summaryrefslogtreecommitdiffstats
path: root/fdk-aac/libSBRdec/src/env_dec.cpp
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2019-11-11 11:38:02 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2019-11-11 11:38:02 +0100
commit0e5af65c467b2423a0b857ae3ad98c91acc1e190 (patch)
treed07f69550d8886271e44fe79c4dcfb299cafbd38 /fdk-aac/libSBRdec/src/env_dec.cpp
parentefe406d9724f959c8bc2a31802559ca6d41fd897 (diff)
downloadODR-AudioEnc-0e5af65c467b2423a0b857ae3ad98c91acc1e190.tar.gz
ODR-AudioEnc-0e5af65c467b2423a0b857ae3ad98c91acc1e190.tar.bz2
ODR-AudioEnc-0e5af65c467b2423a0b857ae3ad98c91acc1e190.zip
Include patched FDK-AAC in the repository
The initial idea was to get the DAB+ patch into upstream, but since that follows the android source releases, there is no place for a custom DAB+ patch there. So instead of having to maintain a patched fdk-aac that has to have the same .so version as the distribution package on which it is installed, we prefer having a separate fdk-aac-dab library to avoid collision. At that point, there's no reason to keep fdk-aac in a separate repository, as odr-audioenc is the only tool that needs DAB+ encoding support. Including it here simplifies installation, and makes it consistent with toolame-dab, also shipped in this repository. DAB+ decoding support (needed by ODR-SourceCompanion, dablin, etisnoop, welle.io and others) can be done using upstream FDK-AAC.
Diffstat (limited to 'fdk-aac/libSBRdec/src/env_dec.cpp')
-rw-r--r--fdk-aac/libSBRdec/src/env_dec.cpp873
1 files changed, 873 insertions, 0 deletions
diff --git a/fdk-aac/libSBRdec/src/env_dec.cpp b/fdk-aac/libSBRdec/src/env_dec.cpp
new file mode 100644
index 0000000..95807c9
--- /dev/null
+++ b/fdk-aac/libSBRdec/src/env_dec.cpp
@@ -0,0 +1,873 @@
+/* -----------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
+
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------- */
+
+/**************************** SBR decoder library ******************************
+
+ Author(s):
+
+ Description:
+
+*******************************************************************************/
+
+/*!
+ \file
+ \brief envelope decoding
+ This module provides envelope decoding and error concealment algorithms. The
+ main entry point is decodeSbrData().
+
+ \sa decodeSbrData(),\ref documentationOverview
+*/
+
+#include "env_dec.h"
+
+#include "env_extr.h"
+#include "transcendent.h"
+
+#include "genericStds.h"
+
+static void decodeEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData,
+ HANDLE_SBR_FRAME_DATA h_sbr_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data_otherChannel);
+static void sbr_envelope_unmapping(HANDLE_SBR_HEADER_DATA hHeaderData,
+ HANDLE_SBR_FRAME_DATA h_data_left,
+ HANDLE_SBR_FRAME_DATA h_data_right);
+static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data,
+ int ampResolution);
+static void deltaToLinearPcmEnvelopeDecoding(
+ HANDLE_SBR_HEADER_DATA hHeaderData, HANDLE_SBR_FRAME_DATA h_sbr_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
+static void decodeNoiseFloorlevels(HANDLE_SBR_HEADER_DATA hHeaderData,
+ HANDLE_SBR_FRAME_DATA h_sbr_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
+static void timeCompensateFirstEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData,
+ HANDLE_SBR_FRAME_DATA h_sbr_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
+static int checkEnvelopeData(HANDLE_SBR_HEADER_DATA hHeaderData,
+ HANDLE_SBR_FRAME_DATA h_sbr_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
+
+#define SBR_ENERGY_PAN_OFFSET (12 << ENV_EXP_FRACT)
+#define SBR_MAX_ENERGY (35 << ENV_EXP_FRACT)
+
+#define DECAY (1 << ENV_EXP_FRACT)
+
+#if ENV_EXP_FRACT
+#define DECAY_COUPLING \
+ (1 << (ENV_EXP_FRACT - 1)) /*!< corresponds to a value of 0.5 */
+#else
+#define DECAY_COUPLING \
+ 1 /*!< If the energy data is not shifted, use 1 instead of 0.5 */
+#endif
+
+/*!
+ \brief Convert table index
+*/
+static int indexLow2High(int offset, /*!< mapping factor */
+ int index, /*!< index to scalefactor band */
+ int res) /*!< frequency resolution */
+{
+ if (res == 0) {
+ if (offset >= 0) {
+ if (index < offset)
+ return (index);
+ else
+ return (2 * index - offset);
+ } else {
+ offset = -offset;
+ if (index < offset)
+ return (2 * index + index);
+ else
+ return (2 * index + offset);
+ }
+ } else
+ return (index);
+}
+
+/*!
+ \brief Update previous envelope value for delta-coding
+
+ The current envelope values needs to be stored for delta-coding
+ in the next frame. The stored envelope is always represented with
+ the high frequency resolution. If the current envelope uses the
+ low frequency resolution, the energy value will be mapped to the
+ corresponding high-res bands.
+*/
+static void mapLowResEnergyVal(
+ FIXP_SGL currVal, /*!< current energy value */
+ FIXP_SGL *prevData, /*!< pointer to previous data vector */
+ int offset, /*!< mapping factor */
+ int index, /*!< index to scalefactor band */
+ int res) /*!< frequeny resolution */
+{
+ if (res == 0) {
+ if (offset >= 0) {
+ if (index < offset)
+ prevData[index] = currVal;
+ else {
+ prevData[2 * index - offset] = currVal;
+ prevData[2 * index + 1 - offset] = currVal;
+ }
+ } else {
+ offset = -offset;
+ if (index < offset) {
+ prevData[3 * index] = currVal;
+ prevData[3 * index + 1] = currVal;
+ prevData[3 * index + 2] = currVal;
+ } else {
+ prevData[2 * index + offset] = currVal;
+ prevData[2 * index + 1 + offset] = currVal;
+ }
+ }
+ } else
+ prevData[index] = currVal;
+}
+
+/*!
+ \brief Convert raw envelope and noisefloor data to energy levels
+
+ This function is being called by sbrDecoder_ParseElement() and provides two
+ important algorithms:
+
+ First the function decodes envelopes and noise floor levels as described in
+ requantizeEnvelopeData() and sbr_envelope_unmapping(). The function also
+ implements concealment algorithms in case there are errors within the sbr
+ data. For both operations fractional arithmetic is used. Therefore you might
+ encounter different output values on your target system compared to the
+ reference implementation.
+*/
+void decodeSbrData(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA
+ h_data_left, /*!< pointer to left channel frame data */
+ HANDLE_SBR_PREV_FRAME_DATA
+ h_prev_data_left, /*!< pointer to left channel previous frame data */
+ HANDLE_SBR_FRAME_DATA
+ h_data_right, /*!< pointer to right channel frame data */
+ HANDLE_SBR_PREV_FRAME_DATA
+ h_prev_data_right) /*!< pointer to right channel previous frame data */
+{
+ FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];
+ int errLeft;
+
+ /* Save previous energy values to be able to reuse them later for concealment.
+ */
+ FDKmemcpy(tempSfbNrgPrev, h_prev_data_left->sfb_nrg_prev,
+ MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
+
+ if (hHeaderData->frameErrorFlag || hHeaderData->bs_info.pvc_mode == 0) {
+ decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left,
+ h_prev_data_right);
+ } else {
+ FDK_ASSERT(h_data_right == NULL);
+ }
+ decodeNoiseFloorlevels(hHeaderData, h_data_left, h_prev_data_left);
+
+ if (h_data_right != NULL) {
+ errLeft = hHeaderData->frameErrorFlag;
+ decodeEnvelope(hHeaderData, h_data_right, h_prev_data_right,
+ h_prev_data_left);
+ decodeNoiseFloorlevels(hHeaderData, h_data_right, h_prev_data_right);
+
+ if (!errLeft && hHeaderData->frameErrorFlag) {
+ /* If an error occurs in the right channel where the left channel seemed
+ ok, we apply concealment also on the left channel. This ensures that
+ the coupling modes of both channels match and that we have the same
+ number of envelopes in coupling mode. However, as the left channel has
+ already been processed before, the resulting energy levels are not the
+ same as if the left channel had been concealed during the first call of
+ decodeEnvelope().
+ */
+ /* Restore previous energy values for concealment, because the values have
+ been overwritten by the first call of decodeEnvelope(). */
+ FDKmemcpy(h_prev_data_left->sfb_nrg_prev, tempSfbNrgPrev,
+ MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
+ /* Do concealment */
+ decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left,
+ h_prev_data_right);
+ }
+
+ if (h_data_left->coupling) {
+ sbr_envelope_unmapping(hHeaderData, h_data_left, h_data_right);
+ }
+ }
+
+ /* Display the data for debugging: */
+}
+
+/*!
+ \brief Convert from coupled channels to independent L/R data
+*/
+static void sbr_envelope_unmapping(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_data_left, /*!< pointer to left channel */
+ HANDLE_SBR_FRAME_DATA h_data_right) /*!< pointer to right channel */
+{
+ int i;
+ FIXP_SGL tempL_m, tempR_m, tempRplus1_m, newL_m, newR_m;
+ SCHAR tempL_e, tempR_e, tempRplus1_e, newL_e, newR_e;
+
+ /* 1. Unmap (already dequantized) coupled envelope energies */
+
+ for (i = 0; i < h_data_left->nScaleFactors; i++) {
+ tempR_m = (FIXP_SGL)((LONG)h_data_right->iEnvelope[i] & MASK_M);
+ tempR_e = (SCHAR)((LONG)h_data_right->iEnvelope[i] & MASK_E);
+
+ tempR_e -= (18 + NRG_EXP_OFFSET); /* -18 = ld(UNMAPPING_SCALE /
+ h_data_right->nChannels) */
+ tempL_m = (FIXP_SGL)((LONG)h_data_left->iEnvelope[i] & MASK_M);
+ tempL_e = (SCHAR)((LONG)h_data_left->iEnvelope[i] & MASK_E);
+
+ tempL_e -= NRG_EXP_OFFSET;
+
+ /* Calculate tempRight+1 */
+ FDK_add_MantExp(tempR_m, tempR_e, FL2FXCONST_SGL(0.5f), 1, /* 1.0 */
+ &tempRplus1_m, &tempRplus1_e);
+
+ FDK_divide_MantExp(tempL_m, tempL_e + 1, /* 2 * tempLeft */
+ tempRplus1_m, tempRplus1_e, &newR_m, &newR_e);
+
+ if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) {
+ newR_m >>= 1;
+ newR_e += 1;
+ }
+
+ newL_m = FX_DBL2FX_SGL(fMult(tempR_m, newR_m));
+ newL_e = tempR_e + newR_e;
+
+ h_data_right->iEnvelope[i] =
+ ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
+ (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NRG_EXP_OFFSET) & MASK_E);
+ h_data_left->iEnvelope[i] =
+ ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
+ (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NRG_EXP_OFFSET) & MASK_E);
+ }
+
+ /* 2. Dequantize and unmap coupled noise floor levels */
+
+ for (i = 0; i < hHeaderData->freqBandData.nNfb *
+ h_data_left->frameInfo.nNoiseEnvelopes;
+ i++) {
+ tempL_e = (SCHAR)(6 - (LONG)h_data_left->sbrNoiseFloorLevel[i]);
+ tempR_e = (SCHAR)((LONG)h_data_right->sbrNoiseFloorLevel[i] -
+ 12) /*SBR_ENERGY_PAN_OFFSET*/;
+
+ /* Calculate tempR+1 */
+ FDK_add_MantExp(FL2FXCONST_SGL(0.5f), 1 + tempR_e, /* tempR */
+ FL2FXCONST_SGL(0.5f), 1, /* 1.0 */
+ &tempRplus1_m, &tempRplus1_e);
+
+ /* Calculate 2*tempLeft/(tempR+1) */
+ FDK_divide_MantExp(FL2FXCONST_SGL(0.5f), tempL_e + 2, /* 2 * tempLeft */
+ tempRplus1_m, tempRplus1_e, &newR_m, &newR_e);
+
+ /* if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) {
+ newR_m >>= 1;
+ newR_e += 1;
+ } */
+
+ /* L = tempR * R */
+ newL_m = newR_m;
+ newL_e = newR_e + tempR_e;
+ h_data_right->sbrNoiseFloorLevel[i] =
+ ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
+ (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NOISE_EXP_OFFSET) & MASK_E);
+ h_data_left->sbrNoiseFloorLevel[i] =
+ ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
+ (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NOISE_EXP_OFFSET) & MASK_E);
+ }
+}
+
+/*!
+ \brief Simple alternative to the real SBR concealment
+
+ If the real frameInfo is not available due to a frame loss, a replacement will
+ be constructed with 1 envelope spanning the whole frame (FIX-FIX).
+ The delta-coded energies are set to negative values, resulting in a fade-down.
+ In case of coupling, the balance-channel will move towards the center.
+*/
+static void leanSbrConcealment(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
+) {
+ FIXP_SGL target; /* targeted level for sfb_nrg_prev during fade-down */
+ FIXP_SGL step; /* speed of fade */
+ int i;
+
+ int currentStartPos =
+ fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);
+ int currentStopPos = hHeaderData->numberTimeSlots;
+
+ /* Use some settings of the previous frame */
+ h_sbr_data->ampResolutionCurrentFrame = h_prev_data->ampRes;
+ h_sbr_data->coupling = h_prev_data->coupling;
+ for (i = 0; i < MAX_INVF_BANDS; i++)
+ h_sbr_data->sbr_invf_mode[i] = h_prev_data->sbr_invf_mode[i];
+
+ /* Generate concealing control data */
+
+ h_sbr_data->frameInfo.nEnvelopes = 1;
+ h_sbr_data->frameInfo.borders[0] = currentStartPos;
+ h_sbr_data->frameInfo.borders[1] = currentStopPos;
+ h_sbr_data->frameInfo.freqRes[0] = 1;
+ h_sbr_data->frameInfo.tranEnv = -1; /* no transient */
+ h_sbr_data->frameInfo.nNoiseEnvelopes = 1;
+ h_sbr_data->frameInfo.bordersNoise[0] = currentStartPos;
+ h_sbr_data->frameInfo.bordersNoise[1] = currentStopPos;
+
+ h_sbr_data->nScaleFactors = hHeaderData->freqBandData.nSfb[1];
+
+ /* Generate fake envelope data */
+
+ h_sbr_data->domain_vec[0] = 1;
+
+ if (h_sbr_data->coupling == COUPLING_BAL) {
+ target = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
+ step = (FIXP_SGL)DECAY_COUPLING;
+ } else {
+ target = FL2FXCONST_SGL(0.0f);
+ step = (FIXP_SGL)DECAY;
+ }
+ if (hHeaderData->bs_info.ampResolution == 0) {
+ target <<= 1;
+ step <<= 1;
+ }
+
+ for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
+ if (h_prev_data->sfb_nrg_prev[i] > target)
+ h_sbr_data->iEnvelope[i] = -step;
+ else
+ h_sbr_data->iEnvelope[i] = step;
+ }
+
+ /* Noisefloor levels are always cleared ... */
+
+ h_sbr_data->domain_vec_noise[0] = 1;
+ FDKmemclear(h_sbr_data->sbrNoiseFloorLevel,
+ sizeof(h_sbr_data->sbrNoiseFloorLevel));
+
+ /* ... and so are the sines */
+ FDKmemclear(h_sbr_data->addHarmonics,
+ sizeof(ULONG) * ADD_HARMONICS_FLAGS_SIZE);
+}
+
+/*!
+ \brief Build reference energies and noise levels from bitstream elements
+*/
+static void decodeEnvelope(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
+ HANDLE_SBR_PREV_FRAME_DATA
+ h_prev_data, /*!< pointer to data of last frame */
+ HANDLE_SBR_PREV_FRAME_DATA
+ otherChannel /*!< other channel's last frame data */
+) {
+ int i;
+ int fFrameError = hHeaderData->frameErrorFlag;
+ FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];
+
+ if (!fFrameError) {
+ /*
+ To avoid distortions after bad frames, set the error flag if delta coding
+ in time occurs. However, SBR can take a little longer to come up again.
+ */
+ if (h_prev_data->frameErrorFlag) {
+ if (h_sbr_data->domain_vec[0] != 0) {
+ fFrameError = 1;
+ }
+ } else {
+ /* Check that the previous stop position and the current start position
+ match. (Could be done in checkFrameInfo(), but the previous frame data
+ is not available there) */
+ if (h_sbr_data->frameInfo.borders[0] !=
+ h_prev_data->stopPos - hHeaderData->numberTimeSlots) {
+ /* Both the previous as well as the current frame are flagged to be ok,
+ * but they do not match! */
+ if (h_sbr_data->domain_vec[0] == 1) {
+ /* Prefer concealment over delta-time coding between the mismatching
+ * frames */
+ fFrameError = 1;
+ } else {
+ /* Close the gap in time by triggering timeCompensateFirstEnvelope()
+ */
+ fFrameError = 1;
+ }
+ }
+ }
+ }
+
+ if (fFrameError) /* Error is detected */
+ {
+ leanSbrConcealment(hHeaderData, h_sbr_data, h_prev_data);
+
+ /* decode the envelope data to linear PCM */
+ deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data);
+ } else /*Do a temporary dummy decoding and check that the envelope values are
+ within limits */
+ {
+ if (h_prev_data->frameErrorFlag) {
+ timeCompensateFirstEnvelope(hHeaderData, h_sbr_data, h_prev_data);
+ if (h_sbr_data->coupling != h_prev_data->coupling) {
+ /*
+ Coupling mode has changed during concealment.
+ The stored energy levels need to be converted.
+ */
+ for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) {
+ /* Former Level-Channel will be used for both channels */
+ if (h_prev_data->coupling == COUPLING_BAL) {
+ h_prev_data->sfb_nrg_prev[i] =
+ (otherChannel != NULL) ? otherChannel->sfb_nrg_prev[i]
+ : (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
+ }
+ /* Former L/R will be combined as the new Level-Channel */
+ else if (h_sbr_data->coupling == COUPLING_LEVEL &&
+ otherChannel != NULL) {
+ h_prev_data->sfb_nrg_prev[i] = (h_prev_data->sfb_nrg_prev[i] +
+ otherChannel->sfb_nrg_prev[i]) >>
+ 1;
+ } else if (h_sbr_data->coupling == COUPLING_BAL) {
+ h_prev_data->sfb_nrg_prev[i] = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
+ }
+ }
+ }
+ }
+ FDKmemcpy(tempSfbNrgPrev, h_prev_data->sfb_nrg_prev,
+ MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
+
+ deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data);
+
+ fFrameError = checkEnvelopeData(hHeaderData, h_sbr_data, h_prev_data);
+
+ if (fFrameError) {
+ hHeaderData->frameErrorFlag = 1;
+ FDKmemcpy(h_prev_data->sfb_nrg_prev, tempSfbNrgPrev,
+ MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
+ decodeEnvelope(hHeaderData, h_sbr_data, h_prev_data, otherChannel);
+ return;
+ }
+ }
+
+ requantizeEnvelopeData(h_sbr_data, h_sbr_data->ampResolutionCurrentFrame);
+
+ hHeaderData->frameErrorFlag = fFrameError;
+}
+
+/*!
+ \brief Verify that envelope energies are within the allowed range
+ \return 0 if all is fine, 1 if an envelope value was too high
+*/
+static int checkEnvelopeData(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
+) {
+ FIXP_SGL *iEnvelope = h_sbr_data->iEnvelope;
+ FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;
+ int i = 0, errorFlag = 0;
+ FIXP_SGL sbr_max_energy = (h_sbr_data->ampResolutionCurrentFrame == 1)
+ ? SBR_MAX_ENERGY
+ : (SBR_MAX_ENERGY << 1);
+
+ /*
+ Range check for current energies
+ */
+ for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
+ if (iEnvelope[i] > sbr_max_energy) {
+ errorFlag = 1;
+ }
+ if (iEnvelope[i] < FL2FXCONST_SGL(0.0f)) {
+ errorFlag = 1;
+ /* iEnvelope[i] = FL2FXCONST_SGL(0.0f); */
+ }
+ }
+
+ /*
+ Range check for previous energies
+ */
+ for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) {
+ sfb_nrg_prev[i] = fixMax(sfb_nrg_prev[i], FL2FXCONST_SGL(0.0f));
+ sfb_nrg_prev[i] = fixMin(sfb_nrg_prev[i], sbr_max_energy);
+ }
+
+ return (errorFlag);
+}
+
+/*!
+ \brief Verify that the noise levels are within the allowed range
+
+ The function is equivalent to checkEnvelopeData().
+ When the noise-levels are being decoded, it is already too late for
+ concealment. Therefore the noise levels are simply limited here.
+*/
+static void limitNoiseLevels(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data) /*!< pointer to current data */
+{
+ int i;
+ int nNfb = hHeaderData->freqBandData.nNfb;
+
+/*
+ Set range limits. The exact values depend on the coupling mode.
+ However this limitation is primarily intended to avoid unlimited
+ accumulation of the delta-coded noise levels.
+*/
+#define lowerLimit \
+ ((FIXP_SGL)0) /* lowerLimit actually refers to the _highest_ noise energy */
+#define upperLimit \
+ ((FIXP_SGL)35) /* upperLimit actually refers to the _lowest_ noise energy */
+
+ /*
+ Range check for current noise levels
+ */
+ for (i = 0; i < h_sbr_data->frameInfo.nNoiseEnvelopes * nNfb; i++) {
+ h_sbr_data->sbrNoiseFloorLevel[i] =
+ fixMin(h_sbr_data->sbrNoiseFloorLevel[i], upperLimit);
+ h_sbr_data->sbrNoiseFloorLevel[i] =
+ fixMax(h_sbr_data->sbrNoiseFloorLevel[i], lowerLimit);
+ }
+}
+
+/*!
+ \brief Compensate for the wrong timing that might occur after a frame error.
+*/
+static void timeCompensateFirstEnvelope(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to actual data */
+ HANDLE_SBR_PREV_FRAME_DATA
+ h_prev_data) /*!< pointer to data of last frame */
+{
+ int i, nScalefactors;
+ FRAME_INFO *pFrameInfo = &h_sbr_data->frameInfo;
+ UCHAR *nSfb = hHeaderData->freqBandData.nSfb;
+ int estimatedStartPos =
+ fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);
+ int refLen, newLen, shift;
+ FIXP_SGL deltaExp;
+
+ /* Original length of first envelope according to bitstream */
+ refLen = pFrameInfo->borders[1] - pFrameInfo->borders[0];
+ /* Corrected length of first envelope (concealing can make the first envelope
+ * longer) */
+ newLen = pFrameInfo->borders[1] - estimatedStartPos;
+
+ if (newLen <= 0) {
+ /* An envelope length of <= 0 would not work, so we don't use it.
+ May occur if the previous frame was flagged bad due to a mismatch
+ of the old and new frame infos. */
+ newLen = refLen;
+ estimatedStartPos = pFrameInfo->borders[0];
+ }
+
+ deltaExp = FDK_getNumOctavesDiv8(newLen, refLen);
+
+ /* Shift by -3 to rescale ld-table, ampRes-1 to enable coarser steps */
+ shift = (FRACT_BITS - 1 - ENV_EXP_FRACT - 1 +
+ h_sbr_data->ampResolutionCurrentFrame - 3);
+ deltaExp = deltaExp >> shift;
+ pFrameInfo->borders[0] = estimatedStartPos;
+ pFrameInfo->bordersNoise[0] = estimatedStartPos;
+
+ if (h_sbr_data->coupling != COUPLING_BAL) {
+ nScalefactors = (pFrameInfo->freqRes[0]) ? nSfb[1] : nSfb[0];
+
+ for (i = 0; i < nScalefactors; i++)
+ h_sbr_data->iEnvelope[i] = h_sbr_data->iEnvelope[i] + deltaExp;
+ }
+}
+
+/*!
+ \brief Convert each envelope value from logarithmic to linear domain
+
+ Energy levels are transmitted in powers of 2, i.e. only the exponent
+ is extracted from the bitstream.
+ Therefore, normally only integer exponents can occur. However during
+ fading (in case of a corrupt bitstream), a fractional part can also
+ occur. The data in the array iEnvelope is shifted left by ENV_EXP_FRACT
+ compared to an integer representation so that numbers smaller than 1
+ can be represented.
+
+ This function calculates a mantissa corresponding to the fractional
+ part of the exponent for each reference energy. The array iEnvelope
+ is converted in place to save memory. Input and output data must
+ be interpreted differently, as shown in the below figure:
+
+ \image html EnvelopeData.png
+
+ The data is then used in calculateSbrEnvelope().
+*/
+static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data,
+ int ampResolution) {
+ int i;
+ FIXP_SGL mantissa;
+ int ampShift = 1 - ampResolution;
+ int exponent;
+
+ /* In case that ENV_EXP_FRACT is changed to something else but 0 or 8,
+ the initialization of this array has to be adapted!
+ */
+#if ENV_EXP_FRACT
+ static const FIXP_SGL pow2[ENV_EXP_FRACT] = {
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 1))), /* 0.7071 */
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 2))), /* 0.5946 */
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 3))),
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 4))),
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 5))),
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 6))),
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 7))),
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 8))) /* 0.5013 */
+ };
+
+ int bit, mask;
+#endif
+
+ for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
+ exponent = (LONG)h_sbr_data->iEnvelope[i];
+
+#if ENV_EXP_FRACT
+
+ exponent = exponent >> ampShift;
+ mantissa = 0.5f;
+
+ /* Amplify mantissa according to the fractional part of the
+ exponent (result will be between 0.500000 and 0.999999)
+ */
+ mask = 1; /* begin with lowest bit of exponent */
+
+ for (bit = ENV_EXP_FRACT - 1; bit >= 0; bit--) {
+ if (exponent & mask) {
+ /* The current bit of the exponent is set,
+ multiply mantissa with the corresponding factor: */
+ mantissa = (FIXP_SGL)((mantissa * pow2[bit]) << 1);
+ }
+ /* Advance to next bit */
+ mask = mask << 1;
+ }
+
+ /* Make integer part of exponent right aligned */
+ exponent = exponent >> ENV_EXP_FRACT;
+
+#else
+ /* In case of the high amplitude resolution, 1 bit of the exponent gets lost
+ by the shift. This will be compensated by a mantissa of 0.5*sqrt(2)
+ instead of 0.5 if that bit is 1. */
+ mantissa = (exponent & ampShift) ? FL2FXCONST_SGL(0.707106781186548f)
+ : FL2FXCONST_SGL(0.5f);
+ exponent = exponent >> ampShift;
+#endif
+
+ /*
+ Mantissa was set to 0.5 (instead of 1.0, therefore increase exponent by
+ 1). Multiply by L=nChannels=64 by increasing exponent by another 6.
+ => Increase exponent by 7
+ */
+ exponent += 7 + NRG_EXP_OFFSET;
+
+ /* Combine mantissa and exponent and write back the result */
+ h_sbr_data->iEnvelope[i] =
+ ((FIXP_SGL)((SHORT)(FIXP_SGL)mantissa & MASK_M)) +
+ (FIXP_SGL)((SHORT)(FIXP_SGL)exponent & MASK_E);
+ }
+}
+
+/*!
+ \brief Build new reference energies from old ones and delta coded data
+*/
+static void deltaToLinearPcmEnvelopeDecoding(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
+{
+ int i, domain, no_of_bands, band, freqRes;
+
+ FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;
+ FIXP_SGL *ptr_nrg = h_sbr_data->iEnvelope;
+
+ int offset =
+ 2 * hHeaderData->freqBandData.nSfb[0] - hHeaderData->freqBandData.nSfb[1];
+
+ for (i = 0; i < h_sbr_data->frameInfo.nEnvelopes; i++) {
+ domain = h_sbr_data->domain_vec[i];
+ freqRes = h_sbr_data->frameInfo.freqRes[i];
+
+ FDK_ASSERT(freqRes >= 0 && freqRes <= 1);
+
+ no_of_bands = hHeaderData->freqBandData.nSfb[freqRes];
+
+ FDK_ASSERT(no_of_bands < (64));
+
+ if (domain == 0) {
+ mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, 0, freqRes);
+ ptr_nrg++;
+ for (band = 1; band < no_of_bands; band++) {
+ *ptr_nrg = *ptr_nrg + *(ptr_nrg - 1);
+ mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);
+ ptr_nrg++;
+ }
+ } else {
+ for (band = 0; band < no_of_bands; band++) {
+ *ptr_nrg =
+ *ptr_nrg + sfb_nrg_prev[indexLow2High(offset, band, freqRes)];
+ mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);
+ ptr_nrg++;
+ }
+ }
+ }
+}
+
+/*!
+ \brief Build new noise levels from old ones and delta coded data
+*/
+static void decodeNoiseFloorlevels(
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
+{
+ int i;
+ int nNfb = hHeaderData->freqBandData.nNfb;
+ int nNoiseFloorEnvelopes = h_sbr_data->frameInfo.nNoiseEnvelopes;
+
+ /* Decode first noise envelope */
+
+ if (h_sbr_data->domain_vec_noise[0] == 0) {
+ FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[0];
+ for (i = 1; i < nNfb; i++) {
+ noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];
+ h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;
+ }
+ } else {
+ for (i = 0; i < nNfb; i++) {
+ h_sbr_data->sbrNoiseFloorLevel[i] += h_prev_data->prevNoiseLevel[i];
+ }
+ }
+
+ /* If present, decode the second noise envelope
+ Note: nNoiseFloorEnvelopes can only be 1 or 2 */
+
+ if (nNoiseFloorEnvelopes > 1) {
+ if (h_sbr_data->domain_vec_noise[1] == 0) {
+ FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[nNfb];
+ for (i = nNfb + 1; i < 2 * nNfb; i++) {
+ noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];
+ h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;
+ }
+ } else {
+ for (i = 0; i < nNfb; i++) {
+ h_sbr_data->sbrNoiseFloorLevel[i + nNfb] +=
+ h_sbr_data->sbrNoiseFloorLevel[i];
+ }
+ }
+ }
+
+ limitNoiseLevels(hHeaderData, h_sbr_data);
+
+ /* Update prevNoiseLevel with the last noise envelope */
+ for (i = 0; i < nNfb; i++)
+ h_prev_data->prevNoiseLevel[i] =
+ h_sbr_data->sbrNoiseFloorLevel[i + nNfb * (nNoiseFloorEnvelopes - 1)];
+
+ /* Requantize the noise floor levels in COUPLING_OFF-mode */
+ if (!h_sbr_data->coupling) {
+ int nf_e;
+
+ for (i = 0; i < nNoiseFloorEnvelopes * nNfb; i++) {
+ nf_e = 6 - (LONG)h_sbr_data->sbrNoiseFloorLevel[i] + 1 + NOISE_EXP_OFFSET;
+ /* +1 to compensate for a mantissa of 0.5 instead of 1.0 */
+
+ h_sbr_data->sbrNoiseFloorLevel[i] =
+ (FIXP_SGL)(((LONG)FL2FXCONST_SGL(0.5f)) + /* mantissa */
+ (nf_e & MASK_E)); /* exponent */
+ }
+ }
+}