summaryrefslogtreecommitdiffstats
path: root/libFDK/include/fixpoint_math.h
diff options
context:
space:
mode:
authorThe Android Open Source Project <initial-contribution@android.com>2012-07-11 10:15:24 -0700
committerThe Android Open Source Project <initial-contribution@android.com>2012-07-11 10:15:24 -0700
commit2228e360595641dd906bf1773307f43d304f5b2e (patch)
tree57f3d390ebb0782cc0de0fb984c8ea7e45b4f386 /libFDK/include/fixpoint_math.h
downloadODR-AudioEnc-2228e360595641dd906bf1773307f43d304f5b2e.tar.gz
ODR-AudioEnc-2228e360595641dd906bf1773307f43d304f5b2e.tar.bz2
ODR-AudioEnc-2228e360595641dd906bf1773307f43d304f5b2e.zip
Snapshot 2bda038c163298531d47394bc2c09e1409c5d0db
Change-Id: If584e579464f28b97d50e51fc76ba654a5536c54
Diffstat (limited to 'libFDK/include/fixpoint_math.h')
-rw-r--r--libFDK/include/fixpoint_math.h466
1 files changed, 466 insertions, 0 deletions
diff --git a/libFDK/include/fixpoint_math.h b/libFDK/include/fixpoint_math.h
new file mode 100644
index 0000000..ae554cb
--- /dev/null
+++ b/libFDK/include/fixpoint_math.h
@@ -0,0 +1,466 @@
+
+/* -----------------------------------------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
+ All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
+the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
+This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
+audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
+independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
+of the MPEG specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
+may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
+individually for the purpose of encoding or decoding bit streams in products that are compliant with
+the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
+these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
+software may already be covered under those patent licenses when it is used for those licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
+are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
+applications information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification, are permitted without
+payment of copyright license fees provided that you satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
+your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation and/or other materials
+provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
+You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived from this library without
+prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
+software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
+and the date of any change. For modified versions of the FDK AAC Codec, the term
+"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
+"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
+ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
+respect to this software.
+
+You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
+by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
+"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
+of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
+including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
+or business interruption, however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of this software, even if
+advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------------------------------------- */
+
+/*************************** Fraunhofer IIS FDK Tools **********************
+
+ Author(s): M. Gayer
+ Description: Fixed point specific mathematical functions
+
+******************************************************************************/
+
+#ifndef __fixpoint_math_H
+#define __fixpoint_math_H
+
+
+#include "common_fix.h"
+
+
+#define LD_DATA_SCALING (64.0f)
+#define LD_DATA_SHIFT 6 /* pow(2, LD_DATA_SHIFT) = LD_DATA_SCALING */
+
+/**
+ * \brief deprecated. Use fLog2() instead.
+ */
+FIXP_DBL CalcLdData(FIXP_DBL op);
+
+void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT number);
+
+FIXP_DBL CalcInvLdData(FIXP_DBL op);
+
+
+void InitLdInt();
+FIXP_DBL CalcLdInt(INT i);
+
+extern const USHORT sqrt_tab[49];
+
+inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x)
+{
+ UINT y = (INT)x;
+ UCHAR is_zero=(y==0);
+ INT zeros=fixnormz_D(y) & 0x1e;
+ y<<=zeros;
+ UINT idx=(y>>26)-16;
+ USHORT frac=(y>>10)&0xffff;
+ USHORT nfrac=0xffff^frac;
+ UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1];
+ t=t>>(zeros>>1);
+ return(is_zero ? 0 : t);
+}
+
+inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x, INT *x_e)
+{
+ UINT y = (INT)x;
+ INT e;
+
+ if (x == (FIXP_DBL)0) {
+ return x;
+ }
+
+ /* Normalize */
+ e=fixnormz_D(y);
+ y<<=e;
+ e = *x_e - e + 2;
+
+ /* Correct odd exponent. */
+ if (e & 1) {
+ y >>= 1;
+ e ++;
+ }
+ /* Get square root */
+ UINT idx=(y>>26)-16;
+ USHORT frac=(y>>10)&0xffff;
+ USHORT nfrac=0xffff^frac;
+ UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1];
+
+ /* Write back exponent */
+ *x_e = e >> 1;
+ return (FIXP_DBL)(LONG)(t>>1);
+}
+
+
+
+FIXP_DBL sqrtFixp(FIXP_DBL op);
+
+void InitInvSqrtTab();
+
+FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift);
+
+/*****************************************************************************
+
+ functionname: invFixp
+ description: delivers 1/(op)
+
+*****************************************************************************/
+inline FIXP_DBL invFixp(FIXP_DBL op)
+{
+ INT tmp_exp ;
+ FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp) ;
+ FDK_ASSERT((31-(2*tmp_exp+1))>=0) ;
+ return ( fPow2Div2( (FIXP_DBL)tmp_inv ) >> (31-(2*tmp_exp+1)) ) ;
+}
+
+
+
+#if defined(__mips__) && (__GNUC__==2)
+
+#define FUNCTION_schur_div
+inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count)
+{
+ INT result, tmp ;
+ __asm__ ("srl %1, %2, 15\n"
+ "div %3, %1\n" : "=lo" (result)
+ : "%d" (tmp), "d" (denum) , "d" (num)
+ : "hi" ) ;
+ return result<<16 ;
+}
+
+/*###########################################################################################*/
+#elif defined(__mips__) && (__GNUC__==3)
+
+#define FUNCTION_schur_div
+inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count)
+{
+ INT result, tmp;
+
+ __asm__ ("srl %[tmp], %[denum], 15\n"
+ "div %[result], %[num], %[tmp]\n"
+ : [tmp] "+r" (tmp), [result]"=r"(result)
+ : [denum]"r"(denum), [num]"r"(num)
+ : "hi", "lo");
+ return result << (DFRACT_BITS-16);
+}
+
+/*###########################################################################################*/
+#elif defined(SIMULATE_MIPS_DIV)
+
+#define FUNCTION_schur_div
+inline FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count)
+{
+ FDK_ASSERT (count<=DFRACT_BITS-1);
+ FDK_ASSERT (num>=(FIXP_DBL)0);
+ FDK_ASSERT (denum>(FIXP_DBL)0);
+ FDK_ASSERT (num <= denum);
+
+ INT tmp = denum >> (count-1);
+ INT result = 0;
+
+ while (num > tmp)
+ {
+ num -= tmp;
+ result++;
+ }
+
+ return result << (DFRACT_BITS-count);
+}
+
+/*###########################################################################################*/
+#endif /* target architecture selector */
+
+#if !defined(FUNCTION_schur_div)
+/**
+ * \brief Divide two FIXP_DBL values with given precision.
+ * \param num dividend
+ * \param denum divisor
+ * \param count amount of significant bits of the result (starting to the MSB)
+ * \return num/divisor
+ */
+FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count);
+#endif
+
+
+
+FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1,
+ const FIXP_SGL op2);
+
+/**
+ * \brief multiply two values with normalization, thus max precision.
+ * Author: Robert Weidner
+ *
+ * \param f1 first factor
+ * \param f2 secod factor
+ * \param result_e pointer to an INT where the exponent of the result is stored into
+ * \return mantissa of the product f1*f2
+ */
+FIXP_DBL fMultNorm(
+ FIXP_DBL f1,
+ FIXP_DBL f2,
+ INT *result_e
+ );
+
+inline FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2)
+{
+ FIXP_DBL m;
+ INT e;
+
+ m = fMultNorm(f1, f2, &e);
+
+ m = scaleValueSaturate(m, e);
+
+ return m;
+}
+
+/**
+ * \brief Divide 2 FIXP_DBL values with normalization of input values.
+ * \param num numerator
+ * \param denum denomintator
+ * \return num/denum with exponent = 0
+ */
+FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom, INT *result_e);
+
+/**
+ * \brief Divide 2 FIXP_DBL values with normalization of input values.
+ * \param num numerator
+ * \param denum denomintator
+ * \param result_e pointer to an INT where the exponent of the result is stored into
+ * \return num/denum with exponent = *result_e
+ */
+FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom);
+
+/**
+ * \brief Divide 2 FIXP_DBL values with normalization of input values.
+ * \param num numerator
+ * \param denum denomintator
+ * \return num/denum with exponent = 0
+ */
+FIXP_DBL fDivNormHighPrec(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e);
+
+/**
+ * \brief Calculate log(argument)/log(2) (logarithm with base 2). deprecated. Use fLog2() instead.
+ * \param arg mantissa of the argument
+ * \param arg_e exponent of the argument
+ * \param result_e pointer to an INT to store the exponent of the result
+ * \return the mantissa of the result.
+ * \param
+ */
+FIXP_DBL CalcLog2(FIXP_DBL arg, INT arg_e, INT *result_e);
+
+/**
+ * \brief return 2 ^ (exp * 2^exp_e)
+ * \param exp_m mantissa of the exponent to 2.0f
+ * \param exp_e exponent of the exponent to 2.0f
+ * \param result_e pointer to a INT where the exponent of the result will be stored into
+ * \return mantissa of the result
+ */
+FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e);
+
+/**
+ * \brief return 2 ^ (exp_m * 2^exp_e). This version returns only the mantissa with implicit exponent of zero.
+ * \param exp_m mantissa of the exponent to 2.0f
+ * \param exp_e exponent of the exponent to 2.0f
+ * \return mantissa of the result
+ */
+FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e);
+
+/**
+ * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves
+ * the need to compute log2() of constant values (when x is a constant).
+ * \param ldx_m mantissa of log2() of x.
+ * \param ldx_e exponent of log2() of x.
+ * \param exp_m mantissa of the exponent to 2.0f
+ * \param exp_e exponent of the exponent to 2.0f
+ * \param result_e pointer to a INT where the exponent of the result will be stored into
+ * \return mantissa of the result
+ */
+FIXP_DBL fLdPow(
+ FIXP_DBL baseLd_m,
+ INT baseLd_e,
+ FIXP_DBL exp_m, INT exp_e,
+ INT *result_e
+ );
+
+/**
+ * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves
+ * the need to compute log2() of constant values (when x is a constant). This version
+ * does not return an exponent, which is implicitly 0.
+ * \param ldx_m mantissa of log2() of x.
+ * \param ldx_e exponent of log2() of x.
+ * \param exp_m mantissa of the exponent to 2.0f
+ * \param exp_e exponent of the exponent to 2.0f
+ * \return mantissa of the result
+ */
+FIXP_DBL fLdPow(
+ FIXP_DBL baseLd_m, INT baseLd_e,
+ FIXP_DBL exp_m, INT exp_e
+ );
+
+/**
+ * \brief return (base * 2^base_e) ^ (exp * 2^exp_e). Use fLdPow() instead whenever possible.
+ * \param base_m mantissa of the base.
+ * \param base_e exponent of the base.
+ * \param exp_m mantissa of power to be calculated of the base.
+ * \param exp_e exponent of power to be calculated of the base.
+ * \param result_e pointer to a INT where the exponent of the result will be stored into.
+ * \return mantissa of the result.
+ */
+FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e, INT *result_e);
+
+/**
+ * \brief return (base * 2^base_e) ^ N
+ * \param base mantissa of the base
+ * \param base_e exponent of the base
+ * \param power to be calculated of the base
+ * \param result_e pointer to a INT where the exponent of the result will be stored into
+ * \return mantissa of the result
+ */
+FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT N, INT *result_e);
+
+/**
+ * \brief calculate logarithm of base 2 of x_m * 2^(x_e)
+ * \param x_m mantissa of the input value.
+ * \param x_e exponent of the input value.
+ * \param pointer to an INT where the exponent of the result is returned into.
+ * \return mantissa of the result.
+ */
+FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e);
+
+/**
+ * \brief calculate logarithm of base 2 of x_m * 2^(x_e)
+ * \param x_m mantissa of the input value.
+ * \param x_e exponent of the input value.
+ * \return mantissa of the result with implicit exponent of LD_DATA_SHIFT.
+ */
+FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e);
+
+/**
+ * \brief Add with saturation of the result.
+ * \param a first summand
+ * \param b second summand
+ * \return saturated sum of a and b.
+ */
+inline FIXP_SGL fAddSaturate(const FIXP_SGL a, const FIXP_SGL b)
+{
+ LONG sum;
+
+ sum = (LONG)(SHORT)a + (LONG)(SHORT)b;
+ sum = fMax(fMin((INT)sum, (INT)MAXVAL_SGL), (INT)MINVAL_SGL);
+ return (FIXP_SGL)(SHORT)sum;
+}
+
+/**
+ * \brief Add with saturation of the result.
+ * \param a first summand
+ * \param b second summand
+ * \return saturated sum of a and b.
+ */
+inline FIXP_DBL fAddSaturate(const FIXP_DBL a, const FIXP_DBL b)
+{
+ LONG sum;
+
+ sum = (LONG)(a>>1) + (LONG)(b>>1);
+ sum = fMax(fMin((INT)sum, (INT)(MAXVAL_DBL>>1)), (INT)(MINVAL_DBL>>1));
+ return (FIXP_DBL)(LONG)(sum<<1);
+}
+
+//#define TEST_ROUNDING
+
+
+
+
+/*****************************************************************************
+
+ array for 1/n, n=1..50
+
+****************************************************************************/
+
+ extern const FIXP_DBL invCount[50];
+
+ LNK_SECTION_INITCODE
+ inline void InitInvInt(void) {}
+
+
+/**
+ * \brief Calculate the value of 1/i where i is a integer value. It supports
+ * input values from 1 upto 50.
+ * \param intValue Integer input value.
+ * \param FIXP_DBL representation of 1/intValue
+ */
+inline FIXP_DBL GetInvInt(int intValue)
+{
+ FDK_ASSERT((intValue > 0) && (intValue < 50));
+ FDK_ASSERT(intValue<50);
+ return invCount[intValue];
+}
+
+
+#endif
+