summaryrefslogtreecommitdiffstats
path: root/libAACenc/src/sf_estim.cpp
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2016-09-10 20:15:44 +0200
committerMatthias P. Braendli <matthias.braendli@mpb.li>2016-09-10 20:15:44 +0200
commit14c7b800eaa23e9da7c92c7c4df397d0c191f097 (patch)
treed840b6ec41ff74d1184ca1dcd7731d08f1e9ebbb /libAACenc/src/sf_estim.cpp
parent78a801e4d716c6f2403cc56cf6c5b6f138f24b2f (diff)
downloadODR-AudioEnc-14c7b800eaa23e9da7c92c7c4df397d0c191f097.tar.gz
ODR-AudioEnc-14c7b800eaa23e9da7c92c7c4df397d0c191f097.tar.bz2
ODR-AudioEnc-14c7b800eaa23e9da7c92c7c4df397d0c191f097.zip
Remove FDK-AAC
Diffstat (limited to 'libAACenc/src/sf_estim.cpp')
-rw-r--r--libAACenc/src/sf_estim.cpp1301
1 files changed, 0 insertions, 1301 deletions
diff --git a/libAACenc/src/sf_estim.cpp b/libAACenc/src/sf_estim.cpp
deleted file mode 100644
index 72b75a6..0000000
--- a/libAACenc/src/sf_estim.cpp
+++ /dev/null
@@ -1,1301 +0,0 @@
-
-/* -----------------------------------------------------------------------------------------------------------
-Software License for The Fraunhofer FDK AAC Codec Library for Android
-
-© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- All rights reserved.
-
- 1. INTRODUCTION
-The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
-the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
-This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
-
-AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
-audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
-independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
-of the MPEG specifications.
-
-Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
-may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
-individually for the purpose of encoding or decoding bit streams in products that are compliant with
-the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
-these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
-software may already be covered under those patent licenses when it is used for those licensed purposes only.
-
-Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
-are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
-applications information and documentation.
-
-2. COPYRIGHT LICENSE
-
-Redistribution and use in source and binary forms, with or without modification, are permitted without
-payment of copyright license fees provided that you satisfy the following conditions:
-
-You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
-your modifications thereto in source code form.
-
-You must retain the complete text of this software license in the documentation and/or other materials
-provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
-You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
-modifications thereto to recipients of copies in binary form.
-
-The name of Fraunhofer may not be used to endorse or promote products derived from this library without
-prior written permission.
-
-You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
-software or your modifications thereto.
-
-Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
-and the date of any change. For modified versions of the FDK AAC Codec, the term
-"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
-"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
-
-3. NO PATENT LICENSE
-
-NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
-ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
-respect to this software.
-
-You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
-by appropriate patent licenses.
-
-4. DISCLAIMER
-
-This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
-"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
-of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
-CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
-including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
-or business interruption, however caused and on any theory of liability, whether in contract, strict
-liability, or tort (including negligence), arising in any way out of the use of this software, even if
-advised of the possibility of such damage.
-
-5. CONTACT INFORMATION
-
-Fraunhofer Institute for Integrated Circuits IIS
-Attention: Audio and Multimedia Departments - FDK AAC LL
-Am Wolfsmantel 33
-91058 Erlangen, Germany
-
-www.iis.fraunhofer.de/amm
-amm-info@iis.fraunhofer.de
------------------------------------------------------------------------------------------------------------ */
-
-/******************************** MPEG Audio Encoder **************************
-
- Initial author: M. Werner
- contents/description: Scale factor estimation
-
-******************************************************************************/
-
-#include "sf_estim.h"
-#include "aacEnc_rom.h"
-#include "quantize.h"
-#include "bit_cnt.h"
-
-
-
-
-#define AS_PE_FAC_SHIFT 7
-#define DIST_FAC_SHIFT 3
-#define AS_PE_FAC_FLOAT (float)(1 << AS_PE_FAC_SHIFT)
-static const INT MAX_SCF_DELTA = 60;
-
-
-static const FIXP_DBL PE_C1 = FL2FXCONST_DBL(3.0f/AS_PE_FAC_FLOAT); /* (log(8.0)/log(2)) >> AS_PE_FAC_SHIFT */
-static const FIXP_DBL PE_C2 = FL2FXCONST_DBL(1.3219281f/AS_PE_FAC_FLOAT); /* (log(2.5)/log(2)) >> AS_PE_FAC_SHIFT */
-static const FIXP_DBL PE_C3 = FL2FXCONST_DBL(0.5593573f); /* 1-C2/C1 */
-
-
-/*
- Function; FDKaacEnc_FDKaacEnc_CalcFormFactorChannel
-
- Description: Calculates the formfactor
-
- sf: scale factor of the mdct spectrum
- sfbFormFactorLdData is scaled with the factor 1/(((2^sf)^0.5) * (2^FORM_FAC_SHIFT))
-*/
-static void
-FDKaacEnc_FDKaacEnc_CalcFormFactorChannel(FIXP_DBL *RESTRICT sfbFormFactorLdData,
- PSY_OUT_CHANNEL *RESTRICT psyOutChan)
-{
- INT j, sfb, sfbGrp;
- FIXP_DBL formFactor;
-
- int tmp0 = psyOutChan->sfbCnt;
- int tmp1 = psyOutChan->maxSfbPerGroup;
- int step = psyOutChan->sfbPerGroup;
- for(sfbGrp = 0; sfbGrp < tmp0; sfbGrp += step) {
- for (sfb = 0; sfb < tmp1; sfb++) {
- formFactor = FL2FXCONST_DBL(0.0f);
- /* calc sum of sqrt(spec) */
- for(j=psyOutChan->sfbOffsets[sfbGrp+sfb]; j<psyOutChan->sfbOffsets[sfbGrp+sfb+1]; j++ ) {
- formFactor += sqrtFixp(fixp_abs(psyOutChan->mdctSpectrum[j]))>>FORM_FAC_SHIFT;
- }
- sfbFormFactorLdData[sfbGrp+sfb] = CalcLdData(formFactor);
- }
- /* set sfbFormFactor for sfbs with zero spec to zero. Just for debugging. */
- for ( ; sfb < psyOutChan->sfbPerGroup; sfb++) {
- sfbFormFactorLdData[sfbGrp+sfb] = FL2FXCONST_DBL(-1.0f);
- }
- }
-}
-
-/*
- Function: FDKaacEnc_CalcFormFactor
-
- Description: Calls FDKaacEnc_FDKaacEnc_CalcFormFactorChannel() for each channel
-*/
-
-void
-FDKaacEnc_CalcFormFactor(QC_OUT_CHANNEL *qcOutChannel[(2)],
- PSY_OUT_CHANNEL *psyOutChannel[(2)],
- const INT nChannels)
-{
- INT j;
- for (j=0; j<nChannels; j++) {
- FDKaacEnc_FDKaacEnc_CalcFormFactorChannel(qcOutChannel[j]->sfbFormFactorLdData, psyOutChannel[j]);
- }
-}
-
-/*
- Function: FDKaacEnc_calcSfbRelevantLines
-
- Description: Calculates sfbNRelevantLines
-
- sfbNRelevantLines is scaled with the factor 1/((2^FORM_FAC_SHIFT) * 2.0)
-*/
-static void
-FDKaacEnc_calcSfbRelevantLines( const FIXP_DBL *const sfbFormFactorLdData,
- const FIXP_DBL *const sfbEnergyLdData,
- const FIXP_DBL *const sfbThresholdLdData,
- const INT *const sfbOffsets,
- const INT sfbCnt,
- const INT sfbPerGroup,
- const INT maxSfbPerGroup,
- FIXP_DBL *sfbNRelevantLines)
-{
- INT sfbOffs, sfb;
- FIXP_DBL sfbWidthLdData;
- FIXP_DBL asPeFacLdData = FL2FXCONST_DBL(0.109375); /* AS_PE_FAC_SHIFT*ld64(2) */
- FIXP_DBL accu;
-
- /* sfbNRelevantLines[i] = 2^( (sfbFormFactorLdData[i] - 0.25 * (sfbEnergyLdData[i] - ld64(sfbWidth[i]/(2^7)) - AS_PE_FAC_SHIFT*ld64(2)) * 64); */
-
- FDKmemclear(sfbNRelevantLines, sfbCnt * sizeof(FIXP_DBL));
-
- for (sfbOffs=0; sfbOffs<sfbCnt; sfbOffs+=sfbPerGroup) {
- for(sfb=0; sfb<maxSfbPerGroup; sfb++) {
- /* calc sum of sqrt(spec) */
- if((FIXP_DBL)sfbEnergyLdData[sfbOffs+sfb] > (FIXP_DBL)sfbThresholdLdData[sfbOffs+sfb]) {
- INT sfbWidth = sfbOffsets[sfbOffs+sfb+1] - sfbOffsets[sfbOffs+sfb];
-
- /* avgFormFactorLdData = sqrtFixp(sqrtFixp(sfbEnergyLdData[sfbOffs+sfb]/sfbWidth)); */
- /* sfbNRelevantLines[sfbOffs+sfb] = sfbFormFactor[sfbOffs+sfb] / avgFormFactorLdData; */
- sfbWidthLdData = (FIXP_DBL)(sfbWidth << (DFRACT_BITS-1-AS_PE_FAC_SHIFT));
- sfbWidthLdData = CalcLdData(sfbWidthLdData);
-
- accu = sfbEnergyLdData[sfbOffs+sfb] - sfbWidthLdData - asPeFacLdData;
- accu = sfbFormFactorLdData[sfbOffs+sfb] - (accu >> 2);
-
- sfbNRelevantLines[sfbOffs+sfb] = CalcInvLdData(accu) >> 1;
- }
- }
- }
-}
-
-/*
- Function: FDKaacEnc_countSingleScfBits
-
- Description:
-
- scfBitsFract is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
-*/
-static FIXP_DBL FDKaacEnc_countSingleScfBits(INT scf, INT scfLeft, INT scfRight)
-{
- FIXP_DBL scfBitsFract;
-
- scfBitsFract = (FIXP_DBL) ( FDKaacEnc_bitCountScalefactorDelta(scfLeft-scf)
- + FDKaacEnc_bitCountScalefactorDelta(scf-scfRight) );
-
- scfBitsFract = scfBitsFract << (DFRACT_BITS-1-(2*AS_PE_FAC_SHIFT));
-
- return scfBitsFract; /* output scaled by 1/(2^(2*AS_PE_FAC)) */
-}
-
-/*
- Function: FDKaacEnc_calcSingleSpecPe
-
- specPe is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
-*/
-static FIXP_DBL FDKaacEnc_calcSingleSpecPe(INT scf, FIXP_DBL sfbConstPePart, FIXP_DBL nLines)
-{
- FIXP_DBL specPe = FL2FXCONST_DBL(0.0f);
- FIXP_DBL ldRatio;
- FIXP_DBL scfFract;
-
- scfFract = (FIXP_DBL)(scf << (DFRACT_BITS-1-AS_PE_FAC_SHIFT));
-
- ldRatio = sfbConstPePart - fMult(FL2FXCONST_DBL(0.375f),scfFract);
-
- if (ldRatio >= PE_C1) {
- specPe = fMult(FL2FXCONST_DBL(0.7f),fMult(nLines,ldRatio));
- }
- else {
- specPe = fMult(FL2FXCONST_DBL(0.7f),fMult(nLines,(PE_C2 + fMult(PE_C3,ldRatio))));
- }
-
- return specPe; /* output scaled by 1/(2^(2*AS_PE_FAC)) */
-}
-
-/*
- Function: FDKaacEnc_countScfBitsDiff
-
- scfBitsDiff is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
-*/
-static FIXP_DBL FDKaacEnc_countScfBitsDiff(INT *scfOld,
- INT *scfNew,
- INT sfbCnt,
- INT startSfb,
- INT stopSfb)
-{
- FIXP_DBL scfBitsFract;
- INT scfBitsDiff = 0;
- INT sfb = 0, sfbLast;
- INT sfbPrev, sfbNext;
-
- /* search for first relevant sfb */
- sfbLast = startSfb;
- while ((sfbLast<stopSfb) && (scfOld[sfbLast]==FDK_INT_MIN))
- sfbLast++;
- /* search for previous relevant sfb and count diff */
- sfbPrev = startSfb - 1;
- while ((sfbPrev>=0) && (scfOld[sfbPrev]==FDK_INT_MIN))
- sfbPrev--;
- if (sfbPrev>=0)
- scfBitsDiff += FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbPrev]-scfNew[sfbLast]) -
- FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbPrev]-scfOld[sfbLast]);
- /* now loop through all sfbs and count diffs of relevant sfbs */
- for (sfb=sfbLast+1; sfb<stopSfb; sfb++) {
- if (scfOld[sfb]!=FDK_INT_MIN) {
- scfBitsDiff += FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbLast]-scfNew[sfb]) -
- FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbLast]-scfOld[sfb]);
- sfbLast = sfb;
- }
- }
- /* search for next relevant sfb and count diff */
- sfbNext = stopSfb;
- while ((sfbNext<sfbCnt) && (scfOld[sfbNext]==FDK_INT_MIN))
- sfbNext++;
- if (sfbNext<sfbCnt)
- scfBitsDiff += FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbLast]-scfNew[sfbNext]) -
- FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbLast]-scfOld[sfbNext]);
-
- scfBitsFract = (FIXP_DBL) (scfBitsDiff << (DFRACT_BITS-1-(2*AS_PE_FAC_SHIFT)));
-
- return scfBitsFract;
-}
-
-/*
- Function: FDKaacEnc_calcSpecPeDiff
-
- specPeDiff is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
-*/
-static FIXP_DBL FDKaacEnc_calcSpecPeDiff(PSY_OUT_CHANNEL *psyOutChan,
- QC_OUT_CHANNEL *qcOutChannel,
- INT *scfOld,
- INT *scfNew,
- FIXP_DBL *sfbConstPePart,
- FIXP_DBL *sfbFormFactorLdData,
- FIXP_DBL *sfbNRelevantLines,
- INT startSfb,
- INT stopSfb)
-{
- FIXP_DBL specPeDiff = FL2FXCONST_DBL(0.0f);
- FIXP_DBL scfFract = FL2FXCONST_DBL(0.0f);
- INT sfb;
-
- /* loop through all sfbs and count pe difference */
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scfOld[sfb]!=FDK_INT_MIN) {
- FIXP_DBL ldRatioOld, ldRatioNew, pOld, pNew;
-
- /* sfbConstPePart[sfb] = (float)log(psyOutChan->sfbEnergy[sfb] * 6.75f / sfbFormFactor[sfb]) * LOG2_1; */
- /* 0.02152255861f = log(6.75)/log(2)/AS_PE_FAC_FLOAT; LOG2_1 is 1.0 for log2 */
- /* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */
- if (sfbConstPePart[sfb] == (FIXP_DBL)FDK_INT_MIN)
- sfbConstPePart[sfb] = ((psyOutChan->sfbEnergyLdData[sfb] - sfbFormFactorLdData[sfb] - FL2FXCONST_DBL(0.09375f)) >> 1) + FL2FXCONST_DBL(0.02152255861f);
-
- scfFract = (FIXP_DBL) (scfOld[sfb] << (DFRACT_BITS-1-AS_PE_FAC_SHIFT));
- ldRatioOld = sfbConstPePart[sfb] - fMult(FL2FXCONST_DBL(0.375f),scfFract);
-
- scfFract = (FIXP_DBL) (scfNew[sfb] << (DFRACT_BITS-1-AS_PE_FAC_SHIFT));
- ldRatioNew = sfbConstPePart[sfb] - fMult(FL2FXCONST_DBL(0.375f),scfFract);
-
- if (ldRatioOld >= PE_C1)
- pOld = ldRatioOld;
- else
- pOld = PE_C2 + fMult(PE_C3,ldRatioOld);
-
- if (ldRatioNew >= PE_C1)
- pNew = ldRatioNew;
- else
- pNew = PE_C2 + fMult(PE_C3,ldRatioNew);
-
- specPeDiff += fMult(FL2FXCONST_DBL(0.7f),fMult(sfbNRelevantLines[sfb],(pNew - pOld)));
- }
- }
-
- return specPeDiff;
-}
-
-/*
- Function: FDKaacEnc_improveScf
-
- Description: Calculate the distortion by quantization and inverse quantization of the spectrum with
- various scalefactors. The scalefactor which provides the best results will be used.
-*/
-static INT FDKaacEnc_improveScf(FIXP_DBL *spec,
- SHORT *quantSpec,
- SHORT *quantSpecTmp,
- INT sfbWidth,
- FIXP_DBL threshLdData,
- INT scf,
- INT minScf,
- FIXP_DBL *distLdData,
- INT *minScfCalculated
- )
-{
- FIXP_DBL sfbDistLdData;
- INT scfBest = scf;
- INT k;
- FIXP_DBL distFactorLdData = FL2FXCONST_DBL(-0.0050301265); /* ld64(1/1.25) */
-
- /* calc real distortion */
- sfbDistLdData = FDKaacEnc_calcSfbDist(spec,
- quantSpec,
- sfbWidth,
- scf);
- *minScfCalculated = scf;
- /* nmr > 1.25 -> try to improve nmr */
- if (sfbDistLdData > (threshLdData-distFactorLdData)) {
- INT scfEstimated = scf;
- FIXP_DBL sfbDistBestLdData = sfbDistLdData;
- INT cnt;
- /* improve by bigger scf ? */
- cnt = 0;
-
- while ((sfbDistLdData > (threshLdData-distFactorLdData)) && (cnt++ < 3)) {
- scf++;
- sfbDistLdData = FDKaacEnc_calcSfbDist(spec,
- quantSpecTmp,
- sfbWidth,
- scf);
-
- if (sfbDistLdData < sfbDistBestLdData) {
- scfBest = scf;
- sfbDistBestLdData = sfbDistLdData;
- for (k=0; k<sfbWidth; k++)
- quantSpec[k] = quantSpecTmp[k];
- }
- }
- /* improve by smaller scf ? */
- cnt = 0;
- scf = scfEstimated;
- sfbDistLdData = sfbDistBestLdData;
- while ((sfbDistLdData > (threshLdData-distFactorLdData)) && (cnt++ < 1) && (scf > minScf)) {
- scf--;
- sfbDistLdData = FDKaacEnc_calcSfbDist(spec,
- quantSpecTmp,
- sfbWidth,
- scf);
-
- if (sfbDistLdData < sfbDistBestLdData) {
- scfBest = scf;
- sfbDistBestLdData = sfbDistLdData;
- for (k=0; k<sfbWidth; k++)
- quantSpec[k] = quantSpecTmp[k];
- }
- *minScfCalculated = scf;
- }
- *distLdData = sfbDistBestLdData;
- }
- else { /* nmr <= 1.25 -> try to find bigger scf to use less bits */
- FIXP_DBL sfbDistBestLdData = sfbDistLdData;
- FIXP_DBL sfbDistAllowedLdData = fixMin(sfbDistLdData-distFactorLdData,threshLdData);
- int cnt;
- for (cnt=0; cnt<3; cnt++) {
- scf++;
- sfbDistLdData = FDKaacEnc_calcSfbDist(spec,
- quantSpecTmp,
- sfbWidth,
- scf);
-
- if (sfbDistLdData < sfbDistAllowedLdData) {
- *minScfCalculated = scfBest+1;
- scfBest = scf;
- sfbDistBestLdData = sfbDistLdData;
- for (k=0; k<sfbWidth; k++)
- quantSpec[k] = quantSpecTmp[k];
- }
- }
- *distLdData = sfbDistBestLdData;
- }
-
- /* return best scalefactor */
- return scfBest;
-}
-
-/*
- Function: FDKaacEnc_assimilateSingleScf
-
-*/
-static void FDKaacEnc_assimilateSingleScf(PSY_OUT_CHANNEL *psyOutChan,
- QC_OUT_CHANNEL *qcOutChannel,
- SHORT *quantSpec,
- SHORT *quantSpecTmp,
- INT *scf,
- INT *minScf,
- FIXP_DBL *sfbDist,
- FIXP_DBL *sfbConstPePart,
- FIXP_DBL *sfbFormFactorLdData,
- FIXP_DBL *sfbNRelevantLines,
- INT *minScfCalculated,
- INT restartOnSuccess)
-{
- INT sfbLast, sfbAct, sfbNext;
- INT scfAct, *scfLast, *scfNext, scfMin, scfMax;
- INT sfbWidth, sfbOffs;
- FIXP_DBL enLdData;
- FIXP_DBL sfbPeOld, sfbPeNew;
- FIXP_DBL sfbDistNew;
- INT i, k;
- INT success = 0;
- FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f);
- FIXP_DBL deltaPeNew, deltaPeTmp;
- INT prevScfLast[MAX_GROUPED_SFB], prevScfNext[MAX_GROUPED_SFB];
- FIXP_DBL deltaPeLast[MAX_GROUPED_SFB];
- INT updateMinScfCalculated;
-
- for (i=0; i<psyOutChan->sfbCnt; i++) {
- prevScfLast[i] = FDK_INT_MAX;
- prevScfNext[i] = FDK_INT_MAX;
- deltaPeLast[i] = (FIXP_DBL)FDK_INT_MAX;
- }
-
- sfbLast = -1;
- sfbAct = -1;
- sfbNext = -1;
- scfLast = 0;
- scfNext = 0;
- scfMin = FDK_INT_MAX;
- scfMax = FDK_INT_MAX;
- do {
- /* search for new relevant sfb */
- sfbNext++;
- while ((sfbNext < psyOutChan->sfbCnt) && (scf[sfbNext] == FDK_INT_MIN))
- sfbNext++;
- if ((sfbLast>=0) && (sfbAct>=0) && (sfbNext<psyOutChan->sfbCnt)) {
- /* relevant scfs to the left and to the right */
- scfAct = scf[sfbAct];
- scfLast = scf + sfbLast;
- scfNext = scf + sfbNext;
- scfMin = fixMin(*scfLast, *scfNext);
- scfMax = fixMax(*scfLast, *scfNext);
- }
- else if ((sfbLast==-1) && (sfbAct>=0) && (sfbNext<psyOutChan->sfbCnt)) {
- /* first relevant scf */
- scfAct = scf[sfbAct];
- scfLast = &scfAct;
- scfNext = scf + sfbNext;
- scfMin = *scfNext;
- scfMax = *scfNext;
- }
- else if ((sfbLast>=0) && (sfbAct>=0) && (sfbNext==psyOutChan->sfbCnt)) {
- /* last relevant scf */
- scfAct = scf[sfbAct];
- scfLast = scf + sfbLast;
- scfNext = &scfAct;
- scfMin = *scfLast;
- scfMax = *scfLast;
- }
- if (sfbAct>=0)
- scfMin = fixMax(scfMin, minScf[sfbAct]);
-
- if ((sfbAct >= 0) &&
- (sfbLast>=0 || sfbNext<psyOutChan->sfbCnt) &&
- (scfAct > scfMin) &&
- (scfAct <= scfMin+MAX_SCF_DELTA) &&
- (scfAct >= scfMax-MAX_SCF_DELTA) &&
- (*scfLast != prevScfLast[sfbAct] ||
- *scfNext != prevScfNext[sfbAct] ||
- deltaPe < deltaPeLast[sfbAct])) {
- /* bigger than neighbouring scf found, try to use smaller scf */
- success = 0;
-
- sfbWidth = psyOutChan->sfbOffsets[sfbAct+1] - psyOutChan->sfbOffsets[sfbAct];
- sfbOffs = psyOutChan->sfbOffsets[sfbAct];
-
- /* estimate required bits for actual scf */
- enLdData = qcOutChannel->sfbEnergyLdData[sfbAct];
-
- /* sfbConstPePart[sfbAct] = (float)log(6.75f*en/sfbFormFactor[sfbAct]) * LOG2_1; */
- /* 0.02152255861f = log(6.75)/log(2)/AS_PE_FAC_FLOAT; LOG2_1 is 1.0 for log2 */
- /* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */
- if (sfbConstPePart[sfbAct] == (FIXP_DBL)FDK_INT_MIN) {
- sfbConstPePart[sfbAct] = ((enLdData - sfbFormFactorLdData[sfbAct] - FL2FXCONST_DBL(0.09375f)) >> 1) + FL2FXCONST_DBL(0.02152255861f);
- }
-
- sfbPeOld = FDKaacEnc_calcSingleSpecPe(scfAct,sfbConstPePart[sfbAct],sfbNRelevantLines[sfbAct])
- +FDKaacEnc_countSingleScfBits(scfAct, *scfLast, *scfNext);
-
- deltaPeNew = deltaPe;
- updateMinScfCalculated = 1;
-
- do {
- /* estimate required bits for smaller scf */
- scfAct--;
- /* check only if the same check was not done before */
- if (scfAct < minScfCalculated[sfbAct] && scfAct>=scfMax-MAX_SCF_DELTA){
- /* estimate required bits for new scf */
- sfbPeNew = FDKaacEnc_calcSingleSpecPe(scfAct,sfbConstPePart[sfbAct],sfbNRelevantLines[sfbAct])
- +FDKaacEnc_countSingleScfBits(scfAct,*scfLast, *scfNext);
-
- /* use new scf if no increase in pe and
- quantization error is smaller */
- deltaPeTmp = deltaPe + sfbPeNew - sfbPeOld;
- /* 0.0006103515625f = 10.0f/(2^(2*AS_PE_FAC_SHIFT)) */
- if (deltaPeTmp < FL2FXCONST_DBL(0.0006103515625f)) {
- /* distortion of new scf */
- sfbDistNew = FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+sfbOffs,
- quantSpecTmp+sfbOffs,
- sfbWidth,
- scfAct);
-
- if (sfbDistNew < sfbDist[sfbAct]) {
- /* success, replace scf by new one */
- scf[sfbAct] = scfAct;
- sfbDist[sfbAct] = sfbDistNew;
-
- for (k=0; k<sfbWidth; k++)
- quantSpec[sfbOffs+k] = quantSpecTmp[sfbOffs+k];
-
- deltaPeNew = deltaPeTmp;
- success = 1;
- }
- /* mark as already checked */
- if (updateMinScfCalculated)
- minScfCalculated[sfbAct] = scfAct;
- }
- else {
- /* from this scf value on not all new values have been checked */
- updateMinScfCalculated = 0;
- }
- }
- } while (scfAct > scfMin);
-
- deltaPe = deltaPeNew;
-
- /* save parameters to avoid multiple computations of the same sfb */
- prevScfLast[sfbAct] = *scfLast;
- prevScfNext[sfbAct] = *scfNext;
- deltaPeLast[sfbAct] = deltaPe;
- }
-
- if (success && restartOnSuccess) {
- /* start again at first sfb */
- sfbLast = -1;
- sfbAct = -1;
- sfbNext = -1;
- scfLast = 0;
- scfNext = 0;
- scfMin = FDK_INT_MAX;
- scfMax = FDK_INT_MAX;
- success = 0;
- }
- else {
- /* shift sfbs for next band */
- sfbLast = sfbAct;
- sfbAct = sfbNext;
- }
- } while (sfbNext < psyOutChan->sfbCnt);
-}
-
-/*
- Function: FDKaacEnc_assimilateMultipleScf
-
-*/
-static void FDKaacEnc_assimilateMultipleScf(PSY_OUT_CHANNEL *psyOutChan,
- QC_OUT_CHANNEL *qcOutChannel,
- SHORT *quantSpec,
- SHORT *quantSpecTmp,
- INT *scf,
- INT *minScf,
- FIXP_DBL *sfbDist,
- FIXP_DBL *sfbConstPePart,
- FIXP_DBL *sfbFormFactorLdData,
- FIXP_DBL *sfbNRelevantLines)
-{
- INT sfb, startSfb, stopSfb;
- INT scfTmp[MAX_GROUPED_SFB], scfMin, scfMax, scfAct;
- INT possibleRegionFound;
- INT sfbWidth, sfbOffs, i, k;
- FIXP_DBL sfbDistNew[MAX_GROUPED_SFB], distOldSum, distNewSum;
- INT deltaScfBits;
- FIXP_DBL deltaSpecPe;
- FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f);
- FIXP_DBL deltaPeNew;
- INT sfbCnt = psyOutChan->sfbCnt;
-
- /* calc min and max scalfactors */
- scfMin = FDK_INT_MAX;
- scfMax = FDK_INT_MIN;
- for (sfb=0; sfb<sfbCnt; sfb++) {
- if (scf[sfb]!=FDK_INT_MIN) {
- scfMin = fixMin(scfMin, scf[sfb]);
- scfMax = fixMax(scfMax, scf[sfb]);
- }
- }
-
- if (scfMax != FDK_INT_MIN && scfMax <= scfMin+MAX_SCF_DELTA) {
-
- scfAct = scfMax;
-
- do {
- /* try smaller scf */
- scfAct--;
- for (i=0; i<MAX_GROUPED_SFB; i++)
- scfTmp[i] = scf[i];
- stopSfb = 0;
- do {
- /* search for region where all scfs are bigger than scfAct */
- sfb = stopSfb;
- while (sfb<sfbCnt && (scf[sfb]==FDK_INT_MIN || scf[sfb] <= scfAct))
- sfb++;
- startSfb = sfb;
- sfb++;
- while (sfb<sfbCnt && (scf[sfb]==FDK_INT_MIN || scf[sfb] > scfAct))
- sfb++;
- stopSfb = sfb;
-
- /* check if in all sfb of a valid region scfAct >= minScf[sfb] */
- possibleRegionFound = 0;
- if (startSfb < sfbCnt) {
- possibleRegionFound = 1;
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scf[sfb] != FDK_INT_MIN)
- if (scfAct < minScf[sfb]) {
- possibleRegionFound = 0;
- break;
- }
- }
- }
-
- if (possibleRegionFound) { /* region found */
-
- /* replace scfs in region by scfAct */
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scfTmp[sfb] != FDK_INT_MIN)
- scfTmp[sfb] = scfAct;
- }
-
- /* estimate change in bit demand for new scfs */
- deltaScfBits = FDKaacEnc_countScfBitsDiff(scf,scfTmp,sfbCnt,startSfb,stopSfb);
-
- deltaSpecPe = FDKaacEnc_calcSpecPeDiff(psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
- sfbFormFactorLdData, sfbNRelevantLines,
- startSfb, stopSfb);
-
- deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;
-
- /* new bit demand small enough ? */
- /* 0.0006103515625f = 10.0f/(2^(2*AS_PE_FAC_SHIFT)) */
- if (deltaPeNew < FL2FXCONST_DBL(0.0006103515625f)) {
-
- /* quantize and calc sum of new distortion */
- distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scfTmp[sfb] != FDK_INT_MIN) {
- distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;
-
- sfbWidth = psyOutChan->sfbOffsets[sfb+1] - psyOutChan->sfbOffsets[sfb];
- sfbOffs = psyOutChan->sfbOffsets[sfb];
-
- sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+sfbOffs,
- quantSpecTmp+sfbOffs,
- sfbWidth,
- scfAct);
-
- if (sfbDistNew[sfb] >qcOutChannel->sfbThresholdLdData[sfb]) {
- /* no improvement, skip further dist. calculations */
- distNewSum = distOldSum << 1;
- break;
- }
- distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT;
- }
- }
- /* distortion smaller ? -> use new scalefactors */
- if (distNewSum < distOldSum) {
- deltaPe = deltaPeNew;
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scf[sfb] != FDK_INT_MIN) {
- sfbWidth = psyOutChan->sfbOffsets[sfb+1] -
- psyOutChan->sfbOffsets[sfb];
- sfbOffs = psyOutChan->sfbOffsets[sfb];
- scf[sfb] = scfAct;
- sfbDist[sfb] = sfbDistNew[sfb];
-
- for (k=0; k<sfbWidth; k++)
- quantSpec[sfbOffs+k] = quantSpecTmp[sfbOffs+k];
- }
- }
- }
-
- }
- }
-
- } while (stopSfb <= sfbCnt);
-
- } while (scfAct > scfMin);
- }
-}
-
-/*
- Function: FDKaacEnc_FDKaacEnc_assimilateMultipleScf2
-
-*/
-static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(PSY_OUT_CHANNEL *psyOutChan,
- QC_OUT_CHANNEL *qcOutChannel,
- SHORT *quantSpec,
- SHORT *quantSpecTmp,
- INT *scf,
- INT *minScf,
- FIXP_DBL *sfbDist,
- FIXP_DBL *sfbConstPePart,
- FIXP_DBL *sfbFormFactorLdData,
- FIXP_DBL *sfbNRelevantLines)
-{
- INT sfb, startSfb, stopSfb;
- INT scfTmp[MAX_GROUPED_SFB], scfAct, scfNew;
- INT scfPrev, scfNext, scfPrevNextMin, scfPrevNextMax, scfLo, scfHi;
- INT scfMin, scfMax;
- INT *sfbOffs = psyOutChan->sfbOffsets;
- FIXP_DBL sfbDistNew[MAX_GROUPED_SFB], sfbDistMax[MAX_GROUPED_SFB];
- FIXP_DBL distOldSum, distNewSum;
- INT deltaScfBits;
- FIXP_DBL deltaSpecPe;
- FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f);
- FIXP_DBL deltaPeNew = FL2FXCONST_DBL(0.0f);
- INT sfbCnt = psyOutChan->sfbCnt;
- INT bSuccess, bCheckScf;
- INT i,k;
-
- /* calc min and max scalfactors */
- scfMin = FDK_INT_MAX;
- scfMax = FDK_INT_MIN;
- for (sfb=0; sfb<sfbCnt; sfb++) {
- if (scf[sfb]!=FDK_INT_MIN) {
- scfMin = fixMin(scfMin, scf[sfb]);
- scfMax = fixMax(scfMax, scf[sfb]);
- }
- }
-
- stopSfb = 0;
- scfAct = FDK_INT_MIN;
- do {
- /* search for region with same scf values scfAct */
- scfPrev = scfAct;
-
- sfb = stopSfb;
- while (sfb<sfbCnt && (scf[sfb]==FDK_INT_MIN))
- sfb++;
- startSfb = sfb;
- scfAct = scf[startSfb];
- sfb++;
- while (sfb<sfbCnt && ((scf[sfb]==FDK_INT_MIN) || (scf[sfb]==scf[startSfb])))
- sfb++;
- stopSfb = sfb;
-
- if (stopSfb < sfbCnt)
- scfNext = scf[stopSfb];
- else
- scfNext = scfAct;
-
- if (scfPrev == FDK_INT_MIN)
- scfPrev = scfAct;
-
- scfPrevNextMax = fixMax(scfPrev, scfNext);
- scfPrevNextMin = fixMin(scfPrev, scfNext);
-
- /* try to reduce bits by checking scf values in the range
- scf[startSfb]...scfHi */
- scfHi = fixMax(scfPrevNextMax, scfAct);
- /* try to find a better solution by reducing the scf difference to
- the nearest possible lower scf */
- if (scfPrevNextMax >= scfAct)
- scfLo = fixMin(scfAct, scfPrevNextMin);
- else
- scfLo = scfPrevNextMax;
-
- if (startSfb < sfbCnt && scfHi-scfLo <= MAX_SCF_DELTA) { /* region found */
- /* 1. try to save bits by coarser quantization */
- if (scfHi > scf[startSfb]) {
- /* calculate the allowed distortion */
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scf[sfb] != FDK_INT_MIN) {
- /* sfbDistMax[sfb] = (float)pow(qcOutChannel->sfbThreshold[sfb]*sfbDist[sfb]*sfbDist[sfb],1.0f/3.0f); */
- /* sfbDistMax[sfb] = fixMax(sfbDistMax[sfb],qcOutChannel->sfbEnergy[sfb]*FL2FXCONST_DBL(1.e-3f)); */
- /* -0.15571537944 = ld64(1.e-3f)*/
- sfbDistMax[sfb] = fMult(FL2FXCONST_DBL(1.0f/3.0f),qcOutChannel->sfbThresholdLdData[sfb])+fMult(FL2FXCONST_DBL(1.0f/3.0f),sfbDist[sfb])+fMult(FL2FXCONST_DBL(1.0f/3.0f),sfbDist[sfb]);
- sfbDistMax[sfb] = fixMax(sfbDistMax[sfb],qcOutChannel->sfbEnergyLdData[sfb]-FL2FXCONST_DBL(0.15571537944));
- sfbDistMax[sfb] = fixMin(sfbDistMax[sfb],qcOutChannel->sfbThresholdLdData[sfb]);
- }
- }
-
- /* loop over all possible scf values for this region */
- bCheckScf = 1;
- for (scfNew=scf[startSfb]+1; scfNew<=scfHi; scfNew++) {
- for (k=0; k<MAX_GROUPED_SFB; k++)
- scfTmp[k] = scf[k];
-
- /* replace scfs in region by scfNew */
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scfTmp[sfb] != FDK_INT_MIN)
- scfTmp[sfb] = scfNew;
- }
-
- /* estimate change in bit demand for new scfs */
- deltaScfBits = FDKaacEnc_countScfBitsDiff(scf,scfTmp,sfbCnt,startSfb,stopSfb);
-
- deltaSpecPe = FDKaacEnc_calcSpecPeDiff(psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
- sfbFormFactorLdData, sfbNRelevantLines,
- startSfb, stopSfb);
-
- deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;
-
- /* new bit demand small enough ? */
- if (deltaPeNew < FL2FXCONST_DBL(0.0f)) {
- bSuccess = 1;
-
- /* quantize and calc sum of new distortion */
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scfTmp[sfb] != FDK_INT_MIN) {
- sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+sfbOffs[sfb],
- quantSpecTmp+sfbOffs[sfb],
- sfbOffs[sfb+1]-sfbOffs[sfb],
- scfNew);
-
- if (sfbDistNew[sfb] > sfbDistMax[sfb]) {
- /* no improvement, skip further dist. calculations */
- bSuccess = 0;
- if (sfbDistNew[sfb] == qcOutChannel->sfbEnergyLdData[sfb]) {
- /* if whole sfb is already quantized to 0, further
- checks with even coarser quant. are useless*/
- bCheckScf = 0;
- }
- break;
- }
- }
- }
- if (bCheckScf==0) /* further calculations useless ? */
- break;
- /* distortion small enough ? -> use new scalefactors */
- if (bSuccess) {
- deltaPe = deltaPeNew;
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scf[sfb] != FDK_INT_MIN) {
- scf[sfb] = scfNew;
- sfbDist[sfb] = sfbDistNew[sfb];
-
- for (k=0; k<sfbOffs[sfb+1]-sfbOffs[sfb]; k++)
- quantSpec[sfbOffs[sfb]+k] = quantSpecTmp[sfbOffs[sfb]+k];
- }
- }
- }
- }
- }
- }
-
- /* 2. only if coarser quantization was not successful, try to find
- a better solution by finer quantization and reducing bits for
- scalefactor coding */
- if (scfAct==scf[startSfb] &&
- scfLo < scfAct &&
- scfMax-scfMin <= MAX_SCF_DELTA) {
-
- int bminScfViolation = 0;
-
- for (k=0; k<MAX_GROUPED_SFB; k++)
- scfTmp[k] = scf[k];
-
- scfNew = scfLo;
-
- /* replace scfs in region by scfNew and
- check if in all sfb scfNew >= minScf[sfb] */
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scfTmp[sfb] != FDK_INT_MIN) {
- scfTmp[sfb] = scfNew;
- if (scfNew < minScf[sfb])
- bminScfViolation = 1;
- }
- }
-
- if (!bminScfViolation) {
- /* estimate change in bit demand for new scfs */
- deltaScfBits = FDKaacEnc_countScfBitsDiff(scf,scfTmp,sfbCnt,startSfb,stopSfb);
-
- deltaSpecPe = FDKaacEnc_calcSpecPeDiff(psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
- sfbFormFactorLdData, sfbNRelevantLines,
- startSfb, stopSfb);
-
- deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;
- }
-
- /* new bit demand small enough ? */
- if (!bminScfViolation && deltaPeNew < FL2FXCONST_DBL(0.0f)) {
-
- /* quantize and calc sum of new distortion */
- distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scfTmp[sfb] != FDK_INT_MIN) {
- distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;
-
- sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+sfbOffs[sfb],
- quantSpecTmp+sfbOffs[sfb],
- sfbOffs[sfb+1]-sfbOffs[sfb],
- scfNew);
-
- if (sfbDistNew[sfb] > qcOutChannel->sfbThresholdLdData[sfb]) {
- /* no improvement, skip further dist. calculations */
- distNewSum = distOldSum << 1;
- break;
- }
- distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT;
- }
- }
- /* distortion smaller ? -> use new scalefactors */
- if (distNewSum < fMult(FL2FXCONST_DBL(0.8f),distOldSum)) {
- deltaPe = deltaPeNew;
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scf[sfb] != FDK_INT_MIN) {
- scf[sfb] = scfNew;
- sfbDist[sfb] = sfbDistNew[sfb];
-
- for (k=0; k<sfbOffs[sfb+1]-sfbOffs[sfb]; k++)
- quantSpec[sfbOffs[sfb]+k] = quantSpecTmp[sfbOffs[sfb]+k];
- }
- }
- }
- }
- }
-
- /* 3. try to find a better solution (save bits) by only reducing the
- scalefactor without new quantization */
- if (scfMax-scfMin <= MAX_SCF_DELTA-3) { /* 3 bec. scf is reduced 3 times,
- see for loop below */
-
- for (k=0; k<sfbCnt; k++)
- scfTmp[k] = scf[k];
-
- for (i=0; i<3; i++) {
- scfNew = scfTmp[startSfb]-1;
- /* replace scfs in region by scfNew */
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scfTmp[sfb] != FDK_INT_MIN)
- scfTmp[sfb] = scfNew;
- }
- /* estimate change in bit demand for new scfs */
- deltaScfBits = FDKaacEnc_countScfBitsDiff(scf,scfTmp,sfbCnt,startSfb,stopSfb);
- deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits;
- /* new bit demand small enough ? */
- if (deltaPeNew <= FL2FXCONST_DBL(0.0f)) {
-
- bSuccess = 1;
- distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scfTmp[sfb] != FDK_INT_MIN) {
- FIXP_DBL sfbEnQ;
- /* calc the energy and distortion of the quantized spectrum for
- a smaller scf */
- FDKaacEnc_calcSfbQuantEnergyAndDist(qcOutChannel->mdctSpectrum+sfbOffs[sfb],
- quantSpec+sfbOffs[sfb],
- sfbOffs[sfb+1]-sfbOffs[sfb], scfNew,
- &sfbEnQ, &sfbDistNew[sfb]);
-
- distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;
- distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT;
-
- /* 0.00259488556167 = ld64(1.122f) */
- /* -0.00778722686652 = ld64(0.7079f) */
- if ((sfbDistNew[sfb] > (sfbDist[sfb]+FL2FXCONST_DBL(0.00259488556167f))) || (sfbEnQ < (qcOutChannel->sfbEnergyLdData[sfb] - FL2FXCONST_DBL(0.00778722686652f)))){
- bSuccess = 0;
- break;
- }
- }
- }
- /* distortion smaller ? -> use new scalefactors */
- if (distNewSum < distOldSum && bSuccess) {
- deltaPe = deltaPeNew;
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scf[sfb] != FDK_INT_MIN) {
- scf[sfb] = scfNew;
- sfbDist[sfb] = sfbDistNew[sfb];
- }
- }
- }
- }
- }
- }
- }
- } while (stopSfb <= sfbCnt);
-
-}
-
-static void
-FDKaacEnc_FDKaacEnc_EstimateScaleFactorsChannel(QC_OUT_CHANNEL *qcOutChannel,
- PSY_OUT_CHANNEL *psyOutChannel,
- INT *RESTRICT scf,
- INT *RESTRICT globalGain,
- FIXP_DBL *RESTRICT sfbFormFactorLdData
- ,const INT invQuant,
- SHORT *RESTRICT quantSpec
- )
-{
- INT i, j, sfb, sfbOffs;
- INT scfInt;
- INT maxSf;
- INT minSf;
- FIXP_DBL threshLdData;
- FIXP_DBL energyLdData;
- FIXP_DBL energyPartLdData;
- FIXP_DBL thresholdPartLdData;
- FIXP_DBL scfFract;
- FIXP_DBL maxSpec;
- FIXP_DBL absSpec;
- INT minScfCalculated[MAX_GROUPED_SFB];
- FIXP_DBL sfbDistLdData[MAX_GROUPED_SFB];
- C_ALLOC_SCRATCH_START(quantSpecTmp, SHORT, (1024));
- INT minSfMaxQuant[MAX_GROUPED_SFB];
-
- FIXP_DBL threshConstLdData=FL2FXCONST_DBL(0.04304511722f); /* log10(6.75)/log10(2.0)/64.0 */
- FIXP_DBL convConst=FL2FXCONST_DBL(0.30102999566f); /* log10(2.0) */
- FIXP_DBL c1Const=FL2FXCONST_DBL(-0.27083183594f); /* C1 = -69.33295 => C1/2^8 */
-
-
-
- if (invQuant>0) {
- FDKmemclear(quantSpec, (1024)*sizeof(SHORT));
- }
-
- /* scfs without energy or with thresh>energy are marked with FDK_INT_MIN */
- for(i=0; i<psyOutChannel->sfbCnt; i++) {
- scf[i] = FDK_INT_MIN;
- }
-
- for (i=0; i<MAX_GROUPED_SFB; i++) {
- minSfMaxQuant[i] = FDK_INT_MIN;
- }
-
- for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
- for(sfb=0; sfb<psyOutChannel->maxSfbPerGroup; sfb++) {
-
- threshLdData = qcOutChannel->sfbThresholdLdData[sfbOffs+sfb];
- energyLdData = qcOutChannel->sfbEnergyLdData[sfbOffs+sfb];
-
- sfbDistLdData[sfbOffs+sfb] = energyLdData;
-
-
- if (energyLdData > threshLdData) {
- FIXP_DBL tmp;
-
- /* energyPart = (float)log10(sfbFormFactor[sfbOffs+sfb]); */
- /* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */
- energyPartLdData = sfbFormFactorLdData[sfbOffs+sfb] + FL2FXCONST_DBL(0.09375f);
-
- /* influence of allowed distortion */
- /* thresholdPart = (float)log10(6.75*thresh+FLT_MIN); */
- thresholdPartLdData = threshConstLdData + threshLdData;
-
- /* scf calc */
- /* scfFloat = 8.8585f * (thresholdPart - energyPart); */
- scfFract = thresholdPartLdData - energyPartLdData;
- /* conversion from log2 to log10 */
- scfFract = fMult(convConst,scfFract);
- /* (8.8585f * scfFract)/8 = 8/8 * scfFract + 0.8585 * scfFract/8 */
- scfFract = scfFract + fMult(FL2FXCONST_DBL(0.8585f),scfFract >> 3);
-
- /* integer scalefactor */
- /* scfInt = (int)floor(scfFloat); */
- scfInt = (INT)(scfFract>>((DFRACT_BITS-1)-3-LD_DATA_SHIFT)); /* 3 bits => scfFract/8.0; 6 bits => ld64 */
-
- /* maximum of spectrum */
- maxSpec = FL2FXCONST_DBL(0.0f);
-
- for(j=psyOutChannel->sfbOffsets[sfbOffs+sfb]; j<psyOutChannel->sfbOffsets[sfbOffs+sfb+1]; j++ ){
- absSpec = fixp_abs(qcOutChannel->mdctSpectrum[j]);
- maxSpec = (absSpec > maxSpec) ? absSpec : maxSpec;
- }
-
- /* lower scf limit to avoid quantized values bigger than MAX_QUANT */
- /* C1 = -69.33295f, C2 = 5.77078f = 4/log(2) */
- /* minSfMaxQuant[sfbOffs+sfb] = (int)ceil(C1 + C2*log(maxSpec)); */
- /* C1/2^8 + 4/log(2.0)*log(maxSpec)/2^8 => C1/2^8 + log(maxSpec)/log(2.0)*4/2^8 => C1/2^8 + log(maxSpec)/log(2.0)/64.0 */
-
- //minSfMaxQuant[sfbOffs+sfb] = ((INT) ((c1Const + CalcLdData(maxSpec)) >> ((DFRACT_BITS-1)-8))) + 1;
- tmp = CalcLdData(maxSpec);
- if (c1Const>FL2FXCONST_DBL(-1.f)-tmp) {
- minSfMaxQuant[sfbOffs+sfb] = ((INT) ((c1Const + tmp) >> ((DFRACT_BITS-1)-8))) + 1;
- }
- else {
- minSfMaxQuant[sfbOffs+sfb] = ((INT) (FL2FXCONST_DBL(-1.f) >> ((DFRACT_BITS-1)-8))) + 1;
- }
-
- scfInt = fixMax(scfInt, minSfMaxQuant[sfbOffs+sfb]);
-
-
- /* find better scalefactor with analysis by synthesis */
- if (invQuant>0) {
- scfInt = FDKaacEnc_improveScf(qcOutChannel->mdctSpectrum+psyOutChannel->sfbOffsets[sfbOffs+sfb],
- quantSpec+psyOutChannel->sfbOffsets[sfbOffs+sfb],
- quantSpecTmp+psyOutChannel->sfbOffsets[sfbOffs+sfb],
- psyOutChannel->sfbOffsets[sfbOffs+sfb+1]-psyOutChannel->sfbOffsets[sfbOffs+sfb],
- threshLdData, scfInt, minSfMaxQuant[sfbOffs+sfb],
- &sfbDistLdData[sfbOffs+sfb], &minScfCalculated[sfbOffs+sfb]
- );
- }
- scf[sfbOffs+sfb] = scfInt;
- }
- }
- }
-
-
- if (invQuant>1) {
- /* try to decrease scf differences */
- FIXP_DBL sfbConstPePart[MAX_GROUPED_SFB];
- FIXP_DBL sfbNRelevantLines[MAX_GROUPED_SFB];
-
- for (i=0; i<psyOutChannel->sfbCnt; i++)
- sfbConstPePart[i] = (FIXP_DBL)FDK_INT_MIN;
-
- FDKaacEnc_calcSfbRelevantLines( sfbFormFactorLdData,
- qcOutChannel->sfbEnergyLdData,
- qcOutChannel->sfbThresholdLdData,
- psyOutChannel->sfbOffsets,
- psyOutChannel->sfbCnt,
- psyOutChannel->sfbPerGroup,
- psyOutChannel->maxSfbPerGroup,
- sfbNRelevantLines);
-
-
- FDKaacEnc_assimilateSingleScf(psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp, scf,
- minSfMaxQuant, sfbDistLdData, sfbConstPePart,
- sfbFormFactorLdData, sfbNRelevantLines, minScfCalculated, 1);
-
-
- FDKaacEnc_assimilateMultipleScf(psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp, scf,
- minSfMaxQuant, sfbDistLdData, sfbConstPePart,
- sfbFormFactorLdData, sfbNRelevantLines);
-
-
- FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp, scf,
- minSfMaxQuant, sfbDistLdData, sfbConstPePart,
- sfbFormFactorLdData, sfbNRelevantLines);
-
- }
-
-
- /* get min scalefac */
- minSf = FDK_INT_MAX;
- for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
- for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
- if (scf[sfbOffs+sfb]!=FDK_INT_MIN)
- minSf = fixMin(minSf,scf[sfbOffs+sfb]);
- }
- }
-
- /* limit scf delta */
- for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
- for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
- if ((scf[sfbOffs+sfb] != FDK_INT_MIN) && (minSf+MAX_SCF_DELTA) < scf[sfbOffs+sfb]) {
- scf[sfbOffs+sfb] = minSf + MAX_SCF_DELTA;
- if (invQuant > 0) { /* changed bands need to be quantized again */
- sfbDistLdData[sfbOffs+sfb] =
- FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+psyOutChannel->sfbOffsets[sfbOffs+sfb],
- quantSpec+psyOutChannel->sfbOffsets[sfbOffs+sfb],
- psyOutChannel->sfbOffsets[sfbOffs+sfb+1]-psyOutChannel->sfbOffsets[sfbOffs+sfb],
- scf[sfbOffs+sfb]
- );
- }
- }
- }
- }
-
-
- /* get max scalefac for global gain */
- maxSf = FDK_INT_MIN;
- for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
- for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
- maxSf = fixMax(maxSf,scf[sfbOffs+sfb]);
- }
- }
-
- /* calc loop scalefactors, if spec is not all zero (i.e. maxSf == -99) */
- if( maxSf > FDK_INT_MIN ) {
- *globalGain = maxSf;
- for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
- for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
- if( scf[sfbOffs+sfb] == FDK_INT_MIN ) {
- scf[sfbOffs+sfb] = 0;
- /* set band explicitely to zero */
- for(j=psyOutChannel->sfbOffsets[sfbOffs+sfb]; j<psyOutChannel->sfbOffsets[sfbOffs+sfb+1]; j++ ) {
- qcOutChannel->mdctSpectrum[j] = FL2FXCONST_DBL(0.0f);
- }
- }
- else {
- scf[sfbOffs+sfb] = maxSf - scf[sfbOffs+sfb];
- }
- }
- }
- }
- else{
- *globalGain = 0;
- /* set spectrum explicitely to zero */
- for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
- for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
- scf[sfbOffs+sfb] = 0;
- /* set band explicitely to zero */
- for(j=psyOutChannel->sfbOffsets[sfbOffs+sfb]; j<psyOutChannel->sfbOffsets[sfbOffs+sfb+1]; j++ ) {
- qcOutChannel->mdctSpectrum[j] = FL2FXCONST_DBL(0.0f);
- }
- }
- }
- }
-
- /* free quantSpecTmp from scratch */
- C_ALLOC_SCRATCH_END(quantSpecTmp, SHORT, (1024));
-
-
-}
-
-void
-FDKaacEnc_EstimateScaleFactors(PSY_OUT_CHANNEL *psyOutChannel[],
- QC_OUT_CHANNEL* qcOutChannel[],
- const int invQuant,
- const int nChannels)
-{
- int ch;
-
- for (ch = 0; ch < nChannels; ch++)
- {
- FDKaacEnc_FDKaacEnc_EstimateScaleFactorsChannel(qcOutChannel[ch],
- psyOutChannel[ch],
- qcOutChannel[ch]->scf,
- &qcOutChannel[ch]->globalGain,
- qcOutChannel[ch]->sfbFormFactorLdData
- ,invQuant,
- qcOutChannel[ch]->quantSpec
- );
- }
-
-}
-