summaryrefslogtreecommitdiffstats
path: root/fdk-aac/libSBRenc/src/ps_main.cpp
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2019-11-11 11:38:02 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2019-11-11 11:38:02 +0100
commit0e5af65c467b2423a0b857ae3ad98c91acc1e190 (patch)
treed07f69550d8886271e44fe79c4dcfb299cafbd38 /fdk-aac/libSBRenc/src/ps_main.cpp
parentefe406d9724f959c8bc2a31802559ca6d41fd897 (diff)
downloadODR-AudioEnc-0e5af65c467b2423a0b857ae3ad98c91acc1e190.tar.gz
ODR-AudioEnc-0e5af65c467b2423a0b857ae3ad98c91acc1e190.tar.bz2
ODR-AudioEnc-0e5af65c467b2423a0b857ae3ad98c91acc1e190.zip
Include patched FDK-AAC in the repository
The initial idea was to get the DAB+ patch into upstream, but since that follows the android source releases, there is no place for a custom DAB+ patch there. So instead of having to maintain a patched fdk-aac that has to have the same .so version as the distribution package on which it is installed, we prefer having a separate fdk-aac-dab library to avoid collision. At that point, there's no reason to keep fdk-aac in a separate repository, as odr-audioenc is the only tool that needs DAB+ encoding support. Including it here simplifies installation, and makes it consistent with toolame-dab, also shipped in this repository. DAB+ decoding support (needed by ODR-SourceCompanion, dablin, etisnoop, welle.io and others) can be done using upstream FDK-AAC.
Diffstat (limited to 'fdk-aac/libSBRenc/src/ps_main.cpp')
-rw-r--r--fdk-aac/libSBRenc/src/ps_main.cpp606
1 files changed, 606 insertions, 0 deletions
diff --git a/fdk-aac/libSBRenc/src/ps_main.cpp b/fdk-aac/libSBRenc/src/ps_main.cpp
new file mode 100644
index 0000000..4d7a7a5
--- /dev/null
+++ b/fdk-aac/libSBRenc/src/ps_main.cpp
@@ -0,0 +1,606 @@
+/* -----------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
+
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------- */
+
+/**************************** SBR encoder library ******************************
+
+ Author(s): M. Multrus
+
+ Description: PS Wrapper, Downmix
+
+*******************************************************************************/
+
+#include "ps_main.h"
+
+/* Includes ******************************************************************/
+#include "ps_bitenc.h"
+#include "sbrenc_ram.h"
+
+/*--------------- function declarations --------------------*/
+static void psFindBestScaling(
+ HANDLE_PARAMETRIC_STEREO hParametricStereo,
+ FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],
+ UCHAR *dynBandScale, FIXP_DBL *maxBandValue, SCHAR *dmxScale);
+
+/*------------- function definitions ----------------*/
+FDK_PSENC_ERROR PSEnc_Create(HANDLE_PARAMETRIC_STEREO *phParametricStereo) {
+ FDK_PSENC_ERROR error = PSENC_OK;
+ HANDLE_PARAMETRIC_STEREO hParametricStereo = NULL;
+
+ if (phParametricStereo == NULL) {
+ error = PSENC_INVALID_HANDLE;
+ } else {
+ int i;
+
+ if (NULL == (hParametricStereo = GetRam_ParamStereo())) {
+ error = PSENC_MEMORY_ERROR;
+ goto bail;
+ }
+ FDKmemclear(hParametricStereo, sizeof(PARAMETRIC_STEREO));
+
+ if (PSENC_OK !=
+ (error = FDKsbrEnc_CreatePSEncode(&hParametricStereo->hPsEncode))) {
+ error = PSENC_MEMORY_ERROR;
+ goto bail;
+ }
+
+ for (i = 0; i < MAX_PS_CHANNELS; i++) {
+ if (FDKhybridAnalysisOpen(
+ &hParametricStereo->fdkHybAnaFilter[i],
+ hParametricStereo->__staticHybAnaStatesLF[i],
+ sizeof(hParametricStereo->__staticHybAnaStatesLF[i]),
+ hParametricStereo->__staticHybAnaStatesHF[i],
+ sizeof(hParametricStereo->__staticHybAnaStatesHF[i])) != 0) {
+ error = PSENC_MEMORY_ERROR;
+ goto bail;
+ }
+ }
+ }
+
+bail:
+ if (phParametricStereo != NULL) {
+ *phParametricStereo = hParametricStereo; /* return allocated handle */
+ }
+
+ if (error != PSENC_OK) {
+ PSEnc_Destroy(phParametricStereo);
+ }
+ return error;
+}
+
+FDK_PSENC_ERROR PSEnc_Init(HANDLE_PARAMETRIC_STEREO hParametricStereo,
+ const HANDLE_PSENC_CONFIG hPsEncConfig,
+ INT noQmfSlots, INT noQmfBands, UCHAR *dynamic_RAM) {
+ FDK_PSENC_ERROR error = PSENC_OK;
+
+ if ((NULL == hParametricStereo) || (NULL == hPsEncConfig)) {
+ error = PSENC_INVALID_HANDLE;
+ } else {
+ int ch, i;
+
+ hParametricStereo->initPS = 1;
+ hParametricStereo->noQmfSlots = noQmfSlots;
+ hParametricStereo->noQmfBands = noQmfBands;
+
+ /* clear delay lines */
+ FDKmemclear(hParametricStereo->qmfDelayLines,
+ sizeof(hParametricStereo->qmfDelayLines));
+
+ hParametricStereo->qmfDelayScale = FRACT_BITS - 1;
+
+ /* create configuration for hybrid filter bank */
+ for (ch = 0; ch < MAX_PS_CHANNELS; ch++) {
+ FDKhybridAnalysisInit(&hParametricStereo->fdkHybAnaFilter[ch],
+ THREE_TO_TEN, 64, 64, 1);
+ } /* ch */
+
+ FDKhybridSynthesisInit(&hParametricStereo->fdkHybSynFilter, THREE_TO_TEN,
+ 64, 64);
+
+ /* determine average delay */
+ hParametricStereo->psDelay =
+ (HYBRID_FILTER_DELAY * hParametricStereo->noQmfBands);
+
+ if ((hPsEncConfig->maxEnvelopes < PSENC_NENV_1) ||
+ (hPsEncConfig->maxEnvelopes > PSENC_NENV_MAX)) {
+ hPsEncConfig->maxEnvelopes = PSENC_NENV_DEFAULT;
+ }
+ hParametricStereo->maxEnvelopes = hPsEncConfig->maxEnvelopes;
+
+ if (PSENC_OK !=
+ (error = FDKsbrEnc_InitPSEncode(
+ hParametricStereo->hPsEncode, (PS_BANDS)hPsEncConfig->nStereoBands,
+ hPsEncConfig->iidQuantErrorThreshold))) {
+ goto bail;
+ }
+
+ for (ch = 0; ch < MAX_PS_CHANNELS; ch++) {
+ FIXP_DBL *pDynReal = GetRam_Sbr_envRBuffer(ch, dynamic_RAM);
+ FIXP_DBL *pDynImag = GetRam_Sbr_envIBuffer(ch, dynamic_RAM);
+
+ for (i = 0; i < HYBRID_FRAMESIZE; i++) {
+ hParametricStereo->pHybridData[i + HYBRID_READ_OFFSET][ch][0] =
+ &pDynReal[i * MAX_HYBRID_BANDS];
+ hParametricStereo->pHybridData[i + HYBRID_READ_OFFSET][ch][1] =
+ &pDynImag[i * MAX_HYBRID_BANDS];
+ ;
+ }
+
+ for (i = 0; i < HYBRID_READ_OFFSET; i++) {
+ hParametricStereo->pHybridData[i][ch][0] =
+ hParametricStereo->__staticHybridData[i][ch][0];
+ hParametricStereo->pHybridData[i][ch][1] =
+ hParametricStereo->__staticHybridData[i][ch][1];
+ }
+ } /* ch */
+
+ /* clear static hybrid buffer */
+ FDKmemclear(hParametricStereo->__staticHybridData,
+ sizeof(hParametricStereo->__staticHybridData));
+
+ /* clear bs buffer */
+ FDKmemclear(hParametricStereo->psOut, sizeof(hParametricStereo->psOut));
+
+ hParametricStereo->psOut[0].enablePSHeader =
+ 1; /* write ps header in first frame */
+
+ /* clear scaling buffer */
+ FDKmemclear(hParametricStereo->dynBandScale, sizeof(UCHAR) * PS_MAX_BANDS);
+ FDKmemclear(hParametricStereo->maxBandValue,
+ sizeof(FIXP_DBL) * PS_MAX_BANDS);
+
+ } /* valid handle */
+bail:
+ return error;
+}
+
+FDK_PSENC_ERROR PSEnc_Destroy(HANDLE_PARAMETRIC_STEREO *phParametricStereo) {
+ FDK_PSENC_ERROR error = PSENC_OK;
+
+ if (NULL != phParametricStereo) {
+ HANDLE_PARAMETRIC_STEREO hParametricStereo = *phParametricStereo;
+ if (hParametricStereo != NULL) {
+ FDKsbrEnc_DestroyPSEncode(&hParametricStereo->hPsEncode);
+ FreeRam_ParamStereo(phParametricStereo);
+ }
+ }
+
+ return error;
+}
+
+static FDK_PSENC_ERROR ExtractPSParameters(
+ HANDLE_PARAMETRIC_STEREO hParametricStereo, const int sendHeader,
+ FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2]) {
+ FDK_PSENC_ERROR error = PSENC_OK;
+
+ if (hParametricStereo == NULL) {
+ error = PSENC_INVALID_HANDLE;
+ } else {
+ /* call ps encode function */
+ if (hParametricStereo->initPS) {
+ hParametricStereo->psOut[1] = hParametricStereo->psOut[0];
+ }
+ hParametricStereo->psOut[0] = hParametricStereo->psOut[1];
+
+ if (PSENC_OK !=
+ (error = FDKsbrEnc_PSEncode(
+ hParametricStereo->hPsEncode, &hParametricStereo->psOut[1],
+ hParametricStereo->dynBandScale, hParametricStereo->maxEnvelopes,
+ hybridData, hParametricStereo->noQmfSlots, sendHeader))) {
+ goto bail;
+ }
+
+ if (hParametricStereo->initPS) {
+ hParametricStereo->psOut[0] = hParametricStereo->psOut[1];
+ hParametricStereo->initPS = 0;
+ }
+ }
+bail:
+ return error;
+}
+
+static FDK_PSENC_ERROR DownmixPSQmfData(
+ HANDLE_PARAMETRIC_STEREO hParametricStereo,
+ HANDLE_QMF_FILTER_BANK sbrSynthQmf, FIXP_DBL **RESTRICT mixRealQmfData,
+ FIXP_DBL **RESTRICT mixImagQmfData, INT_PCM *downsampledOutSignal,
+ const UINT downsampledOutSignalBufSize,
+ FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],
+ const INT noQmfSlots, const INT psQmfScale[MAX_PS_CHANNELS],
+ SCHAR *qmfScale) {
+ FDK_PSENC_ERROR error = PSENC_OK;
+
+ if (hParametricStereo == NULL) {
+ error = PSENC_INVALID_HANDLE;
+ } else {
+ int n, k;
+ C_AALLOC_SCRATCH_START(pWorkBuffer, FIXP_DBL, 2 * 64)
+
+ /* define scalings */
+ int dynQmfScale = fixMax(
+ 0, hParametricStereo->dmxScale -
+ 1); /* scale one bit more for addition of left and right */
+ int downmixScale = psQmfScale[0] - dynQmfScale;
+ const FIXP_DBL maxStereoScaleFactor = MAXVAL_DBL; /* 2.f/2.f */
+
+ for (n = 0; n < noQmfSlots; n++) {
+ FIXP_DBL tmpHybrid[2][MAX_HYBRID_BANDS];
+
+ for (k = 0; k < 71; k++) {
+ int dynScale, sc; /* scaling */
+ FIXP_DBL tmpLeftReal, tmpRightReal, tmpLeftImag, tmpRightImag;
+ FIXP_DBL tmpScaleFactor, stereoScaleFactor;
+
+ tmpLeftReal = hybridData[n][0][0][k];
+ tmpLeftImag = hybridData[n][0][1][k];
+ tmpRightReal = hybridData[n][1][0][k];
+ tmpRightImag = hybridData[n][1][1][k];
+
+ sc = fixMax(
+ 0, CntLeadingZeros(fixMax(
+ fixMax(fixp_abs(tmpLeftReal), fixp_abs(tmpLeftImag)),
+ fixMax(fixp_abs(tmpRightReal), fixp_abs(tmpRightImag)))) -
+ 2);
+
+ tmpLeftReal <<= sc;
+ tmpLeftImag <<= sc;
+ tmpRightReal <<= sc;
+ tmpRightImag <<= sc;
+ dynScale = fixMin(sc - dynQmfScale, DFRACT_BITS - 1);
+
+ /* calc stereo scale factor to avoid loss of energy in bands */
+ /* stereo scale factor = min(2.0f, sqrt( (abs(l(k, n)^2 + abs(r(k, n)^2
+ * )))/(0.5f*abs(l(k, n) + r(k, n))) )) */
+ stereoScaleFactor = fPow2Div2(tmpLeftReal) + fPow2Div2(tmpLeftImag) +
+ fPow2Div2(tmpRightReal) + fPow2Div2(tmpRightImag);
+
+ /* might be that tmpScaleFactor becomes negative, so fabs(.) */
+ tmpScaleFactor =
+ fixp_abs(stereoScaleFactor + fMult(tmpLeftReal, tmpRightReal) +
+ fMult(tmpLeftImag, tmpRightImag));
+
+ /* min(2.0f, sqrt(stereoScaleFactor/(0.5f*tmpScaleFactor))) */
+ if ((stereoScaleFactor >> 1) <
+ fMult(maxStereoScaleFactor, tmpScaleFactor)) {
+ int sc_num = CountLeadingBits(stereoScaleFactor);
+ int sc_denum = CountLeadingBits(tmpScaleFactor);
+ sc = -(sc_num - sc_denum);
+
+ tmpScaleFactor = schur_div((stereoScaleFactor << (sc_num)) >> 1,
+ tmpScaleFactor << sc_denum, 16);
+
+ /* prevent odd scaling for next sqrt calculation */
+ if (sc & 0x1) {
+ sc++;
+ tmpScaleFactor >>= 1;
+ }
+ stereoScaleFactor = sqrtFixp(tmpScaleFactor);
+ stereoScaleFactor <<= (sc >> 1);
+ } else {
+ stereoScaleFactor = maxStereoScaleFactor;
+ }
+
+ /* write data to hybrid output */
+ tmpHybrid[0][k] = fMultDiv2(stereoScaleFactor,
+ (FIXP_DBL)(tmpLeftReal + tmpRightReal)) >>
+ dynScale;
+ tmpHybrid[1][k] = fMultDiv2(stereoScaleFactor,
+ (FIXP_DBL)(tmpLeftImag + tmpRightImag)) >>
+ dynScale;
+
+ } /* hybrid bands - k */
+
+ FDKhybridSynthesisApply(&hParametricStereo->fdkHybSynFilter, tmpHybrid[0],
+ tmpHybrid[1], mixRealQmfData[n],
+ mixImagQmfData[n]);
+
+ qmfSynthesisFilteringSlot(
+ sbrSynthQmf, mixRealQmfData[n], mixImagQmfData[n], downmixScale - 7,
+ downmixScale - 7,
+ downsampledOutSignal + (n * sbrSynthQmf->no_channels), 1,
+ pWorkBuffer);
+
+ } /* slots */
+
+ *qmfScale = -downmixScale + 7;
+
+ C_AALLOC_SCRATCH_END(pWorkBuffer, FIXP_DBL, 2 * 64)
+
+ {
+ const INT noQmfSlots2 = hParametricStereo->noQmfSlots >> 1;
+ const int noQmfBands = hParametricStereo->noQmfBands;
+
+ INT scale, i, j, slotOffset;
+
+ FIXP_DBL tmp[2][64];
+
+ for (i = 0; i < noQmfSlots2; i++) {
+ FDKmemcpy(tmp[0], hParametricStereo->qmfDelayLines[0][i],
+ noQmfBands * sizeof(FIXP_DBL));
+ FDKmemcpy(tmp[1], hParametricStereo->qmfDelayLines[1][i],
+ noQmfBands * sizeof(FIXP_DBL));
+
+ FDKmemcpy(hParametricStereo->qmfDelayLines[0][i],
+ mixRealQmfData[i + noQmfSlots2],
+ noQmfBands * sizeof(FIXP_DBL));
+ FDKmemcpy(hParametricStereo->qmfDelayLines[1][i],
+ mixImagQmfData[i + noQmfSlots2],
+ noQmfBands * sizeof(FIXP_DBL));
+
+ FDKmemcpy(mixRealQmfData[i + noQmfSlots2], mixRealQmfData[i],
+ noQmfBands * sizeof(FIXP_DBL));
+ FDKmemcpy(mixImagQmfData[i + noQmfSlots2], mixImagQmfData[i],
+ noQmfBands * sizeof(FIXP_DBL));
+
+ FDKmemcpy(mixRealQmfData[i], tmp[0], noQmfBands * sizeof(FIXP_DBL));
+ FDKmemcpy(mixImagQmfData[i], tmp[1], noQmfBands * sizeof(FIXP_DBL));
+ }
+
+ if (hParametricStereo->qmfDelayScale > *qmfScale) {
+ scale = hParametricStereo->qmfDelayScale - *qmfScale;
+ slotOffset = 0;
+ } else {
+ scale = *qmfScale - hParametricStereo->qmfDelayScale;
+ slotOffset = noQmfSlots2;
+ }
+
+ for (i = 0; i < noQmfSlots2; i++) {
+ for (j = 0; j < noQmfBands; j++) {
+ mixRealQmfData[i + slotOffset][j] >>= scale;
+ mixImagQmfData[i + slotOffset][j] >>= scale;
+ }
+ }
+
+ scale = *qmfScale;
+ *qmfScale = fMin(*qmfScale, hParametricStereo->qmfDelayScale);
+ hParametricStereo->qmfDelayScale = scale;
+ }
+
+ } /* valid handle */
+
+ return error;
+}
+
+INT FDKsbrEnc_PSEnc_WritePSData(HANDLE_PARAMETRIC_STEREO hParametricStereo,
+ HANDLE_FDK_BITSTREAM hBitstream) {
+ return (
+ (hParametricStereo != NULL)
+ ? FDKsbrEnc_WritePSBitstream(&hParametricStereo->psOut[0], hBitstream)
+ : 0);
+}
+
+FDK_PSENC_ERROR FDKsbrEnc_PSEnc_ParametricStereoProcessing(
+ HANDLE_PARAMETRIC_STEREO hParametricStereo, INT_PCM *samples[2],
+ UINT samplesBufSize, QMF_FILTER_BANK **hQmfAnalysis,
+ FIXP_DBL **RESTRICT downmixedRealQmfData,
+ FIXP_DBL **RESTRICT downmixedImagQmfData, INT_PCM *downsampledOutSignal,
+ HANDLE_QMF_FILTER_BANK sbrSynthQmf, SCHAR *qmfScale, const int sendHeader) {
+ FDK_PSENC_ERROR error = PSENC_OK;
+ INT psQmfScale[MAX_PS_CHANNELS] = {0};
+ int psCh, i;
+ C_AALLOC_SCRATCH_START(pWorkBuffer, FIXP_DBL, 4 * 64)
+
+ for (psCh = 0; psCh < MAX_PS_CHANNELS; psCh++) {
+ for (i = 0; i < hQmfAnalysis[psCh]->no_col; i++) {
+ qmfAnalysisFilteringSlot(
+ hQmfAnalysis[psCh], &pWorkBuffer[2 * 64], /* qmfReal[64] */
+ &pWorkBuffer[3 * 64], /* qmfImag[64] */
+ samples[psCh] + i * hQmfAnalysis[psCh]->no_channels, 1,
+ &pWorkBuffer[0 * 64] /* qmf workbuffer 2*64 */
+ );
+
+ FDKhybridAnalysisApply(
+ &hParametricStereo->fdkHybAnaFilter[psCh],
+ &pWorkBuffer[2 * 64], /* qmfReal[64] */
+ &pWorkBuffer[3 * 64], /* qmfImag[64] */
+ hParametricStereo->pHybridData[i + HYBRID_READ_OFFSET][psCh][0],
+ hParametricStereo->pHybridData[i + HYBRID_READ_OFFSET][psCh][1]);
+
+ } /* no_col loop i */
+
+ psQmfScale[psCh] = hQmfAnalysis[psCh]->outScalefactor;
+
+ } /* for psCh */
+
+ C_AALLOC_SCRATCH_END(pWorkBuffer, FIXP_DBL, 4 * 64)
+
+ /* find best scaling in new QMF and Hybrid data */
+ psFindBestScaling(
+ hParametricStereo, &hParametricStereo->pHybridData[HYBRID_READ_OFFSET],
+ hParametricStereo->dynBandScale, hParametricStereo->maxBandValue,
+ &hParametricStereo->dmxScale);
+
+ /* extract the ps parameters */
+ if (PSENC_OK !=
+ (error = ExtractPSParameters(hParametricStereo, sendHeader,
+ &hParametricStereo->pHybridData[0]))) {
+ goto bail;
+ }
+
+ /* save hybrid date for next frame */
+ for (i = 0; i < HYBRID_READ_OFFSET; i++) {
+ FDKmemcpy(
+ hParametricStereo->pHybridData[i][0][0],
+ hParametricStereo->pHybridData[hParametricStereo->noQmfSlots + i][0][0],
+ MAX_HYBRID_BANDS * sizeof(FIXP_DBL)); /* left, real */
+ FDKmemcpy(
+ hParametricStereo->pHybridData[i][0][1],
+ hParametricStereo->pHybridData[hParametricStereo->noQmfSlots + i][0][1],
+ MAX_HYBRID_BANDS * sizeof(FIXP_DBL)); /* left, imag */
+ FDKmemcpy(
+ hParametricStereo->pHybridData[i][1][0],
+ hParametricStereo->pHybridData[hParametricStereo->noQmfSlots + i][1][0],
+ MAX_HYBRID_BANDS * sizeof(FIXP_DBL)); /* right, real */
+ FDKmemcpy(
+ hParametricStereo->pHybridData[i][1][1],
+ hParametricStereo->pHybridData[hParametricStereo->noQmfSlots + i][1][1],
+ MAX_HYBRID_BANDS * sizeof(FIXP_DBL)); /* right, imag */
+ }
+
+ /* downmix and hybrid synthesis */
+ if (PSENC_OK !=
+ (error = DownmixPSQmfData(
+ hParametricStereo, sbrSynthQmf, downmixedRealQmfData,
+ downmixedImagQmfData, downsampledOutSignal, samplesBufSize,
+ &hParametricStereo->pHybridData[HYBRID_READ_OFFSET],
+ hParametricStereo->noQmfSlots, psQmfScale, qmfScale))) {
+ goto bail;
+ }
+
+bail:
+
+ return error;
+}
+
+static void psFindBestScaling(
+ HANDLE_PARAMETRIC_STEREO hParametricStereo,
+ FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],
+ UCHAR *dynBandScale, FIXP_DBL *maxBandValue, SCHAR *dmxScale) {
+ HANDLE_PS_ENCODE hPsEncode = hParametricStereo->hPsEncode;
+
+ INT group, bin, col, band;
+ const INT frameSize = hParametricStereo->noQmfSlots;
+ const INT psBands = (INT)hPsEncode->psEncMode;
+ const INT nIidGroups = hPsEncode->nQmfIidGroups + hPsEncode->nSubQmfIidGroups;
+
+ /* group wise scaling */
+ FIXP_DBL maxVal[2][PS_MAX_BANDS];
+ FIXP_DBL maxValue = FL2FXCONST_DBL(0.f);
+
+ FDKmemclear(maxVal, sizeof(maxVal));
+
+ /* start with hybrid data */
+ for (group = 0; group < nIidGroups; group++) {
+ /* Translate group to bin */
+ bin = hPsEncode->subband2parameterIndex[group];
+
+ /* Translate from 20 bins to 10 bins */
+ if (hPsEncode->psEncMode == PS_BANDS_COARSE) {
+ bin >>= 1;
+ }
+
+ /* QMF downmix scaling */
+ for (col = 0; col < frameSize; col++) {
+ int i, section = (col < frameSize - HYBRID_READ_OFFSET) ? 0 : 1;
+ FIXP_DBL tmp = maxVal[section][bin];
+ for (i = hPsEncode->iidGroupBorders[group];
+ i < hPsEncode->iidGroupBorders[group + 1]; i++) {
+ tmp = fixMax(tmp, (FIXP_DBL)fixp_abs(hybridData[col][0][0][i]));
+ tmp = fixMax(tmp, (FIXP_DBL)fixp_abs(hybridData[col][0][1][i]));
+ tmp = fixMax(tmp, (FIXP_DBL)fixp_abs(hybridData[col][1][0][i]));
+ tmp = fixMax(tmp, (FIXP_DBL)fixp_abs(hybridData[col][1][1][i]));
+ }
+ maxVal[section][bin] = tmp;
+ }
+ } /* nIidGroups */
+
+ /* convert maxSpec to maxScaling, find scaling space */
+ for (band = 0; band < psBands; band++) {
+#ifndef MULT_16x16
+ dynBandScale[band] =
+ CountLeadingBits(fixMax(maxVal[0][band], maxBandValue[band]));
+#else
+ dynBandScale[band] = fixMax(
+ 0, CountLeadingBits(fixMax(maxVal[0][band], maxBandValue[band])) -
+ FRACT_BITS);
+#endif
+ maxValue = fixMax(maxValue, fixMax(maxVal[0][band], maxVal[1][band]));
+ maxBandValue[band] = fixMax(maxVal[0][band], maxVal[1][band]);
+ }
+
+ /* calculate maximal scaling for QMF downmix */
+#ifndef MULT_16x16
+ *dmxScale = fixMin(DFRACT_BITS, CountLeadingBits(maxValue));
+#else
+ *dmxScale = fixMax(0, fixMin(FRACT_BITS, CountLeadingBits((maxValue))));
+#endif
+}