summaryrefslogtreecommitdiffstats
path: root/fdk-aac/libSBRenc/src/ps_encode.cpp
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2019-11-11 11:38:02 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2019-11-11 11:38:02 +0100
commit0e5af65c467b2423a0b857ae3ad98c91acc1e190 (patch)
treed07f69550d8886271e44fe79c4dcfb299cafbd38 /fdk-aac/libSBRenc/src/ps_encode.cpp
parentefe406d9724f959c8bc2a31802559ca6d41fd897 (diff)
downloadODR-AudioEnc-0e5af65c467b2423a0b857ae3ad98c91acc1e190.tar.gz
ODR-AudioEnc-0e5af65c467b2423a0b857ae3ad98c91acc1e190.tar.bz2
ODR-AudioEnc-0e5af65c467b2423a0b857ae3ad98c91acc1e190.zip
Include patched FDK-AAC in the repository
The initial idea was to get the DAB+ patch into upstream, but since that follows the android source releases, there is no place for a custom DAB+ patch there. So instead of having to maintain a patched fdk-aac that has to have the same .so version as the distribution package on which it is installed, we prefer having a separate fdk-aac-dab library to avoid collision. At that point, there's no reason to keep fdk-aac in a separate repository, as odr-audioenc is the only tool that needs DAB+ encoding support. Including it here simplifies installation, and makes it consistent with toolame-dab, also shipped in this repository. DAB+ decoding support (needed by ODR-SourceCompanion, dablin, etisnoop, welle.io and others) can be done using upstream FDK-AAC.
Diffstat (limited to 'fdk-aac/libSBRenc/src/ps_encode.cpp')
-rw-r--r--fdk-aac/libSBRenc/src/ps_encode.cpp1031
1 files changed, 1031 insertions, 0 deletions
diff --git a/fdk-aac/libSBRenc/src/ps_encode.cpp b/fdk-aac/libSBRenc/src/ps_encode.cpp
new file mode 100644
index 0000000..88d3131
--- /dev/null
+++ b/fdk-aac/libSBRenc/src/ps_encode.cpp
@@ -0,0 +1,1031 @@
+/* -----------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
+
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------- */
+
+/**************************** SBR encoder library ******************************
+
+ Author(s): M. Neuendorf, N. Rettelbach, M. Multrus
+
+ Description: PS parameter extraction, encoding
+
+*******************************************************************************/
+
+/*!
+ \file
+ \brief PS parameter extraction, encoding functions $Revision: 96441 $
+*/
+
+#include "ps_main.h"
+#include "ps_encode.h"
+#include "qmf.h"
+#include "sbr_misc.h"
+#include "sbrenc_ram.h"
+
+#include "genericStds.h"
+
+inline void FDKsbrEnc_addFIXP_DBL(const FIXP_DBL *X, const FIXP_DBL *Y,
+ FIXP_DBL *Z, INT n) {
+ for (INT i = 0; i < n; i++) Z[i] = (X[i] >> 1) + (Y[i] >> 1);
+}
+
+#define LOG10_2_10 3.01029995664f /* 10.0f*log10(2.f) */
+
+static const INT
+ iidGroupBordersLoRes[QMF_GROUPS_LO_RES + SUBQMF_GROUPS_LO_RES + 1] = {
+ 0, 1, 2, 3, 4, 5, /* 6 subqmf subbands - 0th qmf subband */
+ 6, 7, /* 2 subqmf subbands - 1st qmf subband */
+ 8, 9, /* 2 subqmf subbands - 2nd qmf subband */
+ 10, 11, 12, 13, 14, 15, 16, 18, 21, 25, 30, 42, 71};
+
+static const UCHAR
+ iidGroupWidthLdLoRes[QMF_GROUPS_LO_RES + SUBQMF_GROUPS_LO_RES] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 4, 5};
+
+static const INT subband2parameter20[QMF_GROUPS_LO_RES + SUBQMF_GROUPS_LO_RES] =
+ {1, 0, 0, 1, 2, 3, /* 6 subqmf subbands - 0th qmf subband */
+ 4, 5, /* 2 subqmf subbands - 1st qmf subband */
+ 6, 7, /* 2 subqmf subbands - 2nd qmf subband */
+ 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19};
+
+typedef enum {
+ MAX_TIME_DIFF_FRAMES = 20,
+ MAX_PS_NOHEADER_CNT = 10,
+ MAX_NOENV_CNT = 10,
+ DO_NOT_USE_THIS_MODE = 0x7FFFFF
+} __PS_CONSTANTS;
+
+static const FIXP_DBL iidQuant_fx[15] = {
+ (FIXP_DBL)0xce000000, (FIXP_DBL)0xdc000000, (FIXP_DBL)0xe4000000,
+ (FIXP_DBL)0xec000000, (FIXP_DBL)0xf2000000, (FIXP_DBL)0xf8000000,
+ (FIXP_DBL)0xfc000000, (FIXP_DBL)0x00000000, (FIXP_DBL)0x04000000,
+ (FIXP_DBL)0x08000000, (FIXP_DBL)0x0e000000, (FIXP_DBL)0x14000000,
+ (FIXP_DBL)0x1c000000, (FIXP_DBL)0x24000000, (FIXP_DBL)0x32000000};
+
+static const FIXP_DBL iidQuantFine_fx[31] = {
+ (FIXP_DBL)0x9c000001, (FIXP_DBL)0xa6000001, (FIXP_DBL)0xb0000001,
+ (FIXP_DBL)0xba000001, (FIXP_DBL)0xc4000000, (FIXP_DBL)0xce000000,
+ (FIXP_DBL)0xd4000000, (FIXP_DBL)0xda000000, (FIXP_DBL)0xe0000000,
+ (FIXP_DBL)0xe6000000, (FIXP_DBL)0xec000000, (FIXP_DBL)0xf0000000,
+ (FIXP_DBL)0xf4000000, (FIXP_DBL)0xf8000000, (FIXP_DBL)0xfc000000,
+ (FIXP_DBL)0x00000000, (FIXP_DBL)0x04000000, (FIXP_DBL)0x08000000,
+ (FIXP_DBL)0x0c000000, (FIXP_DBL)0x10000000, (FIXP_DBL)0x14000000,
+ (FIXP_DBL)0x1a000000, (FIXP_DBL)0x20000000, (FIXP_DBL)0x26000000,
+ (FIXP_DBL)0x2c000000, (FIXP_DBL)0x32000000, (FIXP_DBL)0x3c000000,
+ (FIXP_DBL)0x45ffffff, (FIXP_DBL)0x4fffffff, (FIXP_DBL)0x59ffffff,
+ (FIXP_DBL)0x63ffffff};
+
+static const FIXP_DBL iccQuant[8] = {
+ (FIXP_DBL)0x7fffffff, (FIXP_DBL)0x77ef9d7f, (FIXP_DBL)0x6babc97f,
+ (FIXP_DBL)0x4ceaf27f, (FIXP_DBL)0x2f0ed3c0, (FIXP_DBL)0x00000000,
+ (FIXP_DBL)0xb49ba601, (FIXP_DBL)0x80000000};
+
+static FDK_PSENC_ERROR InitPSData(HANDLE_PS_DATA hPsData) {
+ FDK_PSENC_ERROR error = PSENC_OK;
+
+ if (hPsData == NULL) {
+ error = PSENC_INVALID_HANDLE;
+ } else {
+ int i, env;
+ FDKmemclear(hPsData, sizeof(PS_DATA));
+
+ for (i = 0; i < PS_MAX_BANDS; i++) {
+ hPsData->iidIdxLast[i] = 0;
+ hPsData->iccIdxLast[i] = 0;
+ }
+
+ hPsData->iidEnable = hPsData->iidEnableLast = 0;
+ hPsData->iccEnable = hPsData->iccEnableLast = 0;
+ hPsData->iidQuantMode = hPsData->iidQuantModeLast = PS_IID_RES_COARSE;
+ hPsData->iccQuantMode = hPsData->iccQuantModeLast = PS_ICC_ROT_A;
+
+ for (env = 0; env < PS_MAX_ENVELOPES; env++) {
+ hPsData->iccDiffMode[env] = PS_DELTA_FREQ;
+ hPsData->iccDiffMode[env] = PS_DELTA_FREQ;
+
+ for (i = 0; i < PS_MAX_BANDS; i++) {
+ hPsData->iidIdx[env][i] = 0;
+ hPsData->iccIdx[env][i] = 0;
+ }
+ }
+
+ hPsData->nEnvelopesLast = 0;
+
+ hPsData->headerCnt = MAX_PS_NOHEADER_CNT;
+ hPsData->iidTimeCnt = MAX_TIME_DIFF_FRAMES;
+ hPsData->iccTimeCnt = MAX_TIME_DIFF_FRAMES;
+ hPsData->noEnvCnt = MAX_NOENV_CNT;
+ }
+
+ return error;
+}
+
+static FIXP_DBL quantizeCoef(const FIXP_DBL *RESTRICT input, const INT nBands,
+ const FIXP_DBL *RESTRICT quantTable,
+ const INT idxOffset, const INT nQuantSteps,
+ INT *RESTRICT quantOut) {
+ INT idx, band;
+ FIXP_DBL quantErr = FL2FXCONST_DBL(0.f);
+
+ for (band = 0; band < nBands; band++) {
+ for (idx = 0; idx < nQuantSteps - 1; idx++) {
+ if (fixp_abs((input[band] >> 1) - (quantTable[idx + 1] >> 1)) >
+ fixp_abs((input[band] >> 1) - (quantTable[idx] >> 1))) {
+ break;
+ }
+ }
+ quantErr += (fixp_abs(input[band] - quantTable[idx]) >>
+ PS_QUANT_SCALE); /* don't scale before subtraction; diff
+ smaller (64-25)/64 */
+ quantOut[band] = idx - idxOffset;
+ }
+
+ return quantErr;
+}
+
+static INT getICCMode(const INT nBands, const INT rotType) {
+ INT mode = 0;
+
+ switch (nBands) {
+ case PS_BANDS_COARSE:
+ mode = PS_RES_COARSE;
+ break;
+ case PS_BANDS_MID:
+ mode = PS_RES_MID;
+ break;
+ default:
+ mode = 0;
+ }
+ if (rotType == PS_ICC_ROT_B) {
+ mode += 3;
+ }
+
+ return mode;
+}
+
+static INT getIIDMode(const INT nBands, const INT iidRes) {
+ INT mode = 0;
+
+ switch (nBands) {
+ case PS_BANDS_COARSE:
+ mode = PS_RES_COARSE;
+ break;
+ case PS_BANDS_MID:
+ mode = PS_RES_MID;
+ break;
+ default:
+ mode = 0;
+ break;
+ }
+
+ if (iidRes == PS_IID_RES_FINE) {
+ mode += 3;
+ }
+
+ return mode;
+}
+
+static INT envelopeReducible(FIXP_DBL iid[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ FIXP_DBL icc[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ INT psBands, INT nEnvelopes) {
+#define THRESH_SCALE 7
+
+ INT reducible = 1; /* true */
+ INT e = 0, b = 0;
+ FIXP_DBL dIid = FL2FXCONST_DBL(0.f);
+ FIXP_DBL dIcc = FL2FXCONST_DBL(0.f);
+
+ FIXP_DBL iidErrThreshold, iccErrThreshold;
+ FIXP_DBL iidMeanError, iccMeanError;
+
+ /* square values to prevent sqrt,
+ multiply bands to prevent division; bands shifted DFRACT_BITS instead
+ (DFRACT_BITS-1) because fMultDiv2 used*/
+ iidErrThreshold =
+ fMultDiv2(FL2FXCONST_DBL(6.5f * 6.5f / (IID_SCALE_FT * IID_SCALE_FT)),
+ (FIXP_DBL)(psBands << ((DFRACT_BITS)-THRESH_SCALE)));
+ iccErrThreshold =
+ fMultDiv2(FL2FXCONST_DBL(0.75f * 0.75f),
+ (FIXP_DBL)(psBands << ((DFRACT_BITS)-THRESH_SCALE)));
+
+ if (nEnvelopes <= 1) {
+ reducible = 0;
+ } else {
+ /* mean error criterion */
+ for (e = 0; (e < nEnvelopes / 2) && (reducible != 0); e++) {
+ iidMeanError = iccMeanError = FL2FXCONST_DBL(0.f);
+ for (b = 0; b < psBands; b++) {
+ dIid = (iid[2 * e][b] >> 1) -
+ (iid[2 * e + 1][b] >> 1); /* scale 1 bit; squared -> 2 bit */
+ dIcc = (icc[2 * e][b] >> 1) - (icc[2 * e + 1][b] >> 1);
+ iidMeanError += fPow2Div2(dIid) >> (5 - 1); /* + (bands=20) scale = 5 */
+ iccMeanError += fPow2Div2(dIcc) >> (5 - 1);
+ } /* --> scaling = 7 bit = THRESH_SCALE !! */
+
+ /* instead sqrt values are squared!
+ instead of division, multiply threshold with psBands
+ scaling necessary!! */
+
+ /* quit as soon as threshold is reached */
+ if ((iidMeanError > (iidErrThreshold)) ||
+ (iccMeanError > (iccErrThreshold))) {
+ reducible = 0;
+ }
+ }
+ } /* nEnvelopes != 1 */
+
+ return reducible;
+}
+
+static void processIidData(PS_DATA *psData,
+ FIXP_DBL iid[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ const INT psBands, const INT nEnvelopes,
+ const FIXP_DBL quantErrorThreshold) {
+ INT iidIdxFine[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+ INT iidIdxCoarse[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+
+ FIXP_DBL errIID = FL2FXCONST_DBL(0.f);
+ FIXP_DBL errIIDFine = FL2FXCONST_DBL(0.f);
+ INT bitsIidFreq = 0;
+ INT bitsIidTime = 0;
+ INT bitsFineTot = 0;
+ INT bitsCoarseTot = 0;
+ INT error = 0;
+ INT env, band;
+ INT diffMode[PS_MAX_ENVELOPES], diffModeFine[PS_MAX_ENVELOPES];
+ INT loudnDiff = 0;
+ INT iidTransmit = 0;
+
+ /* Quantize IID coefficients */
+ for (env = 0; env < nEnvelopes; env++) {
+ errIID +=
+ quantizeCoef(iid[env], psBands, iidQuant_fx, 7, 15, iidIdxCoarse[env]);
+ errIIDFine += quantizeCoef(iid[env], psBands, iidQuantFine_fx, 15, 31,
+ iidIdxFine[env]);
+ }
+
+ /* normalize error to number of envelopes, ps bands
+ errIID /= psBands*nEnvelopes;
+ errIIDFine /= psBands*nEnvelopes; */
+
+ /* Check if IID coefficients should be used in this frame */
+ psData->iidEnable = 0;
+ for (env = 0; env < nEnvelopes; env++) {
+ for (band = 0; band < psBands; band++) {
+ loudnDiff += fixp_abs(iidIdxCoarse[env][band]);
+ iidTransmit++;
+ }
+ }
+
+ if (loudnDiff >
+ fMultI(FL2FXCONST_DBL(0.7f), iidTransmit)) { /* 0.7f empiric value */
+ psData->iidEnable = 1;
+ }
+
+ /* if iid not active -> RESET data */
+ if (psData->iidEnable == 0) {
+ psData->iidTimeCnt = MAX_TIME_DIFF_FRAMES;
+ for (env = 0; env < nEnvelopes; env++) {
+ psData->iidDiffMode[env] = PS_DELTA_FREQ;
+ FDKmemclear(psData->iidIdx[env], sizeof(INT) * psBands);
+ }
+ return;
+ }
+
+ /* count COARSE quantization bits for first envelope*/
+ bitsIidFreq = FDKsbrEnc_EncodeIid(NULL, iidIdxCoarse[0], NULL, psBands,
+ PS_IID_RES_COARSE, PS_DELTA_FREQ, &error);
+
+ if ((psData->iidTimeCnt >= MAX_TIME_DIFF_FRAMES) ||
+ (psData->iidQuantModeLast == PS_IID_RES_FINE)) {
+ bitsIidTime = DO_NOT_USE_THIS_MODE;
+ } else {
+ bitsIidTime =
+ FDKsbrEnc_EncodeIid(NULL, iidIdxCoarse[0], psData->iidIdxLast, psBands,
+ PS_IID_RES_COARSE, PS_DELTA_TIME, &error);
+ }
+
+ /* decision DELTA_FREQ vs DELTA_TIME */
+ if (bitsIidTime > bitsIidFreq) {
+ diffMode[0] = PS_DELTA_FREQ;
+ bitsCoarseTot = bitsIidFreq;
+ } else {
+ diffMode[0] = PS_DELTA_TIME;
+ bitsCoarseTot = bitsIidTime;
+ }
+
+ /* count COARSE quantization bits for following envelopes*/
+ for (env = 1; env < nEnvelopes; env++) {
+ bitsIidFreq = FDKsbrEnc_EncodeIid(NULL, iidIdxCoarse[env], NULL, psBands,
+ PS_IID_RES_COARSE, PS_DELTA_FREQ, &error);
+ bitsIidTime =
+ FDKsbrEnc_EncodeIid(NULL, iidIdxCoarse[env], iidIdxCoarse[env - 1],
+ psBands, PS_IID_RES_COARSE, PS_DELTA_TIME, &error);
+
+ /* decision DELTA_FREQ vs DELTA_TIME */
+ if (bitsIidTime > bitsIidFreq) {
+ diffMode[env] = PS_DELTA_FREQ;
+ bitsCoarseTot += bitsIidFreq;
+ } else {
+ diffMode[env] = PS_DELTA_TIME;
+ bitsCoarseTot += bitsIidTime;
+ }
+ }
+
+ /* count FINE quantization bits for first envelope*/
+ bitsIidFreq = FDKsbrEnc_EncodeIid(NULL, iidIdxFine[0], NULL, psBands,
+ PS_IID_RES_FINE, PS_DELTA_FREQ, &error);
+
+ if ((psData->iidTimeCnt >= MAX_TIME_DIFF_FRAMES) ||
+ (psData->iidQuantModeLast == PS_IID_RES_COARSE)) {
+ bitsIidTime = DO_NOT_USE_THIS_MODE;
+ } else {
+ bitsIidTime =
+ FDKsbrEnc_EncodeIid(NULL, iidIdxFine[0], psData->iidIdxLast, psBands,
+ PS_IID_RES_FINE, PS_DELTA_TIME, &error);
+ }
+
+ /* decision DELTA_FREQ vs DELTA_TIME */
+ if (bitsIidTime > bitsIidFreq) {
+ diffModeFine[0] = PS_DELTA_FREQ;
+ bitsFineTot = bitsIidFreq;
+ } else {
+ diffModeFine[0] = PS_DELTA_TIME;
+ bitsFineTot = bitsIidTime;
+ }
+
+ /* count FINE quantization bits for following envelopes*/
+ for (env = 1; env < nEnvelopes; env++) {
+ bitsIidFreq = FDKsbrEnc_EncodeIid(NULL, iidIdxFine[env], NULL, psBands,
+ PS_IID_RES_FINE, PS_DELTA_FREQ, &error);
+ bitsIidTime =
+ FDKsbrEnc_EncodeIid(NULL, iidIdxFine[env], iidIdxFine[env - 1], psBands,
+ PS_IID_RES_FINE, PS_DELTA_TIME, &error);
+
+ /* decision DELTA_FREQ vs DELTA_TIME */
+ if (bitsIidTime > bitsIidFreq) {
+ diffModeFine[env] = PS_DELTA_FREQ;
+ bitsFineTot += bitsIidFreq;
+ } else {
+ diffModeFine[env] = PS_DELTA_TIME;
+ bitsFineTot += bitsIidTime;
+ }
+ }
+
+ if (bitsFineTot == bitsCoarseTot) {
+ /* if same number of bits is needed, use the quantization with lower error
+ */
+ if (errIIDFine < errIID) {
+ bitsCoarseTot = DO_NOT_USE_THIS_MODE;
+ } else {
+ bitsFineTot = DO_NOT_USE_THIS_MODE;
+ }
+ } else {
+ /* const FIXP_DBL minThreshold =
+ * FL2FXCONST_DBL(0.2f/(IID_SCALE_FT*PS_QUANT_SCALE_FT)*(psBands*nEnvelopes));
+ */
+ const FIXP_DBL minThreshold =
+ (FIXP_DBL)((LONG)0x00019999 * (psBands * nEnvelopes));
+
+ /* decision RES_FINE vs RES_COARSE */
+ /* test if errIIDFine*quantErrorThreshold < errIID */
+ /* shiftVal 2 comes from scaling of quantErrorThreshold */
+ if (fixMax(((errIIDFine >> 1) + (minThreshold >> 1)) >> 1,
+ fMult(quantErrorThreshold, errIIDFine)) < (errIID >> 2)) {
+ bitsCoarseTot = DO_NOT_USE_THIS_MODE;
+ } else if (fixMax(((errIID >> 1) + (minThreshold >> 1)) >> 1,
+ fMult(quantErrorThreshold, errIID)) < (errIIDFine >> 2)) {
+ bitsFineTot = DO_NOT_USE_THIS_MODE;
+ }
+ }
+
+ /* decision RES_FINE vs RES_COARSE */
+ if (bitsFineTot < bitsCoarseTot) {
+ psData->iidQuantMode = PS_IID_RES_FINE;
+ for (env = 0; env < nEnvelopes; env++) {
+ psData->iidDiffMode[env] = diffModeFine[env];
+ FDKmemcpy(psData->iidIdx[env], iidIdxFine[env], psBands * sizeof(INT));
+ }
+ } else {
+ psData->iidQuantMode = PS_IID_RES_COARSE;
+ for (env = 0; env < nEnvelopes; env++) {
+ psData->iidDiffMode[env] = diffMode[env];
+ FDKmemcpy(psData->iidIdx[env], iidIdxCoarse[env], psBands * sizeof(INT));
+ }
+ }
+
+ /* Count DELTA_TIME encoding streaks */
+ for (env = 0; env < nEnvelopes; env++) {
+ if (psData->iidDiffMode[env] == PS_DELTA_TIME)
+ psData->iidTimeCnt++;
+ else
+ psData->iidTimeCnt = 0;
+ }
+}
+
+static INT similarIid(PS_DATA *psData, const INT psBands,
+ const INT nEnvelopes) {
+ const INT diffThr = (psData->iidQuantMode == PS_IID_RES_COARSE) ? 2 : 3;
+ const INT sumDiffThr = diffThr * psBands / 4;
+ INT similar = 0;
+ INT diff = 0;
+ INT sumDiff = 0;
+ INT env = 0;
+ INT b = 0;
+ if ((nEnvelopes == psData->nEnvelopesLast) && (nEnvelopes == 1)) {
+ similar = 1;
+ for (env = 0; env < nEnvelopes; env++) {
+ sumDiff = 0;
+ b = 0;
+ do {
+ diff = fixp_abs(psData->iidIdx[env][b] - psData->iidIdxLast[b]);
+ sumDiff += diff;
+ if ((diff > diffThr) /* more than x quantization steps in any band */
+ || (sumDiff > sumDiffThr)) { /* more than x quantisations steps
+ overall difference */
+ similar = 0;
+ }
+ b++;
+ } while ((b < psBands) && (similar > 0));
+ }
+ } /* nEnvelopes==1 */
+
+ return similar;
+}
+
+static INT similarIcc(PS_DATA *psData, const INT psBands,
+ const INT nEnvelopes) {
+ const INT diffThr = 2;
+ const INT sumDiffThr = diffThr * psBands / 4;
+ INT similar = 0;
+ INT diff = 0;
+ INT sumDiff = 0;
+ INT env = 0;
+ INT b = 0;
+ if ((nEnvelopes == psData->nEnvelopesLast) && (nEnvelopes == 1)) {
+ similar = 1;
+ for (env = 0; env < nEnvelopes; env++) {
+ sumDiff = 0;
+ b = 0;
+ do {
+ diff = fixp_abs(psData->iccIdx[env][b] - psData->iccIdxLast[b]);
+ sumDiff += diff;
+ if ((diff > diffThr) /* more than x quantisation step in any band */
+ || (sumDiff > sumDiffThr)) { /* more than x quantisations steps
+ overall difference */
+ similar = 0;
+ }
+ b++;
+ } while ((b < psBands) && (similar > 0));
+ }
+ } /* nEnvelopes==1 */
+
+ return similar;
+}
+
+static void processIccData(
+ PS_DATA *psData,
+ FIXP_DBL icc[PS_MAX_ENVELOPES][PS_MAX_BANDS], /* const input values:
+ unable to declare as
+ const, since it does
+ not poINT to const
+ memory */
+ const INT psBands, const INT nEnvelopes) {
+ FIXP_DBL errICC = FL2FXCONST_DBL(0.f);
+ INT env, band;
+ INT bitsIccFreq, bitsIccTime;
+ INT error = 0;
+ INT inCoherence = 0, iccTransmit = 0;
+ INT *iccIdxLast;
+
+ iccIdxLast = psData->iccIdxLast;
+
+ /* Quantize ICC coefficients */
+ for (env = 0; env < nEnvelopes; env++) {
+ errICC +=
+ quantizeCoef(icc[env], psBands, iccQuant, 0, 8, psData->iccIdx[env]);
+ }
+
+ /* Check if ICC coefficients should be used */
+ psData->iccEnable = 0;
+ for (env = 0; env < nEnvelopes; env++) {
+ for (band = 0; band < psBands; band++) {
+ inCoherence += psData->iccIdx[env][band];
+ iccTransmit++;
+ }
+ }
+ if (inCoherence >
+ fMultI(FL2FXCONST_DBL(0.5f), iccTransmit)) { /* 0.5f empiric value */
+ psData->iccEnable = 1;
+ }
+
+ if (psData->iccEnable == 0) {
+ psData->iccTimeCnt = MAX_TIME_DIFF_FRAMES;
+ for (env = 0; env < nEnvelopes; env++) {
+ psData->iccDiffMode[env] = PS_DELTA_FREQ;
+ FDKmemclear(psData->iccIdx[env], sizeof(INT) * psBands);
+ }
+ return;
+ }
+
+ for (env = 0; env < nEnvelopes; env++) {
+ bitsIccFreq = FDKsbrEnc_EncodeIcc(NULL, psData->iccIdx[env], NULL, psBands,
+ PS_DELTA_FREQ, &error);
+
+ if (psData->iccTimeCnt < MAX_TIME_DIFF_FRAMES) {
+ bitsIccTime = FDKsbrEnc_EncodeIcc(NULL, psData->iccIdx[env], iccIdxLast,
+ psBands, PS_DELTA_TIME, &error);
+ } else {
+ bitsIccTime = DO_NOT_USE_THIS_MODE;
+ }
+
+ if (bitsIccFreq > bitsIccTime) {
+ psData->iccDiffMode[env] = PS_DELTA_TIME;
+ psData->iccTimeCnt++;
+ } else {
+ psData->iccDiffMode[env] = PS_DELTA_FREQ;
+ psData->iccTimeCnt = 0;
+ }
+ iccIdxLast = psData->iccIdx[env];
+ }
+}
+
+static void calculateIID(FIXP_DBL ldPwrL[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ FIXP_DBL ldPwrR[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ FIXP_DBL iid[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ INT nEnvelopes, INT psBands) {
+ INT i = 0;
+ INT env = 0;
+ for (env = 0; env < nEnvelopes; env++) {
+ for (i = 0; i < psBands; i++) {
+ /* iid[env][i] = 10.0f*(float)log10(pwrL[env][i]/pwrR[env][i]);
+ */
+ FIXP_DBL IID = fMultDiv2(FL2FXCONST_DBL(LOG10_2_10 / IID_SCALE_FT),
+ (ldPwrL[env][i] - ldPwrR[env][i]));
+
+ IID = fixMin(IID, (FIXP_DBL)(MAXVAL_DBL >> (LD_DATA_SHIFT + 1)));
+ IID = fixMax(IID, (FIXP_DBL)(MINVAL_DBL >> (LD_DATA_SHIFT + 1)));
+ iid[env][i] = IID << (LD_DATA_SHIFT + 1);
+ }
+ }
+}
+
+static void calculateICC(FIXP_DBL pwrL[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ FIXP_DBL pwrR[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ FIXP_DBL pwrCr[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ FIXP_DBL pwrCi[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ FIXP_DBL icc[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ INT nEnvelopes, INT psBands) {
+ INT i = 0;
+ INT env = 0;
+ INT border = psBands;
+
+ switch (psBands) {
+ case PS_BANDS_COARSE:
+ border = 5;
+ break;
+ case PS_BANDS_MID:
+ border = 11;
+ break;
+ default:
+ break;
+ }
+
+ for (env = 0; env < nEnvelopes; env++) {
+ for (i = 0; i < border; i++) {
+ /* icc[env][i] = min( pwrCr[env][i] / (float) sqrt(pwrL[env][i] *
+ * pwrR[env][i]) , 1.f);
+ */
+ int scale;
+ FIXP_DBL invNrg = invSqrtNorm2(
+ fMax(fMult(pwrL[env][i], pwrR[env][i]), (FIXP_DBL)1), &scale);
+ icc[env][i] =
+ SATURATE_LEFT_SHIFT(fMult(pwrCr[env][i], invNrg), scale, DFRACT_BITS);
+ }
+
+ for (; i < psBands; i++) {
+ int denom_e;
+ FIXP_DBL denom_m = fMultNorm(pwrL[env][i], pwrR[env][i], &denom_e);
+
+ if (denom_m == (FIXP_DBL)0) {
+ icc[env][i] = (FIXP_DBL)MAXVAL_DBL;
+ } else {
+ int num_e, result_e;
+ FIXP_DBL num_m, result_m;
+
+ num_e = CountLeadingBits(
+ fixMax(fixp_abs(pwrCr[env][i]), fixp_abs(pwrCi[env][i])));
+ num_m = fPow2Div2((pwrCr[env][i] << num_e)) +
+ fPow2Div2((pwrCi[env][i] << num_e));
+
+ result_m = fDivNorm(num_m, denom_m, &result_e);
+ result_e += (-2 * num_e + 1) - denom_e;
+ icc[env][i] = scaleValueSaturate(sqrtFixp(result_m >> (result_e & 1)),
+ (result_e + (result_e & 1)) >> 1);
+ }
+ }
+ }
+}
+
+void FDKsbrEnc_initPsBandNrgScale(HANDLE_PS_ENCODE hPsEncode) {
+ INT group, bin;
+ INT nIidGroups = hPsEncode->nQmfIidGroups + hPsEncode->nSubQmfIidGroups;
+
+ FDKmemclear(hPsEncode->psBandNrgScale, PS_MAX_BANDS * sizeof(SCHAR));
+
+ for (group = 0; group < nIidGroups; group++) {
+ /* Translate group to bin */
+ bin = hPsEncode->subband2parameterIndex[group];
+
+ /* Translate from 20 bins to 10 bins */
+ if (hPsEncode->psEncMode == PS_BANDS_COARSE) {
+ bin = bin >> 1;
+ }
+
+ hPsEncode->psBandNrgScale[bin] =
+ (hPsEncode->psBandNrgScale[bin] == 0)
+ ? (hPsEncode->iidGroupWidthLd[group] + 5)
+ : (fixMax(hPsEncode->iidGroupWidthLd[group],
+ hPsEncode->psBandNrgScale[bin]) +
+ 1);
+ }
+}
+
+FDK_PSENC_ERROR FDKsbrEnc_CreatePSEncode(HANDLE_PS_ENCODE *phPsEncode) {
+ FDK_PSENC_ERROR error = PSENC_OK;
+
+ if (phPsEncode == NULL) {
+ error = PSENC_INVALID_HANDLE;
+ } else {
+ HANDLE_PS_ENCODE hPsEncode = NULL;
+ if (NULL == (hPsEncode = GetRam_PsEncode())) {
+ error = PSENC_MEMORY_ERROR;
+ goto bail;
+ }
+ FDKmemclear(hPsEncode, sizeof(PS_ENCODE));
+ *phPsEncode = hPsEncode; /* return allocated handle */
+ }
+bail:
+ return error;
+}
+
+FDK_PSENC_ERROR FDKsbrEnc_InitPSEncode(HANDLE_PS_ENCODE hPsEncode,
+ const PS_BANDS psEncMode,
+ const FIXP_DBL iidQuantErrorThreshold) {
+ FDK_PSENC_ERROR error = PSENC_OK;
+
+ if (NULL == hPsEncode) {
+ error = PSENC_INVALID_HANDLE;
+ } else {
+ if (PSENC_OK != (InitPSData(&hPsEncode->psData))) {
+ goto bail;
+ }
+
+ switch (psEncMode) {
+ case PS_BANDS_COARSE:
+ case PS_BANDS_MID:
+ hPsEncode->nQmfIidGroups = QMF_GROUPS_LO_RES;
+ hPsEncode->nSubQmfIidGroups = SUBQMF_GROUPS_LO_RES;
+ FDKmemcpy(hPsEncode->iidGroupBorders, iidGroupBordersLoRes,
+ (hPsEncode->nQmfIidGroups + hPsEncode->nSubQmfIidGroups + 1) *
+ sizeof(INT));
+ FDKmemcpy(hPsEncode->subband2parameterIndex, subband2parameter20,
+ (hPsEncode->nQmfIidGroups + hPsEncode->nSubQmfIidGroups) *
+ sizeof(INT));
+ FDKmemcpy(hPsEncode->iidGroupWidthLd, iidGroupWidthLdLoRes,
+ (hPsEncode->nQmfIidGroups + hPsEncode->nSubQmfIidGroups) *
+ sizeof(UCHAR));
+ break;
+ default:
+ error = PSENC_INIT_ERROR;
+ goto bail;
+ }
+
+ hPsEncode->psEncMode = psEncMode;
+ hPsEncode->iidQuantErrorThreshold = iidQuantErrorThreshold;
+ FDKsbrEnc_initPsBandNrgScale(hPsEncode);
+ }
+bail:
+ return error;
+}
+
+FDK_PSENC_ERROR FDKsbrEnc_DestroyPSEncode(HANDLE_PS_ENCODE *phPsEncode) {
+ FDK_PSENC_ERROR error = PSENC_OK;
+
+ if (NULL != phPsEncode) {
+ FreeRam_PsEncode(phPsEncode);
+ }
+
+ return error;
+}
+
+typedef struct {
+ FIXP_DBL pwrL[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+ FIXP_DBL pwrR[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+ FIXP_DBL ldPwrL[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+ FIXP_DBL ldPwrR[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+ FIXP_DBL pwrCr[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+ FIXP_DBL pwrCi[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+
+} PS_PWR_DATA;
+
+FDK_PSENC_ERROR FDKsbrEnc_PSEncode(
+ HANDLE_PS_ENCODE hPsEncode, HANDLE_PS_OUT hPsOut, UCHAR *dynBandScale,
+ UINT maxEnvelopes,
+ FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],
+ const INT frameSize, const INT sendHeader) {
+ FDK_PSENC_ERROR error = PSENC_OK;
+
+ HANDLE_PS_DATA hPsData = &hPsEncode->psData;
+ FIXP_DBL iid[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+ FIXP_DBL icc[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+ int envBorder[PS_MAX_ENVELOPES + 1];
+
+ int group, bin, col, subband, band;
+ int i = 0;
+
+ int env = 0;
+ int psBands = (int)hPsEncode->psEncMode;
+ int nIidGroups = hPsEncode->nQmfIidGroups + hPsEncode->nSubQmfIidGroups;
+ int nEnvelopes = fixMin(maxEnvelopes, (UINT)PS_MAX_ENVELOPES);
+
+ C_ALLOC_SCRATCH_START(pwrData, PS_PWR_DATA, 1)
+
+ for (env = 0; env < nEnvelopes + 1; env++) {
+ envBorder[env] = fMultI(GetInvInt(nEnvelopes), frameSize * env);
+ }
+
+ for (env = 0; env < nEnvelopes; env++) {
+ /* clear energy array */
+ for (band = 0; band < psBands; band++) {
+ pwrData->pwrL[env][band] = pwrData->pwrR[env][band] =
+ pwrData->pwrCr[env][band] = pwrData->pwrCi[env][band] = FIXP_DBL(1);
+ }
+
+ /**** calculate energies and correlation ****/
+
+ /* start with hybrid data */
+ for (group = 0; group < nIidGroups; group++) {
+ /* Translate group to bin */
+ bin = hPsEncode->subband2parameterIndex[group];
+
+ /* Translate from 20 bins to 10 bins */
+ if (hPsEncode->psEncMode == PS_BANDS_COARSE) {
+ bin >>= 1;
+ }
+
+ /* determine group border */
+ int bScale = hPsEncode->psBandNrgScale[bin];
+
+ FIXP_DBL pwrL_env_bin = pwrData->pwrL[env][bin];
+ FIXP_DBL pwrR_env_bin = pwrData->pwrR[env][bin];
+ FIXP_DBL pwrCr_env_bin = pwrData->pwrCr[env][bin];
+ FIXP_DBL pwrCi_env_bin = pwrData->pwrCi[env][bin];
+
+ int scale = (int)dynBandScale[bin];
+ for (col = envBorder[env]; col < envBorder[env + 1]; col++) {
+ for (subband = hPsEncode->iidGroupBorders[group];
+ subband < hPsEncode->iidGroupBorders[group + 1]; subband++) {
+ FIXP_DBL l_real = (hybridData[col][0][0][subband]) << scale;
+ FIXP_DBL l_imag = (hybridData[col][0][1][subband]) << scale;
+ FIXP_DBL r_real = (hybridData[col][1][0][subband]) << scale;
+ FIXP_DBL r_imag = (hybridData[col][1][1][subband]) << scale;
+
+ pwrL_env_bin += (fPow2Div2(l_real) + fPow2Div2(l_imag)) >> bScale;
+ pwrR_env_bin += (fPow2Div2(r_real) + fPow2Div2(r_imag)) >> bScale;
+ pwrCr_env_bin +=
+ (fMultDiv2(l_real, r_real) + fMultDiv2(l_imag, r_imag)) >> bScale;
+ pwrCi_env_bin +=
+ (fMultDiv2(r_real, l_imag) - fMultDiv2(l_real, r_imag)) >> bScale;
+ }
+ }
+ /* assure, nrg's of left and right channel are not negative; necessary on
+ * 16 bit multiply units */
+ pwrData->pwrL[env][bin] = fixMax((FIXP_DBL)0, pwrL_env_bin);
+ pwrData->pwrR[env][bin] = fixMax((FIXP_DBL)0, pwrR_env_bin);
+
+ pwrData->pwrCr[env][bin] = pwrCr_env_bin;
+ pwrData->pwrCi[env][bin] = pwrCi_env_bin;
+
+ } /* nIidGroups */
+
+ /* calc logarithmic energy */
+ LdDataVector(pwrData->pwrL[env], pwrData->ldPwrL[env], psBands);
+ LdDataVector(pwrData->pwrR[env], pwrData->ldPwrR[env], psBands);
+
+ } /* nEnvelopes */
+
+ /* calculate iid and icc */
+ calculateIID(pwrData->ldPwrL, pwrData->ldPwrR, iid, nEnvelopes, psBands);
+ calculateICC(pwrData->pwrL, pwrData->pwrR, pwrData->pwrCr, pwrData->pwrCi,
+ icc, nEnvelopes, psBands);
+
+ /*** Envelope Reduction ***/
+ while (envelopeReducible(iid, icc, psBands, nEnvelopes)) {
+ int e = 0;
+ /* sum energies of two neighboring envelopes */
+ nEnvelopes >>= 1;
+ for (e = 0; e < nEnvelopes; e++) {
+ FDKsbrEnc_addFIXP_DBL(pwrData->pwrL[2 * e], pwrData->pwrL[2 * e + 1],
+ pwrData->pwrL[e], psBands);
+ FDKsbrEnc_addFIXP_DBL(pwrData->pwrR[2 * e], pwrData->pwrR[2 * e + 1],
+ pwrData->pwrR[e], psBands);
+ FDKsbrEnc_addFIXP_DBL(pwrData->pwrCr[2 * e], pwrData->pwrCr[2 * e + 1],
+ pwrData->pwrCr[e], psBands);
+ FDKsbrEnc_addFIXP_DBL(pwrData->pwrCi[2 * e], pwrData->pwrCi[2 * e + 1],
+ pwrData->pwrCi[e], psBands);
+
+ /* calc logarithmic energy */
+ LdDataVector(pwrData->pwrL[e], pwrData->ldPwrL[e], psBands);
+ LdDataVector(pwrData->pwrR[e], pwrData->ldPwrR[e], psBands);
+
+ /* reduce number of envelopes and adjust borders */
+ envBorder[e] = envBorder[2 * e];
+ }
+ envBorder[nEnvelopes] = envBorder[2 * nEnvelopes];
+
+ /* re-calculate iid and icc */
+ calculateIID(pwrData->ldPwrL, pwrData->ldPwrR, iid, nEnvelopes, psBands);
+ calculateICC(pwrData->pwrL, pwrData->pwrR, pwrData->pwrCr, pwrData->pwrCi,
+ icc, nEnvelopes, psBands);
+ }
+
+ /* */
+ if (sendHeader) {
+ hPsData->headerCnt = MAX_PS_NOHEADER_CNT;
+ hPsData->iidTimeCnt = MAX_TIME_DIFF_FRAMES;
+ hPsData->iccTimeCnt = MAX_TIME_DIFF_FRAMES;
+ hPsData->noEnvCnt = MAX_NOENV_CNT;
+ }
+
+ /*** Parameter processing, quantisation etc ***/
+ processIidData(hPsData, iid, psBands, nEnvelopes,
+ hPsEncode->iidQuantErrorThreshold);
+ processIccData(hPsData, icc, psBands, nEnvelopes);
+
+ /*** Initialize output struct ***/
+
+ /* PS Header on/off ? */
+ if ((hPsData->headerCnt < MAX_PS_NOHEADER_CNT) &&
+ ((hPsData->iidQuantMode == hPsData->iidQuantModeLast) &&
+ (hPsData->iccQuantMode == hPsData->iccQuantModeLast)) &&
+ ((hPsData->iidEnable == hPsData->iidEnableLast) &&
+ (hPsData->iccEnable == hPsData->iccEnableLast))) {
+ hPsOut->enablePSHeader = 0;
+ } else {
+ hPsOut->enablePSHeader = 1;
+ hPsData->headerCnt = 0;
+ }
+
+ /* nEnvelopes = 0 ? */
+ if ((hPsData->noEnvCnt < MAX_NOENV_CNT) &&
+ (similarIid(hPsData, psBands, nEnvelopes)) &&
+ (similarIcc(hPsData, psBands, nEnvelopes))) {
+ hPsOut->nEnvelopes = nEnvelopes = 0;
+ hPsData->noEnvCnt++;
+ } else {
+ hPsData->noEnvCnt = 0;
+ }
+
+ if (nEnvelopes > 0) {
+ hPsOut->enableIID = hPsData->iidEnable;
+ hPsOut->iidMode = getIIDMode(psBands, hPsData->iidQuantMode);
+
+ hPsOut->enableICC = hPsData->iccEnable;
+ hPsOut->iccMode = getICCMode(psBands, hPsData->iccQuantMode);
+
+ hPsOut->enableIpdOpd = 0;
+ hPsOut->frameClass = 0;
+ hPsOut->nEnvelopes = nEnvelopes;
+
+ for (env = 0; env < nEnvelopes; env++) {
+ hPsOut->frameBorder[env] = envBorder[env + 1];
+ hPsOut->deltaIID[env] = (PS_DELTA)hPsData->iidDiffMode[env];
+ hPsOut->deltaICC[env] = (PS_DELTA)hPsData->iccDiffMode[env];
+ for (band = 0; band < psBands; band++) {
+ hPsOut->iid[env][band] = hPsData->iidIdx[env][band];
+ hPsOut->icc[env][band] = hPsData->iccIdx[env][band];
+ }
+ }
+
+ /* IPD OPD not supported right now */
+ FDKmemclear(hPsOut->ipd,
+ PS_MAX_ENVELOPES * PS_MAX_BANDS * sizeof(PS_DELTA));
+ for (env = 0; env < PS_MAX_ENVELOPES; env++) {
+ hPsOut->deltaIPD[env] = PS_DELTA_FREQ;
+ hPsOut->deltaOPD[env] = PS_DELTA_FREQ;
+ }
+
+ FDKmemclear(hPsOut->ipdLast, PS_MAX_BANDS * sizeof(INT));
+ FDKmemclear(hPsOut->opdLast, PS_MAX_BANDS * sizeof(INT));
+
+ for (band = 0; band < PS_MAX_BANDS; band++) {
+ hPsOut->iidLast[band] = hPsData->iidIdxLast[band];
+ hPsOut->iccLast[band] = hPsData->iccIdxLast[band];
+ }
+
+ /* save iids and iccs for differential time coding in the next frame */
+ hPsData->nEnvelopesLast = nEnvelopes;
+ hPsData->iidEnableLast = hPsData->iidEnable;
+ hPsData->iccEnableLast = hPsData->iccEnable;
+ hPsData->iidQuantModeLast = hPsData->iidQuantMode;
+ hPsData->iccQuantModeLast = hPsData->iccQuantMode;
+ for (i = 0; i < psBands; i++) {
+ hPsData->iidIdxLast[i] = hPsData->iidIdx[nEnvelopes - 1][i];
+ hPsData->iccIdxLast[i] = hPsData->iccIdx[nEnvelopes - 1][i];
+ }
+ } /* Envelope > 0 */
+
+ C_ALLOC_SCRATCH_END(pwrData, PS_PWR_DATA, 1)
+
+ return error;
+}