ) {
- *result_e = 0;
- return (FIXP_DBL)0;
- }
- norm_f1 = CountLeadingBits(f1);
- f1 = f1 << norm_f1;
- norm_f2 = CountLeadingBits(f2);
- f2 = f2 << norm_f2;
-
- product = fMult(f1, f2);
- *result_e = - (norm_f1 + norm_f2);
-
- return (FIXP_DBL)product;
-}
-#endif
-
-#ifndef FUNCTION_fDivNorm
-FIXP_DBL fDivNorm(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e)
-{
- FIXP_DBL div;
- INT norm_num, norm_den;
-
- FDK_ASSERT (L_num >= (FIXP_DBL)0);
- FDK_ASSERT (L_denum > (FIXP_DBL)0);
-
- if(L_num == (FIXP_DBL)0)
- {
- *result_e = 0;
- return ((FIXP_DBL)0);
- }
-
- norm_num = CountLeadingBits(L_num);
- L_num = L_num << norm_num;
- L_num = L_num >> 1;
- *result_e = - norm_num + 1;
-
- norm_den = CountLeadingBits(L_denum);
- L_denum = L_denum << norm_den;
- *result_e -= - norm_den;
-
- div = schur_div(L_num, L_denum, FRACT_BITS);
-
- return div;
-}
-#endif /* !FUNCTION_fDivNorm */
-
-#ifndef FUNCTION_fDivNorm
-FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom)
-{
- INT e;
- FIXP_DBL res;
-
- FDK_ASSERT (denom >= num);
-
- res = fDivNorm(num, denom, &e);
-
- /* Avoid overflow since we must output a value with exponent 0
- there is no other choice than saturating to almost 1.0f */
- if(res == (FIXP_DBL)(1<<(DFRACT_BITS-2)) && e == 1)
- {
- res = (FIXP_DBL)MAXVAL_DBL;
- }
- else
- {
- res = scaleValue(res, e);
- }
-
- return res;
-}
-#endif /* !FUNCTION_fDivNorm */
-
-#ifndef FUNCTION_fDivNormHighPrec
-FIXP_DBL fDivNormHighPrec(FIXP_DBL num, FIXP_DBL denom, INT *result_e)
-{
- FIXP_DBL div;
- INT norm_num, norm_den;
-
- FDK_ASSERT (num >= (FIXP_DBL)0);
- FDK_ASSERT (denom > (FIXP_DBL)0);
-
- if(num == (FIXP_DBL)0)
- {
- *result_e = 0;
- return ((FIXP_DBL)0);
- }
-
- norm_num = CountLeadingBits(num);
- num = num << norm_num;
- num = num >> 1;
- *result_e = - norm_num + 1;
-
- norm_den = CountLeadingBits(denom);
- denom = denom << norm_den;
- *result_e -= - norm_den;
-
- div = schur_div(num, denom, 31);
- return div;
-}
-#endif /* !FUNCTION_fDivNormHighPrec */
-
-
-
-FIXP_DBL CalcLog2(FIXP_DBL base_m, INT base_e, INT *result_e)
-{
- return fLog2(base_m, base_e, result_e);
-}
-
-FIXP_DBL f2Pow(
- const FIXP_DBL exp_m, const INT exp_e,
- INT *result_e
- )
-{
- FIXP_DBL frac_part, result_m;
- INT int_part;
-
- if (exp_e > 0)
- {
- INT exp_bits = DFRACT_BITS-1 - exp_e;
- int_part = exp_m >> exp_bits;
- frac_part = exp_m - (FIXP_DBL)(int_part << exp_bits);
- frac_part = frac_part << exp_e;
- }
- else
- {
- int_part = 0;
- frac_part = exp_m >> -exp_e;
- }
-
- /* Best accuracy is around 0, so try to get there with the fractional part. */
- if( frac_part > FL2FXCONST_DBL(0.5f) )
- {
- int_part = int_part + 1;
- frac_part = frac_part + FL2FXCONST_DBL(-1.0f);
- }
- if( frac_part < FL2FXCONST_DBL(-0.5f) )
- {
- int_part = int_part - 1;
- frac_part = -(FL2FXCONST_DBL(-1.0f) - frac_part);
- }
-
- /* Evaluate taylor polynomial which approximates 2^x */
- {
- FIXP_DBL p;
-
- /* result_m ~= 2^frac_part */
- p = frac_part;
- /* First taylor series coefficient a_0 = 1.0, scaled by 0.5 due to fMultDiv2(). */
- result_m = FL2FXCONST_DBL(1.0f/2.0f);
- for (INT i = 0; i < POW2_PRECISION; i++) {
- /* next taylor series term: a_i * x^i, x=0 */
- result_m = fMultAddDiv2(result_m, pow2Coeff[i], p);
- p = fMult(p, frac_part);
- }
- }
-
- /* "+ 1" compensates fMultAddDiv2() of the polynomial evaluation above. */
- *result_e = int_part + 1;
-
- return result_m;
-}
-
-FIXP_DBL f2Pow(
- const FIXP_DBL exp_m, const INT exp_e
- )
-{
- FIXP_DBL result_m;
- INT result_e;
-
- result_m = f2Pow(exp_m, exp_e, &result_e);
- result_e = fixMin(DFRACT_BITS-1,fixMax(-(DFRACT_BITS-1),result_e));
-
- return scaleValue(result_m, result_e);
-}
-
-FIXP_DBL fPow(
- FIXP_DBL base_m, INT base_e,
- FIXP_DBL exp_m, INT exp_e,
- INT *result_e
- )
-{
- INT ans_lg2_e, baselg2_e;
- FIXP_DBL base_lg2, ans_lg2, result;
-
- /* Calc log2 of base */
- base_lg2 = fLog2(base_m, base_e, &baselg2_e);
-
- /* Prepare exp */
- {
- INT leadingBits;
-
- leadingBits = CountLeadingBits(fAbs(exp_m));
- exp_m = exp_m << leadingBits;
- exp_e -= leadingBits;
- }
-
- /* Calc base pow exp */
- ans_lg2 = fMult(base_lg2, exp_m);
- ans_lg2_e = exp_e + baselg2_e;
-
- /* Calc antilog */
- result = f2Pow(ans_lg2, ans_lg2_e, result_e);
-
- return result;
-}
-
-FIXP_DBL fLdPow(
- FIXP_DBL baseLd_m,
- INT baseLd_e,
- FIXP_DBL exp_m, INT exp_e,
- INT *result_e
- )
-{
- INT ans_lg2_e;
- FIXP_DBL ans_lg2, result;
-
- /* Prepare exp */
- {
- INT leadingBits;
-
- leadingBits = CountLeadingBits(fAbs(exp_m));
- exp_m = exp_m << leadingBits;
- exp_e -= leadingBits;
- }
-
- /* Calc base pow exp */
- ans_lg2 = fMult(baseLd_m, exp_m);
- ans_lg2_e = exp_e + baseLd_e;
-
- /* Calc antilog */
- result = f2Pow(ans_lg2, ans_lg2_e, result_e);
-
- return result;
-}
-
-FIXP_DBL fLdPow(
- FIXP_DBL baseLd_m, INT baseLd_e,
- FIXP_DBL exp_m, INT exp_e
- )
-{
- FIXP_DBL result_m;
- int result_e;
-
- result_m = fLdPow(baseLd_m, baseLd_e, exp_m, exp_e, &result_e);
-
- return SATURATE_SHIFT(result_m, -result_e, DFRACT_BITS);
-}
-
-FIXP_DBL fPowInt(
- FIXP_DBL base_m, INT base_e,
- INT exp,
- INT *pResult_e
- )
-{
- FIXP_DBL result;
-
- if (exp != 0) {
- INT result_e = 0;
-
- if (base_m != (FIXP_DBL)0) {
- {
- INT leadingBits;
- leadingBits = CountLeadingBits( base_m );
- base_m <<= leadingBits;
- base_e -= leadingBits;
- }
-
- result = base_m;
-
- {
- int i;
- for (i = 1; i < fAbs(exp); i++) {
- result = fMult(result, base_m);
- }
- }
-
- if (exp < 0) {
- /* 1.0 / ans */
- result = fDivNorm( FL2FXCONST_DBL(0.5f), result, &result_e );
- result_e++;
- } else {
- int ansScale = CountLeadingBits( result );
- result <<= ansScale;
- result_e -= ansScale;
- }
-
- result_e += exp * base_e;
-
- } else {
- result = (FIXP_DBL)0;
- }
- *pResult_e = result_e;
- }
- else {
- result = FL2FXCONST_DBL(0.5f);
- *pResult_e = 1;
- }
-
- return result;
-}
-
-FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e)
-{
- FIXP_DBL result_m;
-
- /* Short cut for zero and negative numbers. */
- if ( x_m <= FL2FXCONST_DBL(0.0f) ) {
- *result_e = DFRACT_BITS-1;
- return FL2FXCONST_DBL(-1.0f);
- }
-
- /* Calculate log2() */
- {
- FIXP_DBL px2_m, x2_m;
-
- /* Move input value x_m * 2^x_e toward 1.0, where the taylor approximation
- of the function log(1-x) centered at 0 is most accurate. */
- {
- INT b_norm;
-
- b_norm = fNormz(x_m)-1;
- x2_m = x_m << b_norm;
- x_e = x_e - b_norm;
- }
-
- /* map x from log(x) domain to log(1-x) domain. */
- x2_m = - (x2_m + FL2FXCONST_DBL(-1.0) );
-
- /* Taylor polinomial approximation of ln(1-x) */
- result_m = FL2FXCONST_DBL(0.0);
- px2_m = x2_m;
- for (int i=0; i<LD_PRECISION; i++) {
- result_m = fMultAddDiv2(result_m, ldCoeff[i], px2_m);
- px2_m = fMult(px2_m, x2_m);
- }
- /* Multiply result with 1/ln(2) = 1.0 + 0.442695040888 (get log2(x) from ln(x) result). */
- result_m = fMultAddDiv2(result_m, result_m, FL2FXCONST_DBL(2.0*0.4426950408889634073599246810019));
-
- /* Add exponent part. log2(x_m * 2^x_e) = log2(x_m) + x_e */
- if (x_e != 0)
- {
- int enorm;
-
- enorm = DFRACT_BITS - fNorm((FIXP_DBL)x_e);
- /* The -1 in the right shift of result_m compensates the fMultDiv2() above in the taylor polinomial evaluation loop.*/
- result_m = (result_m >> (enorm-1)) + ((FIXP_DBL)x_e << (DFRACT_BITS-1-enorm));
-
- *result_e = enorm;
- } else {
- /* 1 compensates the fMultDiv2() above in the taylor polinomial evaluation loop.*/
- *result_e = 1;
- }
- }
-
- return result_m;
-}
-
-FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e)
-{
- if ( x_m <= FL2FXCONST_DBL(0.0f) ) {
- x_m = FL2FXCONST_DBL(-1.0f);
- }
- else {
- INT result_e;
- x_m = fLog2(x_m, x_e, &result_e);
- x_m = scaleValue(x_m, result_e-LD_DATA_SHIFT);
- }
- return x_m;
-}
-
-
-
-