summaryrefslogtreecommitdiffstats
path: root/libFDK/src/dct.cpp
diff options
context:
space:
mode:
authorThe Android Open Source Project <initial-contribution@android.com>2012-07-11 10:15:24 -0700
committerThe Android Open Source Project <initial-contribution@android.com>2012-07-11 10:15:24 -0700
commit2228e360595641dd906bf1773307f43d304f5b2e (patch)
tree57f3d390ebb0782cc0de0fb984c8ea7e45b4f386 /libFDK/src/dct.cpp
downloadODR-AudioEnc-2228e360595641dd906bf1773307f43d304f5b2e.tar.gz
ODR-AudioEnc-2228e360595641dd906bf1773307f43d304f5b2e.tar.bz2
ODR-AudioEnc-2228e360595641dd906bf1773307f43d304f5b2e.zip
Snapshot 2bda038c163298531d47394bc2c09e1409c5d0db
Change-Id: If584e579464f28b97d50e51fc76ba654a5536c54
Diffstat (limited to 'libFDK/src/dct.cpp')
-rw-r--r--libFDK/src/dct.cpp540
1 files changed, 540 insertions, 0 deletions
diff --git a/libFDK/src/dct.cpp b/libFDK/src/dct.cpp
new file mode 100644
index 0000000..5dc9e78
--- /dev/null
+++ b/libFDK/src/dct.cpp
@@ -0,0 +1,540 @@
+
+/* -----------------------------------------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
+ All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
+the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
+This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
+audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
+independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
+of the MPEG specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
+may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
+individually for the purpose of encoding or decoding bit streams in products that are compliant with
+the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
+these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
+software may already be covered under those patent licenses when it is used for those licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
+are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
+applications information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification, are permitted without
+payment of copyright license fees provided that you satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
+your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation and/or other materials
+provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
+You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived from this library without
+prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
+software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
+and the date of any change. For modified versions of the FDK AAC Codec, the term
+"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
+"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
+ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
+respect to this software.
+
+You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
+by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
+"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
+of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
+including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
+or business interruption, however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of this software, even if
+advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------------------------------------- */
+
+/*!
+ \file dct.cpp
+ \brief DCT Implementations
+ Library functions to calculate standard DCTs. This will most likely be replaced by hand-optimized
+ functions for the specific target processor.
+
+ Three different implementations of the dct type II and the dct type III transforms are provided.
+
+ By default implementations which are based on a single, standard complex FFT-kernel are used (dctII_f() and dctIII_f()).
+ These are specifically helpful in cases where optimized FFT libraries are already available. The FFT used in these
+ implementation is FFT rad2 from FDK_tools.
+
+ Of course, one might also use DCT-libraries should they be available. The DCT and DST
+ type IV implementations are only available in a version based on a complex FFT kernel.
+*/
+
+#include "dct.h"
+
+
+#include "FDK_tools_rom.h"
+#include "fft.h"
+
+
+#if defined(__arm__)
+#include "arm/dct_arm.cpp"
+#endif
+
+
+#if !defined(FUNCTION_dct_III)
+void dct_III(FIXP_DBL *pDat, /*!< pointer to input/output */
+ FIXP_DBL *tmp, /*!< pointer to temporal working buffer */
+ int L, /*!< lenght of transform */
+ int *pDat_e
+ )
+{
+ FDK_ASSERT(L == 64 || L == 32);
+ int i;
+ FIXP_DBL xr, accu1, accu2;
+ int inc;
+ int M = L>>1;
+ int ld_M;
+
+ if (L == 64) ld_M = 5;
+ else ld_M = 4;
+
+ /* This loop performs multiplication for index i (i*inc) */
+ inc = (64/2) >> ld_M; /* 64/L */
+
+ FIXP_DBL *pTmp_0 = &tmp[2];
+ FIXP_DBL *pTmp_1 = &tmp[(M-1)*2];
+
+ for(i=1; i<M>>1; i++,pTmp_0+=2,pTmp_1-=2) {
+
+ FIXP_DBL accu3,accu4,accu5,accu6;
+
+ cplxMultDiv2(&accu2, &accu1, pDat[L - i], pDat[i], sin_twiddle_L64[i*inc]);
+ cplxMultDiv2(&accu4, &accu3, pDat[M+i], pDat[M-i], sin_twiddle_L64[(M-i)*inc]);
+ accu3 >>= 1; accu4 >>= 1;
+
+ /* This method is better for ARM926, that uses operand2 shifted right by 1 always */
+ cplxMultDiv2(&accu6, &accu5, (accu3 - (accu1>>1)), ((accu2>>1) + accu4), sin_twiddle_L64[(4*i)*inc]);
+ xr = (accu1>>1) + accu3;
+ pTmp_0[0] = (xr>>1) - accu5;
+ pTmp_1[0] = (xr>>1) + accu5;
+
+ xr = (accu2>>1) - accu4;
+ pTmp_0[1] = (xr>>1) - accu6;
+ pTmp_1[1] = -((xr>>1) + accu6);
+
+ }
+
+ xr = fMultDiv2(pDat[M], sin_twiddle_L64[64/2].v.re );/* cos((PI/(2*L))*M); */
+ tmp[0] = ((pDat[0]>>1) + xr)>>1;
+ tmp[1] = ((pDat[0]>>1) - xr)>>1;
+
+ cplxMultDiv2(&accu2, &accu1, pDat[L - (M/2)], pDat[M/2], sin_twiddle_L64[64/4]);
+ tmp[M] = accu1>>1;
+ tmp[M+1] = accu2>>1;
+
+ /* dit_fft expects 1 bit scaled input values */
+ fft(M, tmp, pDat_e);
+
+ /* ARM926: 12 cycles per 2-iteration, no overhead code by compiler */
+ pTmp_1 = &tmp[L];
+ for (i = M>>1; i--;)
+ {
+ FIXP_DBL tmp1, tmp2, tmp3, tmp4;
+ tmp1 = *tmp++;
+ tmp2 = *tmp++;
+ tmp3 = *--pTmp_1;
+ tmp4 = *--pTmp_1;
+ *pDat++ = tmp1;
+ *pDat++ = tmp3;
+ *pDat++ = tmp2;
+ *pDat++ = tmp4;
+ }
+
+ *pDat_e += 2;
+}
+#endif
+
+#if !defined(FUNCTION_dct_II)
+void dct_II(FIXP_DBL *pDat, /*!< pointer to input/output */
+ FIXP_DBL *tmp, /*!< pointer to temporal working buffer */
+ int L, /*!< lenght of transform */
+ int *pDat_e
+ )
+{
+ FDK_ASSERT(L == 64 || L == 32);
+ FIXP_DBL accu1,accu2;
+ FIXP_DBL *pTmp_0, *pTmp_1;
+
+ int i;
+ int inc;
+ int M = L>>1;
+ int ld_M;
+
+ FDK_ASSERT(L == 64 || L == 32);
+ ld_M = 4 + (L >> 6); /* L=64: 5, L=32: 4 */
+
+ inc = (64/2) >> ld_M; /* L=64: 1, L=32: 2 */
+
+ FIXP_DBL *pdat = &pDat[0];
+ FIXP_DBL accu3, accu4;
+ pTmp_0 = &tmp[0];
+ pTmp_1 = &tmp[L-1];
+ for (i = M>>1; i--; )
+ {
+ accu1 = *pdat++;
+ accu2 = *pdat++;
+ accu3 = *pdat++;
+ accu4 = *pdat++;
+ accu1 >>= 1;
+ accu2 >>= 1;
+ accu3 >>= 1;
+ accu4 >>= 1;
+ *pTmp_0++ = accu1;
+ *pTmp_0++ = accu3;
+ *pTmp_1-- = accu2;
+ *pTmp_1-- = accu4;
+ }
+
+
+ fft(M, tmp, pDat_e);
+
+ pTmp_0 = &tmp[2];
+ pTmp_1 = &tmp[(M-1)*2];
+
+ for (i=1; i<M>>1; i++,pTmp_0+=2,pTmp_1-=2) {
+
+ FIXP_DBL a1,a2;
+ FIXP_DBL accu3, accu4;
+
+ a1 = ((pTmp_0[1]>>1) + (pTmp_1[1]>>1));
+ a2 = ((pTmp_1[0]>>1) - (pTmp_0[0]>>1));
+
+ cplxMultDiv2(&accu1, &accu2, a2, a1, sin_twiddle_L64[(4*i)*inc]);
+ accu1<<=1; accu2<<=1;
+
+ a1 = ((pTmp_0[0]>>1) + (pTmp_1[0]>>1));
+ a2 = ((pTmp_0[1]>>1) - (pTmp_1[1]>>1));
+
+ cplxMultDiv2(&accu3, &accu4, (a1 + accu2), -(accu1 + a2), sin_twiddle_L64[i*inc]);
+ pDat[L - i] = accu4;
+ pDat[i] = accu3;
+
+ cplxMultDiv2(&accu3, &accu4, (a1 - accu2), -(accu1 - a2), sin_twiddle_L64[(M-i)*inc]);
+ pDat[M + i] = accu4;
+ pDat[M - i] = accu3;
+
+ }
+
+ cplxMultDiv2(&accu1, &accu2, tmp[M], tmp[M+1], sin_twiddle_L64[(M/2)*inc]);
+ pDat[L - (M/2)] = accu2;
+ pDat[M/2] = accu1;
+
+ pDat[0] = (tmp[0]>>1)+(tmp[1]>>1);
+ pDat[M] = fMult(((tmp[0]>>1)-(tmp[1]>>1)), sin_twiddle_L64[64/2].v.re);/* cos((PI/(2*L))*M); */
+
+ *pDat_e += 2;
+}
+#endif
+
+static
+void getTables(const FIXP_WTP **twiddle, const FIXP_STP **sin_twiddle, int *sin_step, int length)
+{
+ int ld2_length;
+
+ /* Get ld2 of length - 2 + 1
+ -2: because first table entry is window of size 4
+ +1: because we already include +1 because of ceil(log2(length)) */
+ ld2_length = DFRACT_BITS-1-fNormz((FIXP_DBL)length) - 1;
+
+ /* Extract sort of "eigenvalue" (the 4 left most bits) of length. */
+ switch ( (length) >> (ld2_length-1) ) {
+ case 0x4: /* radix 2 */
+ *sin_twiddle = SineTable512;
+ *sin_step = 1<<(9 - ld2_length);
+ *twiddle = windowSlopes[0][0][ld2_length-1];
+ break;
+ case 0x7: /* 10 ms */
+ *sin_twiddle = SineTable480;
+ *sin_step = 1<<(8 - ld2_length);
+ *twiddle = windowSlopes[0][1][ld2_length];
+ break;
+ default:
+ *sin_twiddle = NULL;
+ *sin_step = 0;
+ *twiddle = NULL;
+ break;
+ }
+
+ FDK_ASSERT(*twiddle != NULL);
+
+ FDK_ASSERT(*sin_step > 0);
+
+}
+
+#if !defined(FUNCTION_dct_IV)
+
+void dct_IV(FIXP_DBL *pDat,
+ int L,
+ int *pDat_e)
+{
+ int sin_step = 0;
+ int M = L >> 1;
+
+ const FIXP_WTP *twiddle;
+ const FIXP_STP *sin_twiddle;
+
+ FDK_ASSERT(L >= 4);
+
+ getTables(&twiddle, &sin_twiddle, &sin_step, L);
+
+#ifdef FUNCTION_dct_IV_func1
+ if (M>=4 && (M&3) == 0) {
+ /* ARM926: 44 cycles for 2 iterations = 22 cycles/iteration */
+ dct_IV_func1(M>>2, twiddle, &pDat[0], &pDat[L-1]);
+ } else
+#endif /* FUNCTION_dct_IV_func1 */
+ {
+ FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
+ FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
+ register int i;
+
+ /* 29 cycles on ARM926 */
+ for (i = 0; i < M-1; i+=2,pDat_0+=2,pDat_1-=2)
+ {
+ register FIXP_DBL accu1,accu2,accu3,accu4;
+
+ accu1 = pDat_1[1]; accu2 = pDat_0[0];
+ accu3 = pDat_0[1]; accu4 = pDat_1[0];
+
+ cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
+ cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i+1]);
+
+ pDat_0[0] = accu2; pDat_0[1] = accu1;
+ pDat_1[0] = accu4; pDat_1[1] = -accu3;
+ }
+ if (M&1)
+ {
+ register FIXP_DBL accu1,accu2;
+
+ accu1 = pDat_1[1]; accu2 = pDat_0[0];
+
+ cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
+
+ pDat_0[0] = accu2; pDat_0[1] = accu1;
+ }
+ }
+
+ fft(M, pDat, pDat_e);
+
+#ifdef FUNCTION_dct_IV_func2
+ if (M>=4 && (M&3) == 0) {
+ /* ARM926: 42 cycles for 2 iterations = 21 cycles/iteration */
+ dct_IV_func2(M>>2, sin_twiddle, &pDat[0], &pDat[L], sin_step);
+ } else
+#endif /* FUNCTION_dct_IV_func2 */
+ {
+ FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
+ FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
+ register FIXP_DBL accu1,accu2,accu3,accu4;
+ int idx, i;
+
+ /* Sin and Cos values are 0.0f and 1.0f */
+ accu1 = pDat_1[0];
+ accu2 = pDat_1[1];
+
+ pDat_1[1] = -(pDat_0[1]>>1);
+ pDat_0[0] = (pDat_0[0]>>1);
+
+
+ /* 28 cycles for ARM926 */
+ for (idx = sin_step,i=1; i<(M+1)>>1; i++, idx+=sin_step)
+ {
+ FIXP_STP twd = sin_twiddle[idx];
+ cplxMultDiv2(&accu3, &accu4, accu1, accu2, twd);
+ pDat_0[1] = accu3;
+ pDat_1[0] = accu4;
+
+ pDat_0+=2;
+ pDat_1-=2;
+
+ cplxMultDiv2(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
+
+ accu1 = pDat_1[0];
+ accu2 = pDat_1[1];
+
+ pDat_1[1] = -accu3;
+ pDat_0[0] = accu4;
+ }
+
+ if ( (M&1) == 0 )
+ {
+ /* Last Sin and Cos value pair are the same */
+ accu1 = fMultDiv2(accu1, WTC(0x5a82799a));
+ accu2 = fMultDiv2(accu2, WTC(0x5a82799a));
+
+ pDat_1[0] = accu1 + accu2;
+ pDat_0[1] = accu1 - accu2;
+ }
+ }
+
+ /* Add twiddeling scale. */
+ *pDat_e += 2;
+}
+#endif /* defined (FUNCTION_dct_IV) */
+
+#if !defined(FUNCTION_dst_IV)
+void dst_IV(FIXP_DBL *pDat,
+ int L,
+ int *pDat_e )
+{
+ int sin_step = 0;
+ int M = L >> 1;
+
+ const FIXP_WTP *twiddle;
+ const FIXP_STP *sin_twiddle;
+
+#ifdef DSTIV2_ENABLE
+ if (L == 2) {
+ const FIXP_STP tab = STCP(0x7641AF3D, 0x30FB9452);
+ FIXP_DBL tmp1, tmp2;
+
+ cplxMultDiv2(&tmp2, &tmp1, pDat[0], pDat[1], tab);
+
+ pDat[0] = tmp1;
+ pDat[1] = tmp2;
+
+ *pDat_e += 1;
+
+ return;
+ }
+#else
+ FDK_ASSERT(L >= 4);
+#endif
+
+ getTables(&twiddle, &sin_twiddle, &sin_step, L);
+
+#ifdef FUNCTION_dst_IV_func1
+ if ( (M>=4) && ((M&3) == 0) ) {
+ dst_IV_func1(M, twiddle, &pDat[0], &pDat[L]);
+ } else
+#endif
+ {
+ FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
+ FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
+
+ register int i;
+
+ /* 34 cycles on ARM926 */
+ for (i = 0; i < M-1; i+=2,pDat_0+=2,pDat_1-=2)
+ {
+ register FIXP_DBL accu1,accu2,accu3,accu4;
+
+ accu1 = pDat_1[1]; accu2 = -pDat_0[0];
+ accu3 = pDat_0[1]; accu4 = -pDat_1[0];
+
+ cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
+ cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i+1]);
+
+ pDat_0[0] = accu2; pDat_0[1] = accu1;
+ pDat_1[0] = accu4; pDat_1[1] = -accu3;
+ }
+ if (M&1)
+ {
+ register FIXP_DBL accu1,accu2;
+
+ accu1 = pDat_1[1]; accu2 = -pDat_0[0];
+
+ cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
+
+ pDat_0[0] = accu2; pDat_0[1] = accu1;
+ }
+ }
+
+ fft(M, pDat, pDat_e);
+
+#ifdef FUNCTION_dst_IV_func2
+ if ( (M>=4) && ((M&3) == 0) ) {
+ dst_IV_func2(M>>2, sin_twiddle + sin_step, &pDat[0], &pDat[L - 1], sin_step);
+ } else
+#endif /* FUNCTION_dst_IV_func2 */
+ {
+ FIXP_DBL *RESTRICT pDat_0;
+ FIXP_DBL *RESTRICT pDat_1;
+ register FIXP_DBL accu1,accu2,accu3,accu4;
+ int idx, i;
+
+ pDat_0 = &pDat[0];
+ pDat_1 = &pDat[L - 2];
+
+ /* Sin and Cos values are 0.0f and 1.0f */
+ accu1 = pDat_1[0];
+ accu2 = pDat_1[1];
+
+ pDat_1[1] = -(pDat_0[0]>>1);
+ pDat_0[0] = (pDat_0[1]>>1);
+
+ for (idx = sin_step,i=1; i<(M+1)>>1; i++, idx+=sin_step)
+ {
+ FIXP_STP twd = sin_twiddle[idx];
+
+ cplxMultDiv2(&accu3, &accu4, accu1, accu2, twd);
+ pDat_1[0] = -accu3;
+ pDat_0[1] = -accu4;
+
+ pDat_0+=2;
+ pDat_1-=2;
+
+ cplxMultDiv2(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
+
+ accu1 = pDat_1[0];
+ accu2 = pDat_1[1];
+
+ pDat_0[0] = accu3;
+ pDat_1[1] = -accu4;
+ }
+
+ if ( (M&1) == 0 )
+ {
+ /* Last Sin and Cos value pair are the same */
+ accu1 = fMultDiv2(accu1, WTC(0x5a82799a));
+ accu2 = fMultDiv2(accu2, WTC(0x5a82799a));
+
+ pDat_0[1] = - accu1 - accu2;
+ pDat_1[0] = accu2 - accu1;
+ }
+ }
+
+ /* Add twiddeling scale. */
+ *pDat_e += 2;
+}
+#endif /* !defined(FUNCTION_dst_IV) */
+
+