summaryrefslogtreecommitdiffstats
path: root/fdk-aac/libSBRdec/src/env_calc.cpp
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2019-11-11 11:38:02 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2019-11-11 11:38:02 +0100
commit0e5af65c467b2423a0b857ae3ad98c91acc1e190 (patch)
treed07f69550d8886271e44fe79c4dcfb299cafbd38 /fdk-aac/libSBRdec/src/env_calc.cpp
parentefe406d9724f959c8bc2a31802559ca6d41fd897 (diff)
downloadODR-AudioEnc-0e5af65c467b2423a0b857ae3ad98c91acc1e190.tar.gz
ODR-AudioEnc-0e5af65c467b2423a0b857ae3ad98c91acc1e190.tar.bz2
ODR-AudioEnc-0e5af65c467b2423a0b857ae3ad98c91acc1e190.zip
Include patched FDK-AAC in the repository
The initial idea was to get the DAB+ patch into upstream, but since that follows the android source releases, there is no place for a custom DAB+ patch there. So instead of having to maintain a patched fdk-aac that has to have the same .so version as the distribution package on which it is installed, we prefer having a separate fdk-aac-dab library to avoid collision. At that point, there's no reason to keep fdk-aac in a separate repository, as odr-audioenc is the only tool that needs DAB+ encoding support. Including it here simplifies installation, and makes it consistent with toolame-dab, also shipped in this repository. DAB+ decoding support (needed by ODR-SourceCompanion, dablin, etisnoop, welle.io and others) can be done using upstream FDK-AAC.
Diffstat (limited to 'fdk-aac/libSBRdec/src/env_calc.cpp')
-rw-r--r--fdk-aac/libSBRdec/src/env_calc.cpp3158
1 files changed, 3158 insertions, 0 deletions
diff --git a/fdk-aac/libSBRdec/src/env_calc.cpp b/fdk-aac/libSBRdec/src/env_calc.cpp
new file mode 100644
index 0000000..cb1474f
--- /dev/null
+++ b/fdk-aac/libSBRdec/src/env_calc.cpp
@@ -0,0 +1,3158 @@
+/* -----------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
+
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------- */
+
+/**************************** SBR decoder library ******************************
+
+ Author(s):
+
+ Description:
+
+*******************************************************************************/
+
+/*!
+ \file
+ \brief Envelope calculation
+
+ The envelope adjustor compares the energies present in the transposed
+ highband to the reference energies conveyed with the bitstream.
+ The highband is amplified (sometimes) or attenuated (mostly) to the
+ desired level.
+
+ The spectral shape of the reference energies can be changed several times per
+ frame if necessary. Each set of energy values corresponding to a certain range
+ in time will be called an <em>envelope</em> here.
+ The bitstream supports several frequency scales and two resolutions. Normally,
+ one or more QMF-subbands are grouped to one SBR-band. An envelope contains
+ reference energies for each SBR-band.
+ In addition to the energy envelopes, noise envelopes are transmitted that
+ define the ratio of energy which is generated by adding noise instead of
+ transposing the lowband. The noise envelopes are given in a coarser time
+ and frequency resolution.
+ If a signal contains strong tonal components, synthetic sines can be
+ generated in individual SBR bands.
+
+ An overlap buffer of 6 QMF-timeslots is used to allow a more
+ flexible alignment of the envelopes in time that is not restricted to the
+ core codec's frame borders.
+ Therefore the envelope adjustor has access to the spectral data of the
+ current frame as well as the last 6 QMF-timeslots of the previous frame.
+ However, in average only the data of 1 frame is being processed as
+ the adjustor is called once per frame.
+
+ Depending on the frequency range set in the bitstream, only QMF-subbands
+ between <em>lowSubband</em> and <em>highSubband</em> are adjusted.
+
+ Scaling of spectral data to maximize SNR (see #QMF_SCALE_FACTOR) as well as a
+ special Mantissa-Exponent format ( see calculateSbrEnvelope() ) are being
+ used. The main entry point for this modules is calculateSbrEnvelope().
+
+ \sa sbr_scale.h, #QMF_SCALE_FACTOR, calculateSbrEnvelope(), \ref
+ documentationOverview
+*/
+
+#include "env_calc.h"
+
+#include "sbrdec_freq_sca.h"
+#include "env_extr.h"
+#include "transcendent.h"
+#include "sbr_ram.h"
+#include "sbr_rom.h"
+
+#include "genericStds.h" /* need FDKpow() for debug outputs */
+
+typedef struct {
+ FIXP_DBL nrgRef[MAX_FREQ_COEFFS];
+ FIXP_DBL nrgEst[MAX_FREQ_COEFFS];
+ FIXP_DBL nrgGain[MAX_FREQ_COEFFS];
+ FIXP_DBL noiseLevel[MAX_FREQ_COEFFS];
+ FIXP_DBL nrgSine[MAX_FREQ_COEFFS];
+
+ SCHAR nrgRef_e[MAX_FREQ_COEFFS];
+ SCHAR nrgEst_e[MAX_FREQ_COEFFS];
+ SCHAR nrgGain_e[MAX_FREQ_COEFFS];
+ SCHAR noiseLevel_e[MAX_FREQ_COEFFS];
+ SCHAR nrgSine_e[MAX_FREQ_COEFFS];
+ /* yet another exponent [0]: for ts < no_cols; [1]: for ts >= no_cols */
+ SCHAR exponent[2];
+} ENV_CALC_NRGS;
+
+static void equalizeFiltBufferExp(FIXP_DBL *filtBuffer, SCHAR *filtBuffer_e,
+ FIXP_DBL *NrgGain, SCHAR *NrgGain_e,
+ int subbands);
+
+static void calcNrgPerSubband(FIXP_DBL **analysBufferReal,
+ FIXP_DBL **analysBufferImag, int lowSubband,
+ int highSubband, int start_pos, int next_pos,
+ SCHAR frameExp, FIXP_DBL *nrgEst,
+ SCHAR *nrgEst_e);
+
+static void calcNrgPerSfb(FIXP_DBL **analysBufferReal,
+ FIXP_DBL **analysBufferImag, int nSfb,
+ UCHAR *freqBandTable, int start_pos, int next_pos,
+ SCHAR input_e, FIXP_DBL *nrg_est, SCHAR *nrg_est_e);
+
+static void calcSubbandGain(FIXP_DBL nrgRef, SCHAR nrgRef_e,
+ ENV_CALC_NRGS *nrgs, int c, FIXP_DBL tmpNoise,
+ SCHAR tmpNoise_e, UCHAR sinePresentFlag,
+ UCHAR sineMapped, int noNoiseFlag);
+
+static void calcAvgGain(ENV_CALC_NRGS *nrgs, int lowSubband, int highSubband,
+ FIXP_DBL *sumRef_m, SCHAR *sumRef_e,
+ FIXP_DBL *ptrAvgGain_m, SCHAR *ptrAvgGain_e);
+
+static void adjustTimeSlot_EldGrid(FIXP_DBL *ptrReal, ENV_CALC_NRGS *nrgs,
+ UCHAR *ptrHarmIndex, int lowSubbands,
+ int noSubbands, int scale_change,
+ int noNoiseFlag, int *ptrPhaseIndex,
+ int scale_diff_low);
+
+static void adjustTimeSlotLC(FIXP_DBL *ptrReal, ENV_CALC_NRGS *nrgs,
+ UCHAR *ptrHarmIndex, int lowSubbands,
+ int noSubbands, int scale_change, int noNoiseFlag,
+ int *ptrPhaseIndex);
+
+/**
+ * \brief Variant of adjustTimeSlotHQ() which only regards gain and noise but no
+ * additional harmonics
+ */
+static void adjustTimeSlotHQ_GainAndNoise(
+ FIXP_DBL *ptrReal, FIXP_DBL *ptrImag,
+ HANDLE_SBR_CALCULATE_ENVELOPE h_sbr_cal_env, ENV_CALC_NRGS *nrgs,
+ int lowSubbands, int noSubbands, int scale_change, FIXP_SGL smooth_ratio,
+ int noNoiseFlag, int filtBufferNoiseShift);
+/**
+ * \brief Variant of adjustTimeSlotHQ() which only adds the additional harmonics
+ */
+static void adjustTimeSlotHQ_AddHarmonics(
+ FIXP_DBL *ptrReal, FIXP_DBL *ptrImag,
+ HANDLE_SBR_CALCULATE_ENVELOPE h_sbr_cal_env, ENV_CALC_NRGS *nrgs,
+ int lowSubbands, int noSubbands, int scale_change);
+
+static void adjustTimeSlotHQ(FIXP_DBL *ptrReal, FIXP_DBL *ptrImag,
+ HANDLE_SBR_CALCULATE_ENVELOPE h_sbr_cal_env,
+ ENV_CALC_NRGS *nrgs, int lowSubbands,
+ int noSubbands, int scale_change,
+ FIXP_SGL smooth_ratio, int noNoiseFlag,
+ int filtBufferNoiseShift);
+
+/*!
+ \brief Map sine flags from bitstream to QMF bands
+
+ The bitstream carries only 1 sine flag per band (Sfb) and frame.
+ This function maps every sine flag from the bitstream to a specific QMF
+ subband and to a specific envelope where the sine shall start. The result is
+ stored in the vector sineMapped which contains one entry per QMF subband. The
+ value of an entry specifies the envelope where a sine shall start. A value of
+ 32 indicates that no sine is present in the subband. The missing harmonics
+ flags from the previous frame (harmFlagsPrev) determine if a sine starts at
+ the beginning of the frame or at the transient position. Additionally, the
+ flags in harmFlagsPrev are being updated by this function for the next frame.
+*/
+static void mapSineFlags(
+ UCHAR *freqBandTable, /*!< Band borders (there's only 1 flag per band) */
+ int nSfb, /*!< Number of bands in the table */
+ ULONG *addHarmonics, /*!< Packed addHarmonics of current frame (aligned to
+ the MSB) */
+ ULONG *harmFlagsPrev, /*!< Packed addHarmonics of previous frame (aligned to
+ the LSB) */
+ ULONG *harmFlagsPrevActive, /*!< Packed sineMapped of previous frame
+ (aligned to the LSB) */
+ int tranEnv, /*!< Transient position */
+ SCHAR *sineMapped) /*!< Resulting vector of sine start positions for each
+ QMF band */
+
+{
+ int i;
+ int bitcount = 31;
+ ULONG harmFlagsQmfBands[ADD_HARMONICS_FLAGS_SIZE] = {0};
+ ULONG *curFlags = addHarmonics;
+
+ /*
+ Format of addHarmonics (aligned to MSB):
+
+ Up to MAX_FREQ_COEFFS sfb bands can be flagged for a sign.
+ first word = flags for lowest 32 sfb bands in use
+ second word = flags for higest 32 sfb bands (if present)
+
+ Format of harmFlagsPrev (aligned to LSB):
+
+ Index is absolute (not relative to lsb) so it is correct even if lsb
+ changes first word = flags for lowest 32 qmf bands (0...31) second word =
+ flags for next higher 32 qmf bands (32...63)
+
+ */
+
+ /* Reset the output vector first */
+ FDKmemset(sineMapped, 32,
+ MAX_FREQ_COEFFS * sizeof(SCHAR)); /* 32 means 'no sine' */
+ FDKmemclear(harmFlagsPrevActive, ADD_HARMONICS_FLAGS_SIZE * sizeof(ULONG));
+ for (i = 0; i < nSfb; i++) {
+ ULONG maskSfb =
+ 1 << bitcount; /* mask to extract addHarmonics flag of current Sfb */
+
+ if (*curFlags & maskSfb) { /* There is a sine in this band */
+ const int lsb = freqBandTable[0]; /* start of sbr range */
+ /* qmf band to which sine should be added */
+ const int qmfBand = (freqBandTable[i] + freqBandTable[i + 1]) >> 1;
+ const int qmfBandDiv32 = qmfBand >> 5;
+ const int maskQmfBand =
+ 1 << (qmfBand &
+ 31); /* mask to extract harmonic flag from prevFlags */
+
+ /* mapping of sfb with sine to a certain qmf band -> for harmFlagsPrev */
+ harmFlagsQmfBands[qmfBandDiv32] |= maskQmfBand;
+
+ /*
+ If there was a sine in the last frame, let it continue from the first
+ envelope on else start at the transient position. Indexing of sineMapped
+ starts relative to lsb.
+ */
+ sineMapped[qmfBand - lsb] =
+ (harmFlagsPrev[qmfBandDiv32] & maskQmfBand) ? 0 : tranEnv;
+ if (sineMapped[qmfBand - lsb] < PVC_NTIMESLOT) {
+ harmFlagsPrevActive[qmfBandDiv32] |= maskQmfBand;
+ }
+ }
+
+ if (bitcount-- == 0) {
+ bitcount = 31;
+ curFlags++;
+ }
+ }
+ FDKmemcpy(harmFlagsPrev, harmFlagsQmfBands,
+ sizeof(ULONG) * ADD_HARMONICS_FLAGS_SIZE);
+}
+
+/*!
+ \brief Restore sineMapped of previous frame
+
+ For PVC it might happen that the PVC framing (always 0) is out of sync with
+ the SBR framing. The adding of additional harmonics is done based on the SBR
+ framing. If the SBR framing is trailing the PVC framing the sine mapping of
+ the previous SBR frame needs to be used for the overlapping time slots.
+*/
+/*static*/ void mapSineFlagsPvc(
+ UCHAR *freqBandTable, /*!< Band borders (there's only 1 flag per
+ band) */
+ int nSfb, /*!< Number of bands in the table */
+ ULONG *harmFlagsPrev, /*!< Packed addHarmonics of previous frame
+ (aligned to the MSB) */
+ ULONG *harmFlagsPrevActive, /*!< Packed sineMapped of previous
+ frame (aligned to the LSB) */
+ SCHAR *sineMapped, /*!< Resulting vector of sine start positions
+ for each QMF band */
+ int sinusoidalPos, /*!< sinusoidal position */
+ SCHAR *sinusoidalPosPrev, /*!< sinusoidal position of previous
+ frame */
+ int trailingSbrFrame) /*!< indication if the SBR framing is
+ trailing the PVC framing */
+{
+ /* Reset the output vector first */
+ FDKmemset(sineMapped, 32, MAX_FREQ_COEFFS); /* 32 means 'no sine' */
+
+ if (trailingSbrFrame) {
+ /* restore sineMapped[] of previous frame */
+ int i;
+ const int lsb = freqBandTable[0];
+ const int usb = freqBandTable[nSfb];
+ for (i = lsb; i < usb; i++) {
+ const int qmfBandDiv32 = i >> 5;
+ const int maskQmfBand =
+ 1 << (i & 31); /* mask to extract harmonic flag from prevFlags */
+
+ /* Two cases need to be distinguished ... */
+ if (harmFlagsPrevActive[qmfBandDiv32] & maskQmfBand) {
+ /* the sine mapping already started last PVC frame -> seamlessly
+ * continue */
+ sineMapped[i - lsb] = 0;
+ } else if (harmFlagsPrev[qmfBandDiv32] & maskQmfBand) {
+ /* sinusoidalPos of prev PVC frame was >= PVC_NTIMESLOT -> sine starts
+ * in this frame */
+ sineMapped[i - lsb] =
+ *sinusoidalPosPrev - PVC_NTIMESLOT; /* we are 16 sbr time slots
+ ahead of last frame now */
+ }
+ }
+ }
+ *sinusoidalPosPrev = sinusoidalPos;
+}
+
+/*!
+ \brief Reduce gain-adjustment induced aliasing for real valued filterbank.
+*/
+/*static*/ void aliasingReduction(
+ FIXP_DBL *degreeAlias, /*!< estimated aliasing for each QMF
+ channel */
+ ENV_CALC_NRGS *nrgs,
+ UCHAR *useAliasReduction, /*!< synthetic sine energy for each
+ subband, used as flag */
+ int noSubbands) /*!< number of QMF channels to process */
+{
+ FIXP_DBL *nrgGain = nrgs->nrgGain; /*!< subband gains to be modified */
+ SCHAR *nrgGain_e =
+ nrgs->nrgGain_e; /*!< subband gains to be modified (exponents) */
+ FIXP_DBL *nrgEst = nrgs->nrgEst; /*!< subband energy before amplification */
+ SCHAR *nrgEst_e =
+ nrgs->nrgEst_e; /*!< subband energy before amplification (exponents) */
+ int grouping = 0, index = 0, noGroups, k;
+ int groupVector[MAX_FREQ_COEFFS];
+
+ /* Calculate grouping*/
+ for (k = 0; k < noSubbands - 1; k++) {
+ if ((degreeAlias[k + 1] != FL2FXCONST_DBL(0.0f)) && useAliasReduction[k]) {
+ if (grouping == 0) {
+ groupVector[index++] = k;
+ grouping = 1;
+ } else {
+ if (groupVector[index - 1] + 3 == k) {
+ groupVector[index++] = k + 1;
+ grouping = 0;
+ }
+ }
+ } else {
+ if (grouping) {
+ if (useAliasReduction[k])
+ groupVector[index++] = k + 1;
+ else
+ groupVector[index++] = k;
+ grouping = 0;
+ }
+ }
+ }
+
+ if (grouping) {
+ groupVector[index++] = noSubbands;
+ }
+ noGroups = index >> 1;
+
+ /*Calculate new gain*/
+ for (int group = 0; group < noGroups; group++) {
+ FIXP_DBL nrgOrig = FL2FXCONST_DBL(
+ 0.0f); /* Original signal energy in current group of bands */
+ SCHAR nrgOrig_e = 0;
+ FIXP_DBL nrgAmp = FL2FXCONST_DBL(
+ 0.0f); /* Amplified signal energy in group (using current gains) */
+ SCHAR nrgAmp_e = 0;
+ FIXP_DBL nrgMod = FL2FXCONST_DBL(
+ 0.0f); /* Signal energy in group when applying modified gains */
+ SCHAR nrgMod_e = 0;
+ FIXP_DBL groupGain; /* Total energy gain in group */
+ SCHAR groupGain_e;
+ FIXP_DBL compensation; /* Compensation factor for the energy change when
+ applying modified gains */
+ SCHAR compensation_e;
+
+ int startGroup = groupVector[2 * group];
+ int stopGroup = groupVector[2 * group + 1];
+
+ /* Calculate total energy in group before and after amplification with
+ * current gains: */
+ for (k = startGroup; k < stopGroup; k++) {
+ /* Get original band energy */
+ FIXP_DBL tmp = nrgEst[k];
+ SCHAR tmp_e = nrgEst_e[k];
+
+ FDK_add_MantExp(tmp, tmp_e, nrgOrig, nrgOrig_e, &nrgOrig, &nrgOrig_e);
+
+ /* Multiply band energy with current gain */
+ tmp = fMult(tmp, nrgGain[k]);
+ tmp_e = tmp_e + nrgGain_e[k];
+
+ FDK_add_MantExp(tmp, tmp_e, nrgAmp, nrgAmp_e, &nrgAmp, &nrgAmp_e);
+ }
+
+ /* Calculate total energy gain in group */
+ FDK_divide_MantExp(nrgAmp, nrgAmp_e, nrgOrig, nrgOrig_e, &groupGain,
+ &groupGain_e);
+
+ for (k = startGroup; k < stopGroup; k++) {
+ FIXP_DBL tmp;
+ SCHAR tmp_e;
+
+ FIXP_DBL alpha = degreeAlias[k];
+ if (k < noSubbands - 1) {
+ if (degreeAlias[k + 1] > alpha) alpha = degreeAlias[k + 1];
+ }
+
+ /* Modify gain depending on the degree of aliasing */
+ FDK_add_MantExp(
+ fMult(alpha, groupGain), groupGain_e,
+ fMult(/*FL2FXCONST_DBL(1.0f)*/ (FIXP_DBL)MAXVAL_DBL - alpha,
+ nrgGain[k]),
+ nrgGain_e[k], &nrgGain[k], &nrgGain_e[k]);
+
+ /* Apply modified gain to original energy */
+ tmp = fMult(nrgGain[k], nrgEst[k]);
+ tmp_e = nrgGain_e[k] + nrgEst_e[k];
+
+ /* Accumulate energy with modified gains applied */
+ FDK_add_MantExp(tmp, tmp_e, nrgMod, nrgMod_e, &nrgMod, &nrgMod_e);
+ }
+
+ /* Calculate compensation factor to retain the energy of the amplified
+ * signal */
+ FDK_divide_MantExp(nrgAmp, nrgAmp_e, nrgMod, nrgMod_e, &compensation,
+ &compensation_e);
+
+ /* Apply compensation factor to all gains of the group */
+ for (k = startGroup; k < stopGroup; k++) {
+ nrgGain[k] = fMult(nrgGain[k], compensation);
+ nrgGain_e[k] = nrgGain_e[k] + compensation_e;
+ }
+ }
+}
+
+#define INTER_TES_SF_CHANGE 3
+
+typedef struct {
+ FIXP_DBL subsample_power_low[(((1024) / (32) * (4) / 2) + (3 * (4)))];
+ FIXP_DBL subsample_power_high[(((1024) / (32) * (4) / 2) + (3 * (4)))];
+ FIXP_DBL gain[(((1024) / (32) * (4) / 2) + (3 * (4)))];
+ SCHAR subsample_power_low_sf[(((1024) / (32) * (4) / 2) + (3 * (4)))];
+ SCHAR subsample_power_high_sf[(((1024) / (32) * (4) / 2) + (3 * (4)))];
+} ITES_TEMP;
+
+static void apply_inter_tes(FIXP_DBL **qmfReal, FIXP_DBL **qmfImag,
+ const QMF_SCALE_FACTOR *sbrScaleFactor,
+ const SCHAR exp[2], const int RATE,
+ const int startPos, const int stopPos,
+ const int lowSubband, const int nbSubband,
+ const UCHAR gamma_idx) {
+ int highSubband = lowSubband + nbSubband;
+ FIXP_DBL *subsample_power_high, *subsample_power_low;
+ SCHAR *subsample_power_high_sf, *subsample_power_low_sf;
+ FIXP_DBL total_power_high = (FIXP_DBL)0;
+ FIXP_DBL total_power_low = (FIXP_DBL)0;
+ FIXP_DBL *gain;
+ int gain_sf[(((1024) / (32) * (4) / 2) + (3 * (4)))];
+
+ /* gamma[gamma_idx] = {0.0f, 1.0f, 2.0f, 4.0f} */
+ int gamma_sf =
+ (int)gamma_idx - 1; /* perhaps +1 to save one bit? (0.99999f vs 1.f) */
+
+ int nbSubsample = stopPos - startPos;
+ int i, j;
+
+ C_ALLOC_SCRATCH_START(pTmp, ITES_TEMP, 1);
+ subsample_power_high = pTmp->subsample_power_high;
+ subsample_power_low = pTmp->subsample_power_low;
+ subsample_power_high_sf = pTmp->subsample_power_high_sf;
+ subsample_power_low_sf = pTmp->subsample_power_low_sf;
+ gain = pTmp->gain;
+
+ if (gamma_idx > 0) {
+ int preShift2 = 32 - fNormz((FIXP_DBL)nbSubsample);
+ int total_power_low_sf = 1 - DFRACT_BITS;
+ int total_power_high_sf = 1 - DFRACT_BITS;
+
+ for (i = 0; i < nbSubsample; ++i) {
+ FIXP_DBL bufferReal[(((1024) / (32) * (4) / 2) + (3 * (4)))];
+ FIXP_DBL bufferImag[(((1024) / (32) * (4) / 2) + (3 * (4)))];
+ FIXP_DBL maxVal = (FIXP_DBL)0;
+
+ int ts = startPos + i;
+
+ int low_sf = (ts < 3 * RATE) ? sbrScaleFactor->ov_lb_scale
+ : sbrScaleFactor->lb_scale;
+ low_sf = 15 - low_sf;
+
+ for (j = 0; j < lowSubband; ++j) {
+ bufferImag[j] = qmfImag[startPos + i][j];
+ maxVal |= (FIXP_DBL)((LONG)(bufferImag[j]) ^
+ ((LONG)bufferImag[j] >> (DFRACT_BITS - 1)));
+ bufferReal[j] = qmfReal[startPos + i][j];
+ maxVal |= (FIXP_DBL)((LONG)(bufferReal[j]) ^
+ ((LONG)bufferReal[j] >> (DFRACT_BITS - 1)));
+ }
+
+ subsample_power_low[i] = (FIXP_DBL)0;
+ subsample_power_low_sf[i] = 0;
+
+ if (maxVal != FL2FXCONST_DBL(0.f)) {
+ /* multiply first, then shift for safe summation */
+ int preShift = 1 - CntLeadingZeros(maxVal);
+ int postShift = 32 - fNormz((FIXP_DBL)lowSubband);
+
+ /* reduce preShift because otherwise we risk to square -1.f */
+ if (preShift != 0) preShift++;
+
+ subsample_power_low_sf[i] += (low_sf + preShift) * 2 + postShift + 1;
+
+ scaleValues(bufferReal, lowSubband, -preShift);
+ scaleValues(bufferImag, lowSubband, -preShift);
+ for (j = 0; j < lowSubband; ++j) {
+ FIXP_DBL addme;
+ addme = fPow2Div2(bufferReal[j]);
+ subsample_power_low[i] += addme >> postShift;
+ addme = fPow2Div2(bufferImag[j]);
+ subsample_power_low[i] += addme >> postShift;
+ }
+ }
+
+ /* now get high */
+
+ maxVal = (FIXP_DBL)0;
+
+ int high_sf = exp[(ts < 16 * RATE) ? 0 : 1];
+
+ for (j = lowSubband; j < highSubband; ++j) {
+ bufferImag[j] = qmfImag[startPos + i][j];
+ maxVal |= (FIXP_DBL)((LONG)(bufferImag[j]) ^
+ ((LONG)bufferImag[j] >> (DFRACT_BITS - 1)));
+ bufferReal[j] = qmfReal[startPos + i][j];
+ maxVal |= (FIXP_DBL)((LONG)(bufferReal[j]) ^
+ ((LONG)bufferReal[j] >> (DFRACT_BITS - 1)));
+ }
+
+ subsample_power_high[i] = (FIXP_DBL)0;
+ subsample_power_high_sf[i] = 0;
+
+ if (maxVal != FL2FXCONST_DBL(0.f)) {
+ int preShift = 1 - CntLeadingZeros(maxVal);
+ /* reduce preShift because otherwise we risk to square -1.f */
+ if (preShift != 0) preShift++;
+
+ int postShift = 32 - fNormz((FIXP_DBL)(highSubband - lowSubband));
+ subsample_power_high_sf[i] += (high_sf + preShift) * 2 + postShift + 1;
+
+ scaleValues(&bufferReal[lowSubband], highSubband - lowSubband,
+ -preShift);
+ scaleValues(&bufferImag[lowSubband], highSubband - lowSubband,
+ -preShift);
+ for (j = lowSubband; j < highSubband; j++) {
+ subsample_power_high[i] += fPow2Div2(bufferReal[j]) >> postShift;
+ subsample_power_high[i] += fPow2Div2(bufferImag[j]) >> postShift;
+ }
+ }
+
+ /* sum all together */
+ FIXP_DBL new_summand = subsample_power_low[i];
+ int new_summand_sf = subsample_power_low_sf[i];
+
+ /* make sure the current sum, and the new summand have the same SF */
+ if (new_summand_sf > total_power_low_sf) {
+ int diff = fMin(DFRACT_BITS - 1, new_summand_sf - total_power_low_sf);
+ total_power_low >>= diff;
+ total_power_low_sf = new_summand_sf;
+ } else if (new_summand_sf < total_power_low_sf) {
+ new_summand >>=
+ fMin(DFRACT_BITS - 1, total_power_low_sf - new_summand_sf);
+ }
+
+ total_power_low += (new_summand >> preShift2);
+
+ new_summand = subsample_power_high[i];
+ new_summand_sf = subsample_power_high_sf[i];
+ if (new_summand_sf > total_power_high_sf) {
+ total_power_high >>=
+ fMin(DFRACT_BITS - 1, new_summand_sf - total_power_high_sf);
+ total_power_high_sf = new_summand_sf;
+ } else if (new_summand_sf < total_power_high_sf) {
+ new_summand >>=
+ fMin(DFRACT_BITS - 1, total_power_high_sf - new_summand_sf);
+ }
+
+ total_power_high += (new_summand >> preShift2);
+ }
+
+ total_power_low_sf += preShift2;
+ total_power_high_sf += preShift2;
+
+ /* gain[i] = e_LOW[i] */
+ for (i = 0; i < nbSubsample; ++i) {
+ int sf2;
+ FIXP_DBL mult =
+ fMultNorm(subsample_power_low[i], (FIXP_DBL)nbSubsample, &sf2);
+ int mult_sf = subsample_power_low_sf[i] + DFRACT_BITS - 1 + sf2;
+
+ if (total_power_low != FIXP_DBL(0)) {
+ gain[i] = fDivNorm(mult, total_power_low, &sf2);
+ gain_sf[i] = mult_sf - total_power_low_sf + sf2;
+ gain[i] = sqrtFixp_lookup(gain[i], &gain_sf[i]);
+ if (gain_sf[i] < 0) {
+ gain[i] >>= -gain_sf[i];
+ gain_sf[i] = 0;
+ }
+ } else {
+ if (mult == FIXP_DBL(0)) {
+ gain[i] = FIXP_DBL(0);
+ gain_sf[i] = 0;
+ } else {
+ gain[i] = (FIXP_DBL)MAXVAL_DBL;
+ gain_sf[i] = 0;
+ }
+ }
+ }
+
+ FIXP_DBL total_power_high_after = (FIXP_DBL)0;
+ int total_power_high_after_sf = 1 - DFRACT_BITS;
+
+ /* gain[i] = g_inter[i] */
+ for (i = 0; i < nbSubsample; ++i) {
+ if (gain_sf[i] < 0) {
+ gain[i] >>= -gain_sf[i];
+ gain_sf[i] = 0;
+ }
+
+ /* calculate: gain[i] = 1.0f + gamma * (gain[i] - 1.0f); */
+ FIXP_DBL one = (FIXP_DBL)MAXVAL_DBL >>
+ gain_sf[i]; /* to substract this from gain[i] */
+
+ /* gamma is actually always 1 according to the table, so skip the
+ * fMultDiv2 */
+ FIXP_DBL mult = (gain[i] - one) >> 1;
+ int mult_sf = gain_sf[i] + gamma_sf;
+
+ one = FL2FXCONST_DBL(0.5f) >> mult_sf;
+ gain[i] = one + mult;
+ gain_sf[i] += gamma_sf + 1; /* +1 because of fMultDiv2() */
+
+ /* set gain to at least 0.2f */
+ FIXP_DBL point_two = FL2FXCONST_DBL(0.8f); /* scaled up by 2 */
+ int point_two_sf = -2;
+
+ FIXP_DBL tmp = gain[i];
+ if (point_two_sf < gain_sf[i]) {
+ point_two >>= gain_sf[i] - point_two_sf;
+ } else {
+ tmp >>= point_two_sf - gain_sf[i];
+ }
+
+ /* limit and calculate gain[i]^2 too */
+ FIXP_DBL gain_pow2;
+ int gain_pow2_sf;
+ if (tmp < point_two) {
+ gain[i] = FL2FXCONST_DBL(0.8f);
+ gain_sf[i] = -2;
+ gain_pow2 = FL2FXCONST_DBL(0.64f);
+ gain_pow2_sf = -4;
+ } else {
+ /* this upscaling seems quite important */
+ int r = CountLeadingBits(gain[i]);
+ gain[i] <<= r;
+ gain_sf[i] -= r;
+
+ gain_pow2 = fPow2(gain[i]);
+ gain_pow2_sf = gain_sf[i] << 1;
+ }
+
+ int room;
+ subsample_power_high[i] =
+ fMultNorm(subsample_power_high[i], gain_pow2, &room);
+ subsample_power_high_sf[i] =
+ subsample_power_high_sf[i] + gain_pow2_sf + room;
+
+ int new_summand_sf = subsample_power_high_sf[i]; /* + gain_pow2_sf; */
+ if (new_summand_sf > total_power_high_after_sf) {
+ total_power_high_after >>=
+ fMin(DFRACT_BITS - 1, new_summand_sf - total_power_high_after_sf);
+ total_power_high_after_sf = new_summand_sf;
+ } else if (new_summand_sf < total_power_high_after_sf) {
+ subsample_power_high[i] >>= total_power_high_after_sf - new_summand_sf;
+ }
+ total_power_high_after += subsample_power_high[i] >> preShift2;
+ }
+
+ total_power_high_after_sf += preShift2;
+
+ int sf2 = 0;
+ FIXP_DBL gain_adj_2 = FL2FX_DBL(0.5f);
+ int gain_adj_2_sf = 1;
+
+ if ((total_power_high != (FIXP_DBL)0) &&
+ (total_power_high_after != (FIXP_DBL)0)) {
+ gain_adj_2 = fDivNorm(total_power_high, total_power_high_after, &sf2);
+ gain_adj_2_sf = total_power_high_sf - total_power_high_after_sf + sf2;
+ }
+
+ FIXP_DBL gain_adj = sqrtFixp_lookup(gain_adj_2, &gain_adj_2_sf);
+ int gain_adj_sf = gain_adj_2_sf;
+
+ for (i = 0; i < nbSubsample; ++i) {
+ gain[i] = fMult(gain[i], gain_adj);
+ gain_sf[i] += gain_adj_sf;
+
+ /* limit gain */
+ if (gain_sf[i] > INTER_TES_SF_CHANGE) {
+ gain[i] = (FIXP_DBL)MAXVAL_DBL;
+ gain_sf[i] = INTER_TES_SF_CHANGE;
+ }
+ }
+
+ for (i = 0; i < nbSubsample; ++i) {
+ /* equalize gain[]'s scale factors */
+ gain[i] >>= INTER_TES_SF_CHANGE - gain_sf[i];
+
+ for (j = lowSubband; j < highSubband; j++) {
+ qmfReal[startPos + i][j] = fMult(qmfReal[startPos + i][j], gain[i]);
+ qmfImag[startPos + i][j] = fMult(qmfImag[startPos + i][j], gain[i]);
+ }
+ }
+ } else { /* gamma_idx == 0 */
+ /* Inter-TES is not active. Still perform the scale change to have a
+ * consistent scaling for all envelopes of this frame. */
+ for (i = 0; i < nbSubsample; ++i) {
+ for (j = lowSubband; j < highSubband; j++) {
+ qmfReal[startPos + i][j] >>= INTER_TES_SF_CHANGE;
+ qmfImag[startPos + i][j] >>= INTER_TES_SF_CHANGE;
+ }
+ }
+ }
+ C_ALLOC_SCRATCH_END(pTmp, ITES_TEMP, 1);
+}
+
+/*!
+ \brief Apply spectral envelope to subband samples
+
+ This function is called from sbr_dec.cpp in each frame.
+
+ To enhance accuracy and due to the usage of tables for squareroots and
+ inverse, some calculations are performed with the operands being split
+ into mantissa and exponent. The variable names in the source code carry
+ the suffixes <em>_m</em> and <em>_e</em> respectively. The control data
+ in #hFrameData containts envelope data which is represented by this format but
+ stored in single words. (See requantizeEnvelopeData() for details). This data
+ is unpacked within calculateSbrEnvelope() to follow the described suffix
+ convention.
+
+ The actual value (comparable to the corresponding float-variable in the
+ research-implementation) of a mantissa/exponent-pair can be calculated as
+
+ \f$ value = value\_m * 2^{value\_e} \f$
+
+ All energies and noise levels decoded from the bitstream suit for an
+ original signal magnitude of \f$\pm 32768 \f$ rather than \f$ \pm 1\f$.
+ Therefore, the scale factor <em>hb_scale</em> passed into this function will
+ be converted to an 'input exponent' (#input_e), which fits the internal
+ representation.
+
+ Before the actual processing, an exponent #adj_e for resulting adjusted
+ samples is derived from the maximum reference energy.
+
+ Then, for each envelope, the following steps are performed:
+
+ \li Calculate energy in the signal to be adjusted. Depending on the the value
+ of #interpolFreq (interpolation mode), this is either done seperately for each
+ QMF-subband or for each SBR-band. The resulting energies are stored in
+ #nrgEst_m[#MAX_FREQ_COEFFS] (mantissas) and #nrgEst_e[#MAX_FREQ_COEFFS]
+ (exponents). \li Calculate gain and noise level for each subband:<br> \f$ gain
+ = \sqrt{ \frac{nrgRef}{nrgEst} \cdot (1 - noiseRatio) } \hspace{2cm} noise =
+ \sqrt{ nrgRef \cdot noiseRatio } \f$<br> where <em>noiseRatio</em> and
+ <em>nrgRef</em> are extracted from the bitstream and <em>nrgEst</em> is the
+ subband energy before adjustment. The resulting gains are stored in
+ #nrgGain_m[#MAX_FREQ_COEFFS] (mantissas) and #nrgGain_e[#MAX_FREQ_COEFFS]
+ (exponents), the noise levels are stored in #noiseLevel_m[#MAX_FREQ_COEFFS]
+ and #noiseLevel_e[#MAX_FREQ_COEFFS] (exponents). The sine levels are stored in
+ #nrgSine_m[#MAX_FREQ_COEFFS] and #nrgSine_e[#MAX_FREQ_COEFFS]. \li Noise
+ limiting: The gain for each subband is limited both absolutely and relatively
+ compared to the total gain over all subbands. \li Boost gain: Calculate and
+ apply boost factor for each limiter band in order to compensate for the energy
+ loss imposed by the limiting. \li Apply gains and add noise: The gains and
+ noise levels are applied to all timeslots of the current envelope. A short
+ FIR-filter (length 4 QMF-timeslots) can be used to smooth the sudden change at
+ the envelope borders. Each complex subband sample of the current timeslot is
+ multiplied by the smoothed gain, then random noise with the calculated level
+ is added.
+
+ \note
+ To reduce the stack size, some of the local arrays could be located within
+ the time output buffer. Of the 512 samples temporarily available there,
+ about half the size is already used by #SBR_FRAME_DATA. A pointer to the
+ remaining free memory could be supplied by an additional argument to
+ calculateSbrEnvelope() in sbr_dec:
+
+ \par
+ \code
+ calculateSbrEnvelope (&hSbrDec->sbrScaleFactor,
+ &hSbrDec->SbrCalculateEnvelope,
+ hHeaderData,
+ hFrameData,
+ QmfBufferReal,
+ QmfBufferImag,
+ timeOutPtr + sizeof(SBR_FRAME_DATA)/sizeof(Float) +
+ 1); \endcode
+
+ \par
+ Within calculateSbrEnvelope(), some pointers could be defined instead of the
+ arrays #nrgRef_m, #nrgRef_e, #nrgEst_m, #nrgEst_e, #noiseLevel_m:
+
+ \par
+ \code
+ fract* nrgRef_m = timeOutPtr;
+ SCHAR* nrgRef_e = nrgRef_m + MAX_FREQ_COEFFS;
+ fract* nrgEst_m = nrgRef_e + MAX_FREQ_COEFFS;
+ SCHAR* nrgEst_e = nrgEst_m + MAX_FREQ_COEFFS;
+ fract* noiseLevel_m = nrgEst_e + MAX_FREQ_COEFFS;
+ \endcode
+
+ <br>
+*/
+void calculateSbrEnvelope(
+ QMF_SCALE_FACTOR *sbrScaleFactor, /*!< Scaling factors */
+ HANDLE_SBR_CALCULATE_ENVELOPE
+ h_sbr_cal_env, /*!< Handle to struct filled by the create-function */
+ HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA hFrameData, /*!< Control data of current frame */
+ PVC_DYNAMIC_DATA *pPvcDynamicData,
+ FIXP_DBL *
+ *analysBufferReal, /*!< Real part of subband samples to be processed */
+ FIXP_DBL *
+ *analysBufferImag, /*!< Imag part of subband samples to be processed */
+ const int useLP,
+ FIXP_DBL *degreeAlias, /*!< Estimated aliasing for each QMF channel */
+ const UINT flags, const int frameErrorFlag) {
+ int c, i, i_stop, j, envNoise = 0;
+ UCHAR *borders = hFrameData->frameInfo.borders;
+ UCHAR *bordersPvc = hFrameData->frameInfo.pvcBorders;
+ int pvc_mode = pPvcDynamicData->pvc_mode;
+ int first_start =
+ ((pvc_mode > 0) ? bordersPvc[0] : borders[0]) * hHeaderData->timeStep;
+ FIXP_SGL *noiseLevels = hFrameData->sbrNoiseFloorLevel;
+ HANDLE_FREQ_BAND_DATA hFreq = &hHeaderData->freqBandData;
+ UCHAR **pFreqBandTable = hFreq->freqBandTable;
+ UCHAR *pFreqBandTableNoise = hFreq->freqBandTableNoise;
+
+ int lowSubband = hFreq->lowSubband;
+ int highSubband = hFreq->highSubband;
+ int noSubbands = highSubband - lowSubband;
+
+ /* old high subband before headerchange
+ we asume no headerchange here */
+ int ov_highSubband = hFreq->highSubband;
+
+ int noNoiseBands = hFreq->nNfb;
+ UCHAR *noSubFrameBands = hFreq->nSfb;
+ int no_cols = hHeaderData->numberTimeSlots * hHeaderData->timeStep;
+
+ SCHAR sineMapped[MAX_FREQ_COEFFS];
+ SCHAR ov_adj_e = SCALE2EXP(sbrScaleFactor->ov_hb_scale);
+ SCHAR adj_e = 0;
+ SCHAR output_e;
+ SCHAR final_e = 0;
+ /* inter-TES is active in one or more envelopes of the current SBR frame */
+ const int iTES_enable = hFrameData->iTESactive;
+ const int iTES_scale_change = (iTES_enable) ? INTER_TES_SF_CHANGE : 0;
+ SCHAR maxGainLimit_e = (frameErrorFlag) ? MAX_GAIN_CONCEAL_EXP : MAX_GAIN_EXP;
+
+ UCHAR smooth_length = 0;
+
+ FIXP_SGL *pIenv = hFrameData->iEnvelope;
+
+ C_ALLOC_SCRATCH_START(useAliasReduction, UCHAR, 64)
+
+ /* if values differ we had a headerchange; if old highband is bigger then new
+ one we need to patch overlap-highband-scaling for this frame (see use of
+ ov_highSubband) as overlap contains higher frequency components which would
+ get lost */
+ if (hFreq->highSubband < hFreq->ov_highSubband) {
+ ov_highSubband = hFreq->ov_highSubband;
+ }
+
+ if (pvc_mode > 0) {
+ if (hFrameData->frameInfo.bordersNoise[0] > bordersPvc[0]) {
+ /* noise envelope of previous frame is trailing into current PVC frame */
+ envNoise = -1;
+ noiseLevels = h_sbr_cal_env->prevSbrNoiseFloorLevel;
+ noNoiseBands = h_sbr_cal_env->prevNNfb;
+ noSubFrameBands = h_sbr_cal_env->prevNSfb;
+ lowSubband = h_sbr_cal_env->prevLoSubband;
+ highSubband = h_sbr_cal_env->prevHiSubband;
+
+ noSubbands = highSubband - lowSubband;
+ ov_highSubband = highSubband;
+ if (highSubband < h_sbr_cal_env->prev_ov_highSubband) {
+ ov_highSubband = h_sbr_cal_env->prev_ov_highSubband;
+ }
+
+ pFreqBandTable[0] = h_sbr_cal_env->prevFreqBandTableLo;
+ pFreqBandTable[1] = h_sbr_cal_env->prevFreqBandTableHi;
+ pFreqBandTableNoise = h_sbr_cal_env->prevFreqBandTableNoise;
+ }
+
+ mapSineFlagsPvc(pFreqBandTable[1], noSubFrameBands[1],
+ h_sbr_cal_env->harmFlagsPrev,
+ h_sbr_cal_env->harmFlagsPrevActive, sineMapped,
+ hFrameData->sinusoidal_position,
+ &h_sbr_cal_env->sinusoidal_positionPrev,
+ (borders[0] > bordersPvc[0]) ? 1 : 0);
+ } else {
+ /*
+ Extract sine flags for all QMF bands
+ */
+ mapSineFlags(pFreqBandTable[1], noSubFrameBands[1],
+ hFrameData->addHarmonics, h_sbr_cal_env->harmFlagsPrev,
+ h_sbr_cal_env->harmFlagsPrevActive,
+ hFrameData->frameInfo.tranEnv, sineMapped);
+ }
+
+ /*
+ Scan for maximum in bufferd noise levels.
+ This is needed in case that we had strong noise in the previous frame
+ which is smoothed into the current frame.
+ The resulting exponent is used as start value for the maximum search
+ in reference energies
+ */
+ if (!useLP)
+ adj_e = h_sbr_cal_env->filtBufferNoise_e -
+ getScalefactor(h_sbr_cal_env->filtBufferNoise, noSubbands);
+
+ /*
+ Scan for maximum reference energy to be able
+ to select appropriate values for adj_e and final_e.
+ */
+ if (pvc_mode > 0) {
+ INT maxSfbNrg_e = pPvcDynamicData->predEsg_expMax;
+
+ /* Energy -> magnitude (sqrt halfens exponent) */
+ maxSfbNrg_e =
+ (maxSfbNrg_e + 1) >> 1; /* +1 to go safe (round to next higher int) */
+
+ /* Some safety margin is needed for 2 reasons:
+ - The signal energy is not equally spread over all subband samples in
+ a specific sfb of an envelope (Nrg could be too high by a factor of
+ envWidth * sfbWidth)
+ - Smoothing can smear high gains of the previous envelope into the
+ current
+ */
+ maxSfbNrg_e += 6;
+
+ adj_e = maxSfbNrg_e;
+ // final_e should not exist for PVC fixfix framing
+ } else {
+ for (i = 0; i < hFrameData->frameInfo.nEnvelopes; i++) {
+ INT maxSfbNrg_e =
+ -FRACT_BITS + NRG_EXP_OFFSET; /* start value for maximum search */
+
+ /* Fetch frequency resolution for current envelope: */
+ for (j = noSubFrameBands[hFrameData->frameInfo.freqRes[i]]; j != 0; j--) {
+ maxSfbNrg_e = fixMax(maxSfbNrg_e, (INT)((LONG)(*pIenv++) & MASK_E));
+ }
+ maxSfbNrg_e -= NRG_EXP_OFFSET;
+
+ /* Energy -> magnitude (sqrt halfens exponent) */
+ maxSfbNrg_e =
+ (maxSfbNrg_e + 1) >> 1; /* +1 to go safe (round to next higher int) */
+
+ /* Some safety margin is needed for 2 reasons:
+ - The signal energy is not equally spread over all subband samples in
+ a specific sfb of an envelope (Nrg could be too high by a factor of
+ envWidth * sfbWidth)
+ - Smoothing can smear high gains of the previous envelope into the
+ current
+ */
+ maxSfbNrg_e += 6;
+
+ if (borders[i] < hHeaderData->numberTimeSlots)
+ /* This envelope affects timeslots that belong to the output frame */
+ adj_e = fMax(maxSfbNrg_e, adj_e);
+
+ if (borders[i + 1] > hHeaderData->numberTimeSlots)
+ /* This envelope affects timeslots after the output frame */
+ final_e = fMax(maxSfbNrg_e, final_e);
+ }
+ }
+ /*
+ Calculate adjustment factors and apply them for every envelope.
+ */
+ pIenv = hFrameData->iEnvelope;
+
+ if (pvc_mode > 0) {
+ /* iterate over SBR time slots starting with bordersPvc[i] */
+ i = bordersPvc[0]; /* usually 0; can be >0 if switching from legacy SBR to
+ PVC */
+ i_stop = PVC_NTIMESLOT;
+ FDK_ASSERT(bordersPvc[hFrameData->frameInfo.nEnvelopes] == PVC_NTIMESLOT);
+ } else {
+ /* iterate over SBR envelopes starting with 0 */
+ i = 0;
+ i_stop = hFrameData->frameInfo.nEnvelopes;
+ }
+ for (; i < i_stop; i++) {
+ int k, noNoiseFlag;
+ SCHAR noise_e, input_e = SCALE2EXP(sbrScaleFactor->hb_scale);
+ C_ALLOC_SCRATCH_START(pNrgs, ENV_CALC_NRGS, 1);
+
+ /*
+ Helper variables.
+ */
+ int start_pos, stop_pos, freq_res;
+ if (pvc_mode > 0) {
+ start_pos =
+ hHeaderData->timeStep *
+ i; /* Start-position in time (subband sample) for current envelope. */
+ stop_pos = hHeaderData->timeStep * (i + 1); /* Stop-position in time
+ (subband sample) for
+ current envelope. */
+ freq_res =
+ hFrameData->frameInfo
+ .freqRes[0]; /* Frequency resolution for current envelope. */
+ FDK_ASSERT(
+ freq_res ==
+ hFrameData->frameInfo.freqRes[hFrameData->frameInfo.nEnvelopes - 1]);
+ } else {
+ start_pos = hHeaderData->timeStep *
+ borders[i]; /* Start-position in time (subband sample) for
+ current envelope. */
+ stop_pos = hHeaderData->timeStep *
+ borders[i + 1]; /* Stop-position in time (subband sample) for
+ current envelope. */
+ freq_res =
+ hFrameData->frameInfo
+ .freqRes[i]; /* Frequency resolution for current envelope. */
+ }
+
+ /* Always fully initialize the temporary energy table. This prevents
+ negative energies and extreme gain factors in cases where the number of
+ limiter bands exceeds the number of subbands. The latter can be caused by
+ undetected bit errors and is tested by some streams from the
+ certification set. */
+ FDKmemclear(pNrgs, sizeof(ENV_CALC_NRGS));
+
+ if (pvc_mode > 0) {
+ /* get predicted energy values from PVC module */
+ expandPredEsg(pPvcDynamicData, i, (int)MAX_FREQ_COEFFS, pNrgs->nrgRef,
+ pNrgs->nrgRef_e);
+
+ if (i == borders[0]) {
+ mapSineFlags(pFreqBandTable[1], noSubFrameBands[1],
+ hFrameData->addHarmonics, h_sbr_cal_env->harmFlagsPrev,
+ h_sbr_cal_env->harmFlagsPrevActive,
+ hFrameData->sinusoidal_position, sineMapped);
+ }
+
+ if (i >= hFrameData->frameInfo.bordersNoise[envNoise + 1]) {
+ if (envNoise >= 0) {
+ noiseLevels += noNoiseBands; /* The noise floor data is stored in a
+ row [noiseFloor1 noiseFloor2...].*/
+ } else {
+ /* leave trailing noise envelope of past frame */
+ noNoiseBands = hFreq->nNfb;
+ noSubFrameBands = hFreq->nSfb;
+ noiseLevels = hFrameData->sbrNoiseFloorLevel;
+
+ lowSubband = hFreq->lowSubband;
+ highSubband = hFreq->highSubband;
+
+ noSubbands = highSubband - lowSubband;
+ ov_highSubband = highSubband;
+ if (highSubband < hFreq->ov_highSubband) {
+ ov_highSubband = hFreq->ov_highSubband;
+ }
+
+ pFreqBandTable[0] = hFreq->freqBandTableLo;
+ pFreqBandTable[1] = hFreq->freqBandTableHi;
+ pFreqBandTableNoise = hFreq->freqBandTableNoise;
+ }
+ envNoise++;
+ }
+ } else {
+ /* If the start-pos of the current envelope equals the stop pos of the
+ current noise envelope, increase the pointer (i.e. choose the next
+ noise-floor).*/
+ if (borders[i] == hFrameData->frameInfo.bordersNoise[envNoise + 1]) {
+ noiseLevels += noNoiseBands; /* The noise floor data is stored in a row
+ [noiseFloor1 noiseFloor2...].*/
+ envNoise++;
+ }
+ }
+ if (i == hFrameData->frameInfo.tranEnv ||
+ i == h_sbr_cal_env->prevTranEnv) /* attack */
+ {
+ noNoiseFlag = 1;
+ if (!useLP) smooth_length = 0; /* No smoothing on attacks! */
+ } else {
+ noNoiseFlag = 0;
+ if (!useLP)
+ smooth_length = (1 - hHeaderData->bs_data.smoothingLength)
+ << 2; /* can become either 0 or 4 */
+ }
+
+ /*
+ Energy estimation in transposed highband.
+ */
+ if (hHeaderData->bs_data.interpolFreq)
+ calcNrgPerSubband(analysBufferReal, (useLP) ? NULL : analysBufferImag,
+ lowSubband, highSubband, start_pos, stop_pos, input_e,
+ pNrgs->nrgEst, pNrgs->nrgEst_e);
+ else
+ calcNrgPerSfb(analysBufferReal, (useLP) ? NULL : analysBufferImag,
+ noSubFrameBands[freq_res], pFreqBandTable[freq_res],
+ start_pos, stop_pos, input_e, pNrgs->nrgEst,
+ pNrgs->nrgEst_e);
+
+ /*
+ Calculate subband gains
+ */
+ {
+ UCHAR *table = pFreqBandTable[freq_res];
+ UCHAR *pUiNoise =
+ &pFreqBandTableNoise[1]; /*! Upper limit of the current noise floor
+ band. */
+
+ FIXP_SGL *pNoiseLevels = noiseLevels;
+
+ FIXP_DBL tmpNoise =
+ FX_SGL2FX_DBL((FIXP_SGL)((LONG)(*pNoiseLevels) & MASK_M));
+ SCHAR tmpNoise_e =
+ (UCHAR)((LONG)(*pNoiseLevels++) & MASK_E) - NOISE_EXP_OFFSET;
+
+ int cc = 0;
+ c = 0;
+ if (pvc_mode > 0) {
+ for (j = 0; j < noSubFrameBands[freq_res]; j++) {
+ UCHAR sinePresentFlag = 0;
+ int li = table[j];
+ int ui = table[j + 1];
+
+ for (k = li; k < ui; k++) {
+ sinePresentFlag |= (i >= sineMapped[cc]);
+ cc++;
+ }
+
+ for (k = li; k < ui; k++) {
+ FIXP_DBL refNrg = pNrgs->nrgRef[k - lowSubband];
+ SCHAR refNrg_e = pNrgs->nrgRef_e[k - lowSubband];
+
+ if (k >= *pUiNoise) {
+ tmpNoise =
+ FX_SGL2FX_DBL((FIXP_SGL)((LONG)(*pNoiseLevels) & MASK_M));
+ tmpNoise_e =
+ (SCHAR)((LONG)(*pNoiseLevels++) & MASK_E) - NOISE_EXP_OFFSET;
+
+ pUiNoise++;
+ }
+
+ FDK_ASSERT(k >= lowSubband);
+
+ if (useLP) useAliasReduction[k - lowSubband] = !sinePresentFlag;
+
+ pNrgs->nrgSine[c] = FL2FXCONST_DBL(0.0f);
+ pNrgs->nrgSine_e[c] = 0;
+
+ calcSubbandGain(refNrg, refNrg_e, pNrgs, c, tmpNoise, tmpNoise_e,
+ sinePresentFlag, i >= sineMapped[c], noNoiseFlag);
+
+ c++;
+ }
+ }
+ } else {
+ for (j = 0; j < noSubFrameBands[freq_res]; j++) {
+ FIXP_DBL refNrg = FX_SGL2FX_DBL((FIXP_SGL)((LONG)(*pIenv) & MASK_M));
+ SCHAR refNrg_e = (SCHAR)((LONG)(*pIenv) & MASK_E) - NRG_EXP_OFFSET;
+
+ UCHAR sinePresentFlag = 0;
+ int li = table[j];
+ int ui = table[j + 1];
+
+ for (k = li; k < ui; k++) {
+ sinePresentFlag |= (i >= sineMapped[cc]);
+ cc++;
+ }
+
+ for (k = li; k < ui; k++) {
+ if (k >= *pUiNoise) {
+ tmpNoise =
+ FX_SGL2FX_DBL((FIXP_SGL)((LONG)(*pNoiseLevels) & MASK_M));
+ tmpNoise_e =
+ (SCHAR)((LONG)(*pNoiseLevels++) & MASK_E) - NOISE_EXP_OFFSET;
+
+ pUiNoise++;
+ }
+
+ FDK_ASSERT(k >= lowSubband);
+
+ if (useLP) useAliasReduction[k - lowSubband] = !sinePresentFlag;
+
+ pNrgs->nrgSine[c] = FL2FXCONST_DBL(0.0f);
+ pNrgs->nrgSine_e[c] = 0;
+
+ calcSubbandGain(refNrg, refNrg_e, pNrgs, c, tmpNoise, tmpNoise_e,
+ sinePresentFlag, i >= sineMapped[c], noNoiseFlag);
+
+ pNrgs->nrgRef[c] = refNrg;
+ pNrgs->nrgRef_e[c] = refNrg_e;
+
+ c++;
+ }
+ pIenv++;
+ }
+ }
+ }
+
+ /*
+ Noise limiting
+ */
+
+ for (c = 0; c < hFreq->noLimiterBands; c++) {
+ FIXP_DBL sumRef, boostGain, maxGain;
+ FIXP_DBL accu = FL2FXCONST_DBL(0.0f);
+ SCHAR sumRef_e, boostGain_e, maxGain_e, accu_e = 0;
+ int maxGainLimGainSum_e = 0;
+
+ calcAvgGain(pNrgs, hFreq->limiterBandTable[c],
+ hFreq->limiterBandTable[c + 1], &sumRef, &sumRef_e, &maxGain,
+ &maxGain_e);
+
+ /* Multiply maxGain with limiterGain: */
+ maxGain = fMult(
+ maxGain,
+ FDK_sbrDecoder_sbr_limGains_m[hHeaderData->bs_data.limiterGains]);
+ /* maxGain_e +=
+ * FDK_sbrDecoder_sbr_limGains_e[hHeaderData->bs_data.limiterGains]; */
+ /* The addition of maxGain_e and FDK_sbrDecoder_sbr_limGains_e[3] might
+ yield values greater than 127 which doesn't fit into an SCHAR! In these
+ rare situations limit maxGain_e to 127.
+ */
+ maxGainLimGainSum_e =
+ maxGain_e +
+ FDK_sbrDecoder_sbr_limGains_e[hHeaderData->bs_data.limiterGains];
+ maxGain_e =
+ (maxGainLimGainSum_e > 127) ? (SCHAR)127 : (SCHAR)maxGainLimGainSum_e;
+
+ /* Scale mantissa of MaxGain into range between 0.5 and 1: */
+ if (maxGain == FL2FXCONST_DBL(0.0f))
+ maxGain_e = -FRACT_BITS;
+ else {
+ SCHAR charTemp = CountLeadingBits(maxGain);
+ maxGain_e -= charTemp;
+ maxGain <<= (int)charTemp;
+ }
+
+ if (maxGain_e >= maxGainLimit_e) { /* upper limit (e.g. 96 dB) */
+ maxGain = FL2FXCONST_DBL(0.5f);
+ maxGain_e = maxGainLimit_e;
+ }
+
+ /* Every subband gain is compared to the scaled "average gain"
+ and limited if necessary: */
+ for (k = hFreq->limiterBandTable[c]; k < hFreq->limiterBandTable[c + 1];
+ k++) {
+ if ((pNrgs->nrgGain_e[k] > maxGain_e) ||
+ (pNrgs->nrgGain_e[k] == maxGain_e && pNrgs->nrgGain[k] > maxGain)) {
+ FIXP_DBL noiseAmp;
+ SCHAR noiseAmp_e;
+
+ FDK_divide_MantExp(maxGain, maxGain_e, pNrgs->nrgGain[k],
+ pNrgs->nrgGain_e[k], &noiseAmp, &noiseAmp_e);
+ pNrgs->noiseLevel[k] = fMult(pNrgs->noiseLevel[k], noiseAmp);
+ pNrgs->noiseLevel_e[k] += noiseAmp_e;
+ pNrgs->nrgGain[k] = maxGain;
+ pNrgs->nrgGain_e[k] = maxGain_e;
+ }
+ }
+
+ /* -- Boost gain
+ Calculate and apply boost factor for each limiter band:
+ 1. Check how much energy would be present when using the limited gain
+ 2. Calculate boost factor by comparison with reference energy
+ 3. Apply boost factor to compensate for the energy loss due to limiting
+ */
+ for (k = hFreq->limiterBandTable[c]; k < hFreq->limiterBandTable[c + 1];
+ k++) {
+ /* 1.a Add energy of adjusted signal (using preliminary gain) */
+ FIXP_DBL tmp = fMult(pNrgs->nrgGain[k], pNrgs->nrgEst[k]);
+ SCHAR tmp_e = pNrgs->nrgGain_e[k] + pNrgs->nrgEst_e[k];
+ FDK_add_MantExp(tmp, tmp_e, accu, accu_e, &accu, &accu_e);
+
+ /* 1.b Add sine energy (if present) */
+ if (pNrgs->nrgSine[k] != FL2FXCONST_DBL(0.0f)) {
+ FDK_add_MantExp(pNrgs->nrgSine[k], pNrgs->nrgSine_e[k], accu, accu_e,
+ &accu, &accu_e);
+ } else {
+ /* 1.c Add noise energy (if present) */
+ if (noNoiseFlag == 0) {
+ FDK_add_MantExp(pNrgs->noiseLevel[k], pNrgs->noiseLevel_e[k], accu,
+ accu_e, &accu, &accu_e);
+ }
+ }
+ }
+
+ /* 2.a Calculate ratio of wanted energy and accumulated energy */
+ if (accu == (FIXP_DBL)0) { /* If divisor is 0, limit quotient to +4 dB */
+ boostGain = FL2FXCONST_DBL(0.6279716f);
+ boostGain_e = 2;
+ } else {
+ INT div_e;
+ boostGain = fDivNorm(sumRef, accu, &div_e);
+ boostGain_e = sumRef_e - accu_e + div_e;
+ }
+
+ /* 2.b Result too high? --> Limit the boost factor to +4 dB */
+ if ((boostGain_e > 3) ||
+ (boostGain_e == 2 && boostGain > FL2FXCONST_DBL(0.6279716f)) ||
+ (boostGain_e == 3 && boostGain > FL2FXCONST_DBL(0.3139858f))) {
+ boostGain = FL2FXCONST_DBL(0.6279716f);
+ boostGain_e = 2;
+ }
+ /* 3. Multiply all signal components with the boost factor */
+ for (k = hFreq->limiterBandTable[c]; k < hFreq->limiterBandTable[c + 1];
+ k++) {
+ pNrgs->nrgGain[k] = fMultDiv2(pNrgs->nrgGain[k], boostGain);
+ pNrgs->nrgGain_e[k] = pNrgs->nrgGain_e[k] + boostGain_e + 1;
+
+ pNrgs->nrgSine[k] = fMultDiv2(pNrgs->nrgSine[k], boostGain);
+ pNrgs->nrgSine_e[k] = pNrgs->nrgSine_e[k] + boostGain_e + 1;
+
+ pNrgs->noiseLevel[k] = fMultDiv2(pNrgs->noiseLevel[k], boostGain);
+ pNrgs->noiseLevel_e[k] = pNrgs->noiseLevel_e[k] + boostGain_e + 1;
+ }
+ }
+ /* End of noise limiting */
+
+ if (useLP)
+ aliasingReduction(degreeAlias + lowSubband, pNrgs, useAliasReduction,
+ noSubbands);
+
+ /* For the timeslots within the range for the output frame,
+ use the same scale for the noise levels.
+ Drawback: If the envelope exceeds the frame border, the noise levels
+ will have to be rescaled later to fit final_e of
+ the gain-values.
+ */
+ noise_e = (start_pos < no_cols) ? adj_e : final_e;
+
+ /*
+ Convert energies to amplitude levels
+ */
+ for (k = 0; k < noSubbands; k++) {
+ FDK_sqrt_MantExp(&pNrgs->nrgSine[k], &pNrgs->nrgSine_e[k], &noise_e);
+ FDK_sqrt_MantExp(&pNrgs->nrgGain[k], &pNrgs->nrgGain_e[k],
+ &pNrgs->nrgGain_e[k]);
+ FDK_sqrt_MantExp(&pNrgs->noiseLevel[k], &pNrgs->noiseLevel_e[k],
+ &noise_e);
+ }
+
+ /*
+ Apply calculated gains and adaptive noise
+ */
+
+ /* assembleHfSignals() */
+ {
+ int scale_change, sc_change;
+ FIXP_SGL smooth_ratio;
+ int filtBufferNoiseShift = 0;
+
+ /* Initialize smoothing buffers with the first valid values */
+ if (h_sbr_cal_env->startUp) {
+ if (!useLP) {
+ h_sbr_cal_env->filtBufferNoise_e = noise_e;
+
+ FDKmemcpy(h_sbr_cal_env->filtBuffer_e, pNrgs->nrgGain_e,
+ noSubbands * sizeof(SCHAR));
+ FDKmemcpy(h_sbr_cal_env->filtBufferNoise, pNrgs->noiseLevel,
+ noSubbands * sizeof(FIXP_DBL));
+ FDKmemcpy(h_sbr_cal_env->filtBuffer, pNrgs->nrgGain,
+ noSubbands * sizeof(FIXP_DBL));
+ }
+ h_sbr_cal_env->startUp = 0;
+ }
+
+ if (!useLP) {
+ equalizeFiltBufferExp(h_sbr_cal_env->filtBuffer, /* buffered */
+ h_sbr_cal_env->filtBuffer_e, /* buffered */
+ pNrgs->nrgGain, /* current */
+ pNrgs->nrgGain_e, /* current */
+ noSubbands);
+
+ /* Adapt exponent of buffered noise levels to the current exponent
+ so they can easily be smoothed */
+ if ((h_sbr_cal_env->filtBufferNoise_e - noise_e) >= 0) {
+ int shift = fixMin(DFRACT_BITS - 1,
+ (int)(h_sbr_cal_env->filtBufferNoise_e - noise_e));
+ for (k = 0; k < noSubbands; k++)
+ h_sbr_cal_env->filtBufferNoise[k] <<= shift;
+ } else {
+ int shift =
+ fixMin(DFRACT_BITS - 1,
+ -(int)(h_sbr_cal_env->filtBufferNoise_e - noise_e));
+ for (k = 0; k < noSubbands; k++)
+ h_sbr_cal_env->filtBufferNoise[k] >>= shift;
+ }
+
+ h_sbr_cal_env->filtBufferNoise_e = noise_e;
+ }
+
+ /* find best scaling! */
+ scale_change = -(DFRACT_BITS - 1);
+ for (k = 0; k < noSubbands; k++) {
+ scale_change = fixMax(scale_change, (int)pNrgs->nrgGain_e[k]);
+ }
+ sc_change = (start_pos < no_cols) ? adj_e - input_e : final_e - input_e;
+
+ if ((scale_change - sc_change + 1) < 0)
+ scale_change -= (scale_change - sc_change + 1);
+
+ scale_change = (scale_change - sc_change) + 1;
+
+ for (k = 0; k < noSubbands; k++) {
+ int sc = scale_change - pNrgs->nrgGain_e[k] + (sc_change - 1);
+ pNrgs->nrgGain[k] >>= sc;
+ pNrgs->nrgGain_e[k] += sc;
+ }
+
+ if (!useLP) {
+ for (k = 0; k < noSubbands; k++) {
+ int sc =
+ scale_change - h_sbr_cal_env->filtBuffer_e[k] + (sc_change - 1);
+ h_sbr_cal_env->filtBuffer[k] >>= sc;
+ }
+ }
+
+ for (j = start_pos; j < stop_pos; j++) {
+ /* This timeslot is located within the first part of the processing
+ buffer and will be fed into the QMF-synthesis for the current frame.
+ adj_e - input_e
+ This timeslot will not yet be fed into the QMF so we do not care
+ about the adj_e.
+ sc_change = final_e - input_e
+ */
+ if ((j == no_cols) && (start_pos < no_cols)) {
+ int shift = (int)(noise_e - final_e);
+ if (!useLP)
+ filtBufferNoiseShift = shift; /* shifting of
+ h_sbr_cal_env->filtBufferNoise[k]
+ will be applied in function
+ adjustTimeSlotHQ() */
+ if (shift >= 0) {
+ shift = fixMin(DFRACT_BITS - 1, shift);
+ for (k = 0; k < noSubbands; k++) {
+ pNrgs->nrgSine[k] <<= shift;
+ pNrgs->noiseLevel[k] <<= shift;
+ /*
+ if (!useLP)
+ h_sbr_cal_env->filtBufferNoise[k] <<= shift;
+ */
+ }
+ } else {
+ shift = fixMin(DFRACT_BITS - 1, -shift);
+ for (k = 0; k < noSubbands; k++) {
+ pNrgs->nrgSine[k] >>= shift;
+ pNrgs->noiseLevel[k] >>= shift;
+ /*
+ if (!useLP)
+ h_sbr_cal_env->filtBufferNoise[k] >>= shift;
+ */
+ }
+ }
+
+ /* update noise scaling */
+ noise_e = final_e;
+ if (!useLP)
+ h_sbr_cal_env->filtBufferNoise_e =
+ noise_e; /* scaling value unused! */
+
+ /* update gain buffer*/
+ sc_change -= (final_e - input_e);
+
+ if (sc_change < 0) {
+ for (k = 0; k < noSubbands; k++) {
+ pNrgs->nrgGain[k] >>= -sc_change;
+ pNrgs->nrgGain_e[k] += -sc_change;
+ }
+ if (!useLP) {
+ for (k = 0; k < noSubbands; k++) {
+ h_sbr_cal_env->filtBuffer[k] >>= -sc_change;
+ }
+ }
+ } else {
+ scale_change += sc_change;
+ }
+
+ } /* if */
+
+ if (!useLP) {
+ /* Prevent the smoothing filter from running on constant levels */
+ if (j - start_pos < smooth_length)
+ smooth_ratio = FDK_sbrDecoder_sbr_smoothFilter[j - start_pos];
+ else
+ smooth_ratio = FL2FXCONST_SGL(0.0f);
+
+ if (iTES_enable) {
+ /* adjustTimeSlotHQ() without adding of additional harmonics */
+ adjustTimeSlotHQ_GainAndNoise(
+ &analysBufferReal[j][lowSubband],
+ &analysBufferImag[j][lowSubband], h_sbr_cal_env, pNrgs,
+ lowSubband, noSubbands, fMin(scale_change, DFRACT_BITS - 1),
+ smooth_ratio, noNoiseFlag, filtBufferNoiseShift);
+ } else {
+ adjustTimeSlotHQ(&analysBufferReal[j][lowSubband],
+ &analysBufferImag[j][lowSubband], h_sbr_cal_env,
+ pNrgs, lowSubband, noSubbands,
+ fMin(scale_change, DFRACT_BITS - 1), smooth_ratio,
+ noNoiseFlag, filtBufferNoiseShift);
+ }
+ } else {
+ FDK_ASSERT(!iTES_enable); /* not supported */
+ if (flags & SBRDEC_ELD_GRID) {
+ /* FDKmemset(analysBufferReal[j], 0, 64 * sizeof(FIXP_DBL)); */
+ adjustTimeSlot_EldGrid(&analysBufferReal[j][lowSubband], pNrgs,
+ &h_sbr_cal_env->harmIndex, lowSubband,
+ noSubbands,
+ fMin(scale_change, DFRACT_BITS - 1),
+ noNoiseFlag, &h_sbr_cal_env->phaseIndex,
+ EXP2SCALE(adj_e) - sbrScaleFactor->lb_scale);
+ } else {
+ adjustTimeSlotLC(&analysBufferReal[j][lowSubband], pNrgs,
+ &h_sbr_cal_env->harmIndex, lowSubband, noSubbands,
+ fMin(scale_change, DFRACT_BITS - 1), noNoiseFlag,
+ &h_sbr_cal_env->phaseIndex);
+ }
+ }
+ /* In case the envelope spans accross the no_cols border both exponents
+ * are needed. */
+ /* nrgGain_e[0...(noSubbands-1)] are equalized by
+ * equalizeFiltBufferExp() */
+ pNrgs->exponent[(j < no_cols) ? 0 : 1] =
+ (SCHAR)((15 - sbrScaleFactor->hb_scale) + pNrgs->nrgGain_e[0] + 1 -
+ scale_change);
+ } /* for */
+
+ if (iTES_enable) {
+ apply_inter_tes(
+ analysBufferReal, /* pABufR, */
+ analysBufferImag, /* pABufI, */
+ sbrScaleFactor, pNrgs->exponent, hHeaderData->timeStep, start_pos,
+ stop_pos, lowSubband, noSubbands,
+ hFrameData
+ ->interTempShapeMode[i] /* frameData->interTempShapeMode[env] */
+ );
+
+ /* add additional harmonics */
+ for (j = start_pos; j < stop_pos; j++) {
+ /* match exponent of additional harmonics to scale change of QMF data
+ * caused by apply_inter_tes() */
+ scale_change = 0;
+
+ if ((start_pos <= no_cols) && (stop_pos > no_cols)) {
+ /* Scaling of analysBuffers was potentially changed within this
+ envelope. The pNrgs->nrgSine_e match the second part of the
+ envelope. For (j<=no_cols) the exponent of the sine energies has
+ to be adapted. */
+ scale_change = pNrgs->exponent[1] - pNrgs->exponent[0];
+ }
+
+ adjustTimeSlotHQ_AddHarmonics(
+ &analysBufferReal[j][lowSubband],
+ &analysBufferImag[j][lowSubband], h_sbr_cal_env, pNrgs,
+ lowSubband, noSubbands,
+ -iTES_scale_change + ((j < no_cols) ? scale_change : 0));
+ }
+ }
+
+ if (!useLP) {
+ /* Update time-smoothing-buffers for gains and noise levels
+ The gains and the noise values of the current envelope are copied
+ into the buffer. This has to be done at the end of each envelope as
+ the values are required for a smooth transition to the next envelope.
+ */
+ FDKmemcpy(h_sbr_cal_env->filtBuffer, pNrgs->nrgGain,
+ noSubbands * sizeof(FIXP_DBL));
+ FDKmemcpy(h_sbr_cal_env->filtBuffer_e, pNrgs->nrgGain_e,
+ noSubbands * sizeof(SCHAR));
+ FDKmemcpy(h_sbr_cal_env->filtBufferNoise, pNrgs->noiseLevel,
+ noSubbands * sizeof(FIXP_DBL));
+ }
+ }
+ C_ALLOC_SCRATCH_END(pNrgs, ENV_CALC_NRGS, 1);
+ }
+
+ /* adapt adj_e to the scale change caused by apply_inter_tes() */
+ adj_e += iTES_scale_change;
+
+ /* Rescale output samples */
+ {
+ FIXP_DBL maxVal;
+ int ov_reserve, reserve;
+
+ /* Determine headroom in old adjusted samples */
+ maxVal =
+ maxSubbandSample(analysBufferReal, (useLP) ? NULL : analysBufferImag,
+ lowSubband, ov_highSubband, 0, first_start);
+
+ ov_reserve = fNorm(maxVal);
+
+ /* Determine headroom in new adjusted samples */
+ maxVal =
+ maxSubbandSample(analysBufferReal, (useLP) ? NULL : analysBufferImag,
+ lowSubband, highSubband, first_start, no_cols);
+
+ reserve = fNorm(maxVal);
+
+ /* Determine common output exponent */
+ output_e = fMax(ov_adj_e - ov_reserve, adj_e - reserve);
+
+ /* Rescale old samples */
+ rescaleSubbandSamples(analysBufferReal, (useLP) ? NULL : analysBufferImag,
+ lowSubband, ov_highSubband, 0, first_start,
+ ov_adj_e - output_e);
+
+ /* Rescale new samples */
+ rescaleSubbandSamples(analysBufferReal, (useLP) ? NULL : analysBufferImag,
+ lowSubband, highSubband, first_start, no_cols,
+ adj_e - output_e);
+ }
+
+ /* Update hb_scale */
+ sbrScaleFactor->hb_scale = EXP2SCALE(output_e);
+
+ /* Save the current final exponent for the next frame: */
+ /* adapt final_e to the scale change caused by apply_inter_tes() */
+ sbrScaleFactor->ov_hb_scale = EXP2SCALE(final_e + iTES_scale_change);
+
+ /* We need to remember to the next frame that the transient
+ will occur in the first envelope (if tranEnv == nEnvelopes). */
+ if (hFrameData->frameInfo.tranEnv == hFrameData->frameInfo.nEnvelopes)
+ h_sbr_cal_env->prevTranEnv = 0;
+ else
+ h_sbr_cal_env->prevTranEnv = -1;
+
+ if (pvc_mode > 0) {
+ /* Not more than just the last noise envelope reaches into the next PVC
+ frame! This should be true because bs_noise_position is <= 15 */
+ FDK_ASSERT(hFrameData->frameInfo
+ .bordersNoise[hFrameData->frameInfo.nNoiseEnvelopes - 1] <
+ PVC_NTIMESLOT);
+ if (hFrameData->frameInfo
+ .bordersNoise[hFrameData->frameInfo.nNoiseEnvelopes] >
+ PVC_NTIMESLOT) {
+ FDK_ASSERT(noiseLevels ==
+ (hFrameData->sbrNoiseFloorLevel +
+ (hFrameData->frameInfo.nNoiseEnvelopes - 1) * noNoiseBands));
+ h_sbr_cal_env->prevNNfb = noNoiseBands;
+
+ h_sbr_cal_env->prevNSfb[0] = noSubFrameBands[0];
+ h_sbr_cal_env->prevNSfb[1] = noSubFrameBands[1];
+
+ h_sbr_cal_env->prevLoSubband = lowSubband;
+ h_sbr_cal_env->prevHiSubband = highSubband;
+ h_sbr_cal_env->prev_ov_highSubband = ov_highSubband;
+
+ FDKmemcpy(h_sbr_cal_env->prevFreqBandTableLo, pFreqBandTable[0],
+ noSubFrameBands[0] + 1);
+ FDKmemcpy(h_sbr_cal_env->prevFreqBandTableHi, pFreqBandTable[1],
+ noSubFrameBands[1] + 1);
+ FDKmemcpy(h_sbr_cal_env->prevFreqBandTableNoise,
+ hFreq->freqBandTableNoise, sizeof(hFreq->freqBandTableNoise));
+
+ FDKmemcpy(h_sbr_cal_env->prevSbrNoiseFloorLevel, noiseLevels,
+ MAX_NOISE_COEFFS * sizeof(FIXP_SGL));
+ }
+ }
+
+ C_ALLOC_SCRATCH_END(useAliasReduction, UCHAR, 64)
+}
+
+/*!
+ \brief Create envelope instance
+
+ Must be called once for each channel before calculateSbrEnvelope() can be
+ used.
+
+ \return errorCode, 0 if successful
+*/
+SBR_ERROR
+createSbrEnvelopeCalc(
+ HANDLE_SBR_CALCULATE_ENVELOPE hs, /*!< pointer to envelope instance */
+ HANDLE_SBR_HEADER_DATA
+ hHeaderData, /*!< static SBR control data, initialized with defaults */
+ const int chan, /*!< Channel for which to assign buffers */
+ const UINT flags) {
+ SBR_ERROR err = SBRDEC_OK;
+ int i;
+
+ /* Clear previous missing harmonics flags */
+ for (i = 0; i < ADD_HARMONICS_FLAGS_SIZE; i++) {
+ hs->harmFlagsPrev[i] = 0;
+ hs->harmFlagsPrevActive[i] = 0;
+ }
+ hs->harmIndex = 0;
+
+ FDKmemclear(hs->prevSbrNoiseFloorLevel, sizeof(hs->prevSbrNoiseFloorLevel));
+ hs->prevNNfb = 0;
+ FDKmemclear(hs->prevFreqBandTableNoise, sizeof(hs->prevFreqBandTableNoise));
+ hs->sinusoidal_positionPrev = 0;
+
+ /*
+ Setup pointers for time smoothing.
+ The buffer itself will be initialized later triggered by the startUp-flag.
+ */
+ hs->prevTranEnv = -1;
+
+ /* initialization */
+ resetSbrEnvelopeCalc(hs);
+
+ if (chan == 0) { /* do this only once */
+ err = resetFreqBandTables(hHeaderData, flags);
+ }
+
+ return err;
+}
+
+/*!
+ \brief Create envelope instance
+
+ Must be called once for each channel before calculateSbrEnvelope() can be
+ used.
+
+ \return errorCode, 0 if successful
+*/
+int deleteSbrEnvelopeCalc(HANDLE_SBR_CALCULATE_ENVELOPE hs) { return 0; }
+
+/*!
+ \brief Reset envelope instance
+
+ This function must be called for each channel on a change of configuration.
+ Note that resetFreqBandTables should also be called in this case.
+
+ \return errorCode, 0 if successful
+*/
+void resetSbrEnvelopeCalc(
+ HANDLE_SBR_CALCULATE_ENVELOPE hCalEnv) /*!< pointer to envelope instance */
+{
+ hCalEnv->phaseIndex = 0;
+
+ /* Noise exponent needs to be reset because the output exponent for the next
+ * frame depends on it */
+ hCalEnv->filtBufferNoise_e = 0;
+
+ hCalEnv->startUp = 1;
+}
+
+/*!
+ \brief Equalize exponents of the buffered gain values and the new ones
+
+ After equalization of exponents, the FIR-filter addition for smoothing
+ can be performed.
+ This function is called once for each envelope before adjusting.
+*/
+static void equalizeFiltBufferExp(
+ FIXP_DBL *filtBuffer, /*!< bufferd gains */
+ SCHAR *filtBuffer_e, /*!< exponents of bufferd gains */
+ FIXP_DBL *nrgGain, /*!< gains for current envelope */
+ SCHAR *nrgGain_e, /*!< exponents of gains for current envelope */
+ int subbands) /*!< Number of QMF subbands */
+{
+ int band;
+ int diff;
+
+ for (band = 0; band < subbands; band++) {
+ diff = (int)(nrgGain_e[band] - filtBuffer_e[band]);
+ if (diff > 0) {
+ filtBuffer[band] >>=
+ diff; /* Compensate for the scale change by shifting the mantissa. */
+ filtBuffer_e[band] += diff; /* New gain is bigger, use its exponent */
+ } else if (diff < 0) {
+ /* The buffered gains seem to be larger, but maybe there
+ are some unused bits left in the mantissa */
+
+ int reserve = CntLeadingZeros(fixp_abs(filtBuffer[band])) - 1;
+
+ if ((-diff) <= reserve) {
+ /* There is enough space in the buffered mantissa so
+ that we can take the new exponent as common.
+ */
+ filtBuffer[band] <<= (-diff);
+ filtBuffer_e[band] += diff; /* becomes equal to *ptrNewExp */
+ } else {
+ filtBuffer[band] <<=
+ reserve; /* Shift the mantissa as far as possible: */
+ filtBuffer_e[band] -= reserve; /* Compensate in the exponent: */
+
+ /* For the remaining difference, change the new gain value */
+ diff = fixMin(-(reserve + diff), DFRACT_BITS - 1);
+ nrgGain[band] >>= diff;
+ nrgGain_e[band] += diff;
+ }
+ }
+ }
+}
+
+/*!
+ \brief Shift left the mantissas of all subband samples
+ in the giventime and frequency range by the specified number of bits.
+
+ This function is used to rescale the audio data in the overlap buffer
+ which has already been envelope adjusted with the last frame.
+*/
+void rescaleSubbandSamples(
+ FIXP_DBL **re, /*!< Real part of input and output subband samples */
+ FIXP_DBL **im, /*!< Imaginary part of input and output subband samples */
+ int lowSubband, /*!< Begin of frequency range to process */
+ int highSubband, /*!< End of frequency range to process */
+ int start_pos, /*!< Begin of time rage (QMF-timeslot) */
+ int next_pos, /*!< End of time rage (QMF-timeslot) */
+ int shift) /*!< number of bits to shift */
+{
+ int width = highSubband - lowSubband;
+
+ if ((width > 0) && (shift != 0)) {
+ if (im != NULL) {
+ for (int l = start_pos; l < next_pos; l++) {
+ scaleValues(&re[l][lowSubband], width, shift);
+ scaleValues(&im[l][lowSubband], width, shift);
+ }
+ } else {
+ for (int l = start_pos; l < next_pos; l++) {
+ scaleValues(&re[l][lowSubband], width, shift);
+ }
+ }
+ }
+}
+
+static inline FIXP_DBL FDK_get_maxval_real(FIXP_DBL maxVal, FIXP_DBL *reTmp,
+ INT width) {
+ maxVal = (FIXP_DBL)0;
+ while (width-- != 0) {
+ FIXP_DBL tmp = *(reTmp++);
+ maxVal |= (FIXP_DBL)((LONG)(tmp) ^ ((LONG)tmp >> (DFRACT_BITS - 1)));
+ }
+
+ return maxVal;
+}
+
+/*!
+ \brief Determine headroom for shifting
+
+ Determine by how much the spectrum can be shifted left
+ for better accuracy in later processing.
+
+ \return Number of free bits in the biggest spectral value
+*/
+
+FIXP_DBL maxSubbandSample(
+ FIXP_DBL **re, /*!< Real part of input and output subband samples */
+ FIXP_DBL **im, /*!< Real part of input and output subband samples */
+ int lowSubband, /*!< Begin of frequency range to process */
+ int highSubband, /*!< Number of QMF bands to process */
+ int start_pos, /*!< Begin of time rage (QMF-timeslot) */
+ int next_pos /*!< End of time rage (QMF-timeslot) */
+) {
+ FIXP_DBL maxVal = FL2FX_DBL(0.0f);
+ unsigned int width = highSubband - lowSubband;
+
+ FDK_ASSERT(width <= (64));
+
+ if (width > 0) {
+ if (im != NULL) {
+ for (int l = start_pos; l < next_pos; l++) {
+ int k = width;
+ FIXP_DBL *reTmp = &re[l][lowSubband];
+ FIXP_DBL *imTmp = &im[l][lowSubband];
+ do {
+ FIXP_DBL tmp1 = *(reTmp++);
+ FIXP_DBL tmp2 = *(imTmp++);
+ maxVal |=
+ (FIXP_DBL)((LONG)(tmp1) ^ ((LONG)tmp1 >> (DFRACT_BITS - 1)));
+ maxVal |=
+ (FIXP_DBL)((LONG)(tmp2) ^ ((LONG)tmp2 >> (DFRACT_BITS - 1)));
+ } while (--k != 0);
+ }
+ } else {
+ for (int l = start_pos; l < next_pos; l++) {
+ maxVal |= FDK_get_maxval_real(maxVal, &re[l][lowSubband], width);
+ }
+ }
+ }
+
+ if (maxVal > (FIXP_DBL)0) {
+ /* For negative input values, maxVal is too small by 1. Add 1 only when
+ * necessary: if maxVal is a power of 2 */
+ FIXP_DBL lowerPow2 =
+ (FIXP_DBL)(1 << (DFRACT_BITS - 1 - CntLeadingZeros(maxVal)));
+ if (maxVal == lowerPow2) maxVal += (FIXP_DBL)1;
+ }
+
+ return (maxVal);
+}
+
+/* #define SHIFT_BEFORE_SQUARE (3) */ /* (7/2) */
+/* Avoid assertion failures triggerd by overflows which occured in robustness
+ tests. Setting the SHIFT_BEFORE_SQUARE to 4 has negligible effect on (USAC)
+ conformance results. */
+#define SHIFT_BEFORE_SQUARE (4) /* ((8 - 0) / 2) */
+
+/*!<
+ If the accumulator does not provide enough overflow bits or
+ does not provide a high dynamic range, the below energy calculation
+ requires an additional shift operation for each sample.
+ On the other hand, doing the shift allows using a single-precision
+ multiplication for the square (at least 16bit x 16bit).
+ For even values of OVRFLW_BITS (0, 2, 4, 6), saturated arithmetic
+ is required for the energy accumulation.
+ Theoretically, the sample-squares can sum up to a value of 76,
+ requiring 7 overflow bits. However since such situations are *very*
+ rare, accu can be limited to 64.
+ In case native saturated arithmetic is not available, overflows
+ can be prevented by replacing the above #define by
+ #define SHIFT_BEFORE_SQUARE ((8 - OVRFLW_BITS) / 2)
+ which will result in slightly reduced accuracy.
+*/
+
+/*!
+ \brief Estimates the mean energy of each filter-bank channel for the
+ duration of the current envelope
+
+ This function is used when interpolFreq is true.
+*/
+static void calcNrgPerSubband(
+ FIXP_DBL **analysBufferReal, /*!< Real part of subband samples */
+ FIXP_DBL **analysBufferImag, /*!< Imaginary part of subband samples */
+ int lowSubband, /*!< Begin of the SBR frequency range */
+ int highSubband, /*!< High end of the SBR frequency range */
+ int start_pos, /*!< First QMF-slot of current envelope */
+ int next_pos, /*!< Last QMF-slot of current envelope + 1 */
+ SCHAR frameExp, /*!< Common exponent for all input samples */
+ FIXP_DBL *nrgEst, /*!< resulting Energy (0..1) */
+ SCHAR *nrgEst_e) /*!< Exponent of resulting Energy */
+{
+ FIXP_SGL invWidth;
+ SCHAR preShift;
+ SCHAR shift;
+ FIXP_DBL sum;
+ int k;
+
+ /* Divide by width of envelope later: */
+ invWidth = FX_DBL2FX_SGL(GetInvInt(next_pos - start_pos));
+ /* The common exponent needs to be doubled because all mantissas are squared:
+ */
+ frameExp = frameExp << 1;
+
+ for (k = lowSubband; k < highSubband; k++) {
+ FIXP_DBL bufferReal[(((1024) / (32) * (4) / 2) + (3 * (4)))];
+ FIXP_DBL bufferImag[(((1024) / (32) * (4) / 2) + (3 * (4)))];
+ FIXP_DBL maxVal;
+
+ if (analysBufferImag != NULL) {
+ int l;
+ maxVal = FL2FX_DBL(0.0f);
+ for (l = start_pos; l < next_pos; l++) {
+ bufferImag[l] = analysBufferImag[l][k];
+ maxVal |= (FIXP_DBL)((LONG)(bufferImag[l]) ^
+ ((LONG)bufferImag[l] >> (DFRACT_BITS - 1)));
+ bufferReal[l] = analysBufferReal[l][k];
+ maxVal |= (FIXP_DBL)((LONG)(bufferReal[l]) ^
+ ((LONG)bufferReal[l] >> (DFRACT_BITS - 1)));
+ }
+ } else {
+ int l;
+ maxVal = FL2FX_DBL(0.0f);
+ for (l = start_pos; l < next_pos; l++) {
+ bufferReal[l] = analysBufferReal[l][k];
+ maxVal |= (FIXP_DBL)((LONG)(bufferReal[l]) ^
+ ((LONG)bufferReal[l] >> (DFRACT_BITS - 1)));
+ }
+ }
+
+ if (maxVal != FL2FXCONST_DBL(0.f)) {
+ /* If the accu does not provide enough overflow bits, we cannot
+ shift the samples up to the limit.
+ Instead, keep up to 3 free bits in each sample, i.e. up to
+ 6 bits after calculation of square.
+ Please note the comment on saturated arithmetic above!
+ */
+ FIXP_DBL accu;
+ preShift = CntLeadingZeros(maxVal) - 1;
+ preShift -= SHIFT_BEFORE_SQUARE;
+
+ /* Limit preShift to a maximum value to prevent accumulator overflow in
+ exceptional situations where the signal in the analysis-buffer is very
+ small (small maxVal).
+ */
+ preShift = fMin(preShift, (SCHAR)25);
+
+ accu = FL2FXCONST_DBL(0.0f);
+ if (preShift >= 0) {
+ int l;
+ if (analysBufferImag != NULL) {
+ for (l = start_pos; l < next_pos; l++) {
+ FIXP_DBL temp1 = bufferReal[l] << (int)preShift;
+ FIXP_DBL temp2 = bufferImag[l] << (int)preShift;
+ accu = fPow2AddDiv2(accu, temp1);
+ accu = fPow2AddDiv2(accu, temp2);
+ }
+ } else {
+ for (l = start_pos; l < next_pos; l++) {
+ FIXP_DBL temp = bufferReal[l] << (int)preShift;
+ accu = fPow2AddDiv2(accu, temp);
+ }
+ }
+ } else { /* if negative shift value */
+ int l;
+ int negpreShift = -preShift;
+ if (analysBufferImag != NULL) {
+ for (l = start_pos; l < next_pos; l++) {
+ FIXP_DBL temp1 = bufferReal[l] >> (int)negpreShift;
+ FIXP_DBL temp2 = bufferImag[l] >> (int)negpreShift;
+ accu = fPow2AddDiv2(accu, temp1);
+ accu = fPow2AddDiv2(accu, temp2);
+ }
+ } else {
+ for (l = start_pos; l < next_pos; l++) {
+ FIXP_DBL temp = bufferReal[l] >> (int)negpreShift;
+ accu = fPow2AddDiv2(accu, temp);
+ }
+ }
+ }
+ accu <<= 1;
+
+ /* Convert double precision to Mantissa/Exponent: */
+ shift = fNorm(accu);
+ sum = accu << (int)shift;
+
+ /* Divide by width of envelope and apply frame scale: */
+ *nrgEst++ = fMult(sum, invWidth);
+ shift += 2 * preShift;
+ if (analysBufferImag != NULL)
+ *nrgEst_e++ = frameExp - shift;
+ else
+ *nrgEst_e++ = frameExp - shift + 1; /* +1 due to missing imag. part */
+ } /* maxVal!=0 */
+ else {
+ /* Prevent a zero-mantissa-number from being misinterpreted
+ due to its exponent. */
+ *nrgEst++ = FL2FXCONST_DBL(0.0f);
+ *nrgEst_e++ = 0;
+ }
+ }
+}
+
+/*!
+ \brief Estimates the mean energy of each Scale factor band for the
+ duration of the current envelope.
+
+ This function is used when interpolFreq is false.
+*/
+static void calcNrgPerSfb(
+ FIXP_DBL **analysBufferReal, /*!< Real part of subband samples */
+ FIXP_DBL **analysBufferImag, /*!< Imaginary part of subband samples */
+ int nSfb, /*!< Number of scale factor bands */
+ UCHAR *freqBandTable, /*!< First Subband for each Sfb */
+ int start_pos, /*!< First QMF-slot of current envelope */
+ int next_pos, /*!< Last QMF-slot of current envelope + 1 */
+ SCHAR input_e, /*!< Common exponent for all input samples */
+ FIXP_DBL *nrgEst, /*!< resulting Energy (0..1) */
+ SCHAR *nrgEst_e) /*!< Exponent of resulting Energy */
+{
+ FIXP_SGL invWidth;
+ FIXP_DBL temp;
+ SCHAR preShift;
+ SCHAR shift, sum_e;
+ FIXP_DBL sum;
+
+ int j, k, l, li, ui;
+ FIXP_DBL sumAll, sumLine; /* Single precision would be sufficient,
+ but overflow bits are required for accumulation */
+
+ /* Divide by width of envelope later: */
+ invWidth = FX_DBL2FX_SGL(GetInvInt(next_pos - start_pos));
+ /* The common exponent needs to be doubled because all mantissas are squared:
+ */
+ input_e = input_e << 1;
+
+ for (j = 0; j < nSfb; j++) {
+ li = freqBandTable[j];
+ ui = freqBandTable[j + 1];
+
+ FIXP_DBL maxVal = maxSubbandSample(analysBufferReal, analysBufferImag, li,
+ ui, start_pos, next_pos);
+
+ if (maxVal != FL2FXCONST_DBL(0.f)) {
+ preShift = CntLeadingZeros(maxVal) - 1;
+
+ /* If the accu does not provide enough overflow bits, we cannot
+ shift the samples up to the limit.
+ Instead, keep up to 3 free bits in each sample, i.e. up to
+ 6 bits after calculation of square.
+ Please note the comment on saturated arithmetic above!
+ */
+ preShift -= SHIFT_BEFORE_SQUARE;
+
+ sumAll = FL2FXCONST_DBL(0.0f);
+
+ for (k = li; k < ui; k++) {
+ sumLine = FL2FXCONST_DBL(0.0f);
+
+ if (analysBufferImag != NULL) {
+ if (preShift >= 0) {
+ for (l = start_pos; l < next_pos; l++) {
+ temp = analysBufferReal[l][k] << (int)preShift;
+ sumLine += fPow2Div2(temp);
+ temp = analysBufferImag[l][k] << (int)preShift;
+ sumLine += fPow2Div2(temp);
+ }
+ } else {
+ for (l = start_pos; l < next_pos; l++) {
+ temp = analysBufferReal[l][k] >> -(int)preShift;
+ sumLine += fPow2Div2(temp);
+ temp = analysBufferImag[l][k] >> -(int)preShift;
+ sumLine += fPow2Div2(temp);
+ }
+ }
+ } else {
+ if (preShift >= 0) {
+ for (l = start_pos; l < next_pos; l++) {
+ temp = analysBufferReal[l][k] << (int)preShift;
+ sumLine += fPow2Div2(temp);
+ }
+ } else {
+ for (l = start_pos; l < next_pos; l++) {
+ temp = analysBufferReal[l][k] >> -(int)preShift;
+ sumLine += fPow2Div2(temp);
+ }
+ }
+ }
+
+ /* The number of QMF-channels per SBR bands may be up to 15.
+ Shift right to avoid overflows in sum over all channels. */
+ sumLine = sumLine >> (4 - 1);
+ sumAll += sumLine;
+ }
+
+ /* Convert double precision to Mantissa/Exponent: */
+ shift = fNorm(sumAll);
+ sum = sumAll << (int)shift;
+
+ /* Divide by width of envelope: */
+ sum = fMult(sum, invWidth);
+
+ /* Divide by width of Sfb: */
+ sum = fMult(sum, FX_DBL2FX_SGL(GetInvInt(ui - li)));
+
+ /* Set all Subband energies in the Sfb to the average energy: */
+ if (analysBufferImag != NULL)
+ sum_e = input_e + 4 - shift; /* -4 to compensate right-shift */
+ else
+ sum_e = input_e + 4 + 1 -
+ shift; /* -4 to compensate right-shift; +1 due to missing
+ imag. part */
+
+ sum_e -= 2 * preShift;
+ } /* maxVal!=0 */
+ else {
+ /* Prevent a zero-mantissa-number from being misinterpreted
+ due to its exponent. */
+ sum = FL2FXCONST_DBL(0.0f);
+ sum_e = 0;
+ }
+
+ for (k = li; k < ui; k++) {
+ *nrgEst++ = sum;
+ *nrgEst_e++ = sum_e;
+ }
+ }
+}
+
+/*!
+ \brief Calculate gain, noise, and additional sine level for one subband.
+
+ The resulting energy gain is given by mantissa and exponent.
+*/
+static void calcSubbandGain(
+ FIXP_DBL nrgRef, /*!< Reference Energy according to envelope data */
+ SCHAR
+ nrgRef_e, /*!< Reference Energy according to envelope data (exponent) */
+ ENV_CALC_NRGS *nrgs, int i, FIXP_DBL tmpNoise, /*!< Relative noise level */
+ SCHAR tmpNoise_e, /*!< Relative noise level (exponent) */
+ UCHAR sinePresentFlag, /*!< Indicates if sine is present on band */
+ UCHAR sineMapped, /*!< Indicates if sine must be added */
+ int noNoiseFlag) /*!< Flag to suppress noise addition */
+{
+ FIXP_DBL nrgEst = nrgs->nrgEst[i]; /*!< Energy in transposed signal */
+ SCHAR nrgEst_e =
+ nrgs->nrgEst_e[i]; /*!< Energy in transposed signal (exponent) */
+ FIXP_DBL *ptrNrgGain = &nrgs->nrgGain[i]; /*!< Resulting energy gain */
+ SCHAR *ptrNrgGain_e =
+ &nrgs->nrgGain_e[i]; /*!< Resulting energy gain (exponent) */
+ FIXP_DBL *ptrNoiseLevel =
+ &nrgs->noiseLevel[i]; /*!< Resulting absolute noise energy */
+ SCHAR *ptrNoiseLevel_e =
+ &nrgs->noiseLevel_e[i]; /*!< Resulting absolute noise energy (exponent) */
+ FIXP_DBL *ptrNrgSine = &nrgs->nrgSine[i]; /*!< Additional sine energy */
+ SCHAR *ptrNrgSine_e =
+ &nrgs->nrgSine_e[i]; /*!< Additional sine energy (exponent) */
+
+ FIXP_DBL a, b, c;
+ SCHAR a_e, b_e, c_e;
+
+ /*
+ This addition of 1 prevents divisions by zero in the reference code.
+ For very small energies in nrgEst, it prevents the gains from becoming
+ very high which could cause some trouble due to the smoothing.
+ */
+ b_e = (int)(nrgEst_e - 1);
+ if (b_e >= 0) {
+ nrgEst = (FL2FXCONST_DBL(0.5f) >> (INT)fixMin(b_e + 1, DFRACT_BITS - 1)) +
+ (nrgEst >> 1);
+ nrgEst_e += 1; /* shift by 1 bit to avoid overflow */
+
+ } else {
+ nrgEst = (nrgEst >> (INT)(fixMin(-b_e + 1, DFRACT_BITS - 1))) +
+ (FL2FXCONST_DBL(0.5f) >> 1);
+ nrgEst_e = 2; /* shift by 1 bit to avoid overflow */
+ }
+
+ /* A = NrgRef * TmpNoise */
+ a = fMult(nrgRef, tmpNoise);
+ a_e = nrgRef_e + tmpNoise_e;
+
+ /* B = 1 + TmpNoise */
+ b_e = (int)(tmpNoise_e - 1);
+ if (b_e >= 0) {
+ b = (FL2FXCONST_DBL(0.5f) >> (INT)fixMin(b_e + 1, DFRACT_BITS - 1)) +
+ (tmpNoise >> 1);
+ b_e = tmpNoise_e + 1; /* shift by 1 bit to avoid overflow */
+ } else {
+ b = (tmpNoise >> (INT)(fixMin(-b_e + 1, DFRACT_BITS - 1))) +
+ (FL2FXCONST_DBL(0.5f) >> 1);
+ b_e = 2; /* shift by 1 bit to avoid overflow */
+ }
+
+ /* noiseLevel = A / B = (NrgRef * TmpNoise) / (1 + TmpNoise) */
+ FDK_divide_MantExp(a, a_e, b, b_e, ptrNoiseLevel, ptrNoiseLevel_e);
+
+ if (sinePresentFlag) {
+ /* C = (1 + TmpNoise) * NrgEst */
+ c = fMult(b, nrgEst);
+ c_e = b_e + nrgEst_e;
+
+ /* gain = A / C = (NrgRef * TmpNoise) / (1 + TmpNoise) * NrgEst */
+ FDK_divide_MantExp(a, a_e, c, c_e, ptrNrgGain, ptrNrgGain_e);
+
+ if (sineMapped) {
+ /* sineLevel = nrgRef/ (1 + TmpNoise) */
+ FDK_divide_MantExp(nrgRef, nrgRef_e, b, b_e, ptrNrgSine, ptrNrgSine_e);
+ }
+ } else {
+ if (noNoiseFlag) {
+ /* B = NrgEst */
+ b = nrgEst;
+ b_e = nrgEst_e;
+ } else {
+ /* B = NrgEst * (1 + TmpNoise) */
+ b = fMult(b, nrgEst);
+ b_e = b_e + nrgEst_e;
+ }
+
+ /* gain = nrgRef / B */
+ FDK_divide_MantExp(nrgRef, nrgRef_e, b, b_e, ptrNrgGain, ptrNrgGain_e);
+ }
+}
+
+/*!
+ \brief Calculate "average gain" for the specified subband range.
+
+ This is rather a gain of the average magnitude than the average
+ of gains!
+ The result is used as a relative limit for all gains within the
+ current "limiter band" (a certain frequency range).
+*/
+static void calcAvgGain(
+ ENV_CALC_NRGS *nrgs, int lowSubband, /*!< Begin of the limiter band */
+ int highSubband, /*!< High end of the limiter band */
+ FIXP_DBL *ptrSumRef, SCHAR *ptrSumRef_e,
+ FIXP_DBL *ptrAvgGain, /*!< Resulting overall gain (mantissa) */
+ SCHAR *ptrAvgGain_e) /*!< Resulting overall gain (exponent) */
+{
+ FIXP_DBL *nrgRef =
+ nrgs->nrgRef; /*!< Reference Energy according to envelope data */
+ SCHAR *nrgRef_e =
+ nrgs->nrgRef_e; /*!< Reference Energy according to envelope data
+ (exponent) */
+ FIXP_DBL *nrgEst = nrgs->nrgEst; /*!< Energy in transposed signal */
+ SCHAR *nrgEst_e =
+ nrgs->nrgEst_e; /*!< Energy in transposed signal (exponent) */
+
+ FIXP_DBL sumRef = 1;
+ FIXP_DBL sumEst = 1;
+ SCHAR sumRef_e = -FRACT_BITS;
+ SCHAR sumEst_e = -FRACT_BITS;
+ int k;
+
+ for (k = lowSubband; k < highSubband; k++) {
+ /* Add nrgRef[k] to sumRef: */
+ FDK_add_MantExp(sumRef, sumRef_e, nrgRef[k], nrgRef_e[k], &sumRef,
+ &sumRef_e);
+
+ /* Add nrgEst[k] to sumEst: */
+ FDK_add_MantExp(sumEst, sumEst_e, nrgEst[k], nrgEst_e[k], &sumEst,
+ &sumEst_e);
+ }
+
+ FDK_divide_MantExp(sumRef, sumRef_e, sumEst, sumEst_e, ptrAvgGain,
+ ptrAvgGain_e);
+
+ *ptrSumRef = sumRef;
+ *ptrSumRef_e = sumRef_e;
+}
+
+static void adjustTimeSlot_EldGrid(
+ FIXP_DBL *RESTRICT
+ ptrReal, /*!< Subband samples to be adjusted, real part */
+ ENV_CALC_NRGS *nrgs, UCHAR *ptrHarmIndex, /*!< Harmonic index */
+ int lowSubband, /*!< Lowest QMF-channel in the currently used SBR range. */
+ int noSubbands, /*!< Number of QMF subbands */
+ int scale_change, /*!< Number of bits to shift adjusted samples */
+ int noNoiseFlag, /*!< Flag to suppress noise addition */
+ int *ptrPhaseIndex, /*!< Start index to random number array */
+ int scale_diff_low) /*!< */
+
+{
+ int k;
+ FIXP_DBL signalReal, sbNoise;
+ int tone_count = 0;
+
+ FIXP_DBL *pGain = nrgs->nrgGain; /*!< Gains of current envelope */
+ FIXP_DBL *RESTRICT pNoiseLevel =
+ nrgs->noiseLevel; /*!< Noise levels of current envelope */
+ FIXP_DBL *RESTRICT pSineLevel = nrgs->nrgSine; /*!< Sine levels */
+
+ int phaseIndex = *ptrPhaseIndex;
+ UCHAR harmIndex = *ptrHarmIndex;
+
+ static const INT harmonicPhase[4][2] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
+
+ static const FIXP_DBL harmonicPhaseX[4][2] = {
+ {FL2FXCONST_DBL(2.0 * 1.245183154539139e-001),
+ FL2FXCONST_DBL(2.0 * 1.245183154539139e-001)},
+ {FL2FXCONST_DBL(2.0 * -1.123767859325028e-001),
+ FL2FXCONST_DBL(2.0 * 1.123767859325028e-001)},
+ {FL2FXCONST_DBL(2.0 * -1.245183154539139e-001),
+ FL2FXCONST_DBL(2.0 * -1.245183154539139e-001)},
+ {FL2FXCONST_DBL(2.0 * 1.123767859325028e-001),
+ FL2FXCONST_DBL(2.0 * -1.123767859325028e-001)}};
+
+ const FIXP_DBL *p_harmonicPhaseX = &harmonicPhaseX[harmIndex][0];
+ const INT *p_harmonicPhase = &harmonicPhase[harmIndex][0];
+
+ *(ptrReal - 1) = fAddSaturate(
+ *(ptrReal - 1),
+ SATURATE_SHIFT(fMultDiv2(p_harmonicPhaseX[lowSubband & 1], pSineLevel[0]),
+ scale_diff_low, DFRACT_BITS));
+ FIXP_DBL pSineLevel_prev = (FIXP_DBL)0;
+
+ int idx_k = lowSubband & 1;
+
+ for (k = 0; k < noSubbands; k++) {
+ FIXP_DBL sineLevel_curr = *pSineLevel++;
+ phaseIndex = (phaseIndex + 1) & (SBR_NF_NO_RANDOM_VAL - 1);
+
+ signalReal = fMultDiv2(*ptrReal, *pGain++) << ((int)scale_change);
+ sbNoise = *pNoiseLevel++;
+ if (((INT)sineLevel_curr | noNoiseFlag) == 0) {
+ signalReal +=
+ (fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[phaseIndex][0], sbNoise)
+ << 4);
+ }
+ signalReal += sineLevel_curr * p_harmonicPhase[0];
+ signalReal =
+ fMultAddDiv2(signalReal, pSineLevel_prev, p_harmonicPhaseX[idx_k]);
+ pSineLevel_prev = sineLevel_curr;
+ idx_k = !idx_k;
+ if (k < noSubbands - 1) {
+ signalReal =
+ fMultAddDiv2(signalReal, pSineLevel[0], p_harmonicPhaseX[idx_k]);
+ } else /* (k == noSubbands - 1) */
+ {
+ if (k + lowSubband + 1 < 63) {
+ *(ptrReal + 1) += fMultDiv2(pSineLevel_prev, p_harmonicPhaseX[idx_k]);
+ }
+ }
+ *ptrReal++ = signalReal;
+
+ if (pSineLevel_prev != FL2FXCONST_DBL(0.0f)) {
+ if (++tone_count == 16) {
+ k++;
+ break;
+ }
+ }
+ }
+ /* Run again, if previous loop got breaked with tone_count = 16 */
+ for (; k < noSubbands; k++) {
+ FIXP_DBL sineLevel_curr = *pSineLevel++;
+ phaseIndex = (phaseIndex + 1) & (SBR_NF_NO_RANDOM_VAL - 1);
+
+ signalReal = fMultDiv2(*ptrReal, *pGain++) << ((int)scale_change);
+ sbNoise = *pNoiseLevel++;
+ if (((INT)sineLevel_curr | noNoiseFlag) == 0) {
+ signalReal +=
+ (fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[phaseIndex][0], sbNoise)
+ << 4);
+ }
+ signalReal += sineLevel_curr * p_harmonicPhase[0];
+ *ptrReal++ = signalReal;
+ }
+
+ *ptrHarmIndex = (harmIndex + 1) & 3;
+ *ptrPhaseIndex = phaseIndex & (SBR_NF_NO_RANDOM_VAL - 1);
+}
+
+/*!
+ \brief Amplify one timeslot of the signal with the calculated gains
+ and add the noisefloor.
+*/
+
+static void adjustTimeSlotLC(
+ FIXP_DBL *ptrReal, /*!< Subband samples to be adjusted, real part */
+ ENV_CALC_NRGS *nrgs, UCHAR *ptrHarmIndex, /*!< Harmonic index */
+ int lowSubband, /*!< Lowest QMF-channel in the currently used SBR range. */
+ int noSubbands, /*!< Number of QMF subbands */
+ int scale_change, /*!< Number of bits to shift adjusted samples */
+ int noNoiseFlag, /*!< Flag to suppress noise addition */
+ int *ptrPhaseIndex) /*!< Start index to random number array */
+{
+ FIXP_DBL *pGain = nrgs->nrgGain; /*!< Gains of current envelope */
+ FIXP_DBL *pNoiseLevel =
+ nrgs->noiseLevel; /*!< Noise levels of current envelope */
+ FIXP_DBL *pSineLevel = nrgs->nrgSine; /*!< Sine levels */
+
+ int k;
+ int index = *ptrPhaseIndex;
+ UCHAR harmIndex = *ptrHarmIndex;
+ UCHAR freqInvFlag = (lowSubband & 1);
+ FIXP_DBL signalReal, sineLevel, sineLevelNext, sineLevelPrev;
+ int tone_count = 0;
+ int sineSign = 1;
+
+#define C1 ((FIXP_SGL)FL2FXCONST_SGL(2.f * 0.00815f))
+#define C1_CLDFB ((FIXP_SGL)FL2FXCONST_SGL(2.f * 0.16773f))
+
+ /*
+ First pass for k=0 pulled out of the loop:
+ */
+
+ index = (index + 1) & (SBR_NF_NO_RANDOM_VAL - 1);
+
+ /*
+ The next multiplication constitutes the actual envelope adjustment
+ of the signal and should be carried out with full accuracy
+ (supplying #FRACT_BITS valid bits).
+ */
+ signalReal = fMultDiv2(*ptrReal, *pGain++) << ((int)scale_change);
+ sineLevel = *pSineLevel++;
+ sineLevelNext = (noSubbands > 1) ? pSineLevel[0] : FL2FXCONST_DBL(0.0f);
+
+ if (sineLevel != FL2FXCONST_DBL(0.0f))
+ tone_count++;
+ else if (!noNoiseFlag)
+ /* Add noisefloor to the amplified signal */
+ signalReal +=
+ (fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], pNoiseLevel[0])
+ << 4);
+
+ {
+ if (!(harmIndex & 0x1)) {
+ /* harmIndex 0,2 */
+ signalReal += (harmIndex & 0x2) ? -sineLevel : sineLevel;
+ *ptrReal++ = signalReal;
+ } else {
+ /* harmIndex 1,3 in combination with freqInvFlag */
+ int shift = (int)(scale_change + 1);
+ shift = (shift >= 0) ? fixMin(DFRACT_BITS - 1, shift)
+ : fixMax(-(DFRACT_BITS - 1), shift);
+
+ FIXP_DBL tmp1 = (shift >= 0) ? (fMultDiv2(C1, sineLevel) >> shift)
+ : (fMultDiv2(C1, sineLevel) << (-shift));
+ FIXP_DBL tmp2 = fMultDiv2(C1, sineLevelNext);
+
+ /* save switch and compare operations and reduce to XOR statement */
+ if (((harmIndex >> 1) & 0x1) ^ freqInvFlag) {
+ *(ptrReal - 1) += tmp1;
+ signalReal -= tmp2;
+ } else {
+ *(ptrReal - 1) -= tmp1;
+ signalReal += tmp2;
+ }
+ *ptrReal++ = signalReal;
+ freqInvFlag = !freqInvFlag;
+ }
+ }
+
+ pNoiseLevel++;
+
+ if (noSubbands > 2) {
+ if (!(harmIndex & 0x1)) {
+ /* harmIndex 0,2 */
+ if (!harmIndex) {
+ sineSign = 0;
+ }
+
+ for (k = noSubbands - 2; k != 0; k--) {
+ FIXP_DBL sinelevel = *pSineLevel++;
+ index++;
+ if (((signalReal = (sineSign ? -sinelevel : sinelevel)) ==
+ FL2FXCONST_DBL(0.0f)) &&
+ !noNoiseFlag) {
+ /* Add noisefloor to the amplified signal */
+ index &= (SBR_NF_NO_RANDOM_VAL - 1);
+ signalReal += (fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0],
+ pNoiseLevel[0])
+ << 4);
+ }
+
+ /* The next multiplication constitutes the actual envelope adjustment of
+ * the signal. */
+ signalReal += fMultDiv2(*ptrReal, *pGain++) << ((int)scale_change);
+
+ pNoiseLevel++;
+ *ptrReal++ = signalReal;
+ } /* for ... */
+ } else {
+ /* harmIndex 1,3 in combination with freqInvFlag */
+ if (harmIndex == 1) freqInvFlag = !freqInvFlag;
+
+ for (k = noSubbands - 2; k != 0; k--) {
+ index++;
+ /* The next multiplication constitutes the actual envelope adjustment of
+ * the signal. */
+ signalReal = fMultDiv2(*ptrReal, *pGain++) << ((int)scale_change);
+
+ if (*pSineLevel++ != FL2FXCONST_DBL(0.0f))
+ tone_count++;
+ else if (!noNoiseFlag) {
+ /* Add noisefloor to the amplified signal */
+ index &= (SBR_NF_NO_RANDOM_VAL - 1);
+ signalReal += (fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0],
+ pNoiseLevel[0])
+ << 4);
+ }
+
+ pNoiseLevel++;
+
+ if (tone_count <= 16) {
+ FIXP_DBL addSine = fMultDiv2((pSineLevel[-2] - pSineLevel[0]), C1);
+ signalReal += (freqInvFlag) ? (-addSine) : (addSine);
+ }
+
+ *ptrReal++ = signalReal;
+ freqInvFlag = !freqInvFlag;
+ } /* for ... */
+ }
+ }
+
+ if (noSubbands > -1) {
+ index++;
+ /* The next multiplication constitutes the actual envelope adjustment of the
+ * signal. */
+ signalReal = fMultDiv2(*ptrReal, *pGain) << ((int)scale_change);
+ sineLevelPrev = fMultDiv2(pSineLevel[-1], FL2FX_SGL(0.0163f));
+ sineLevel = pSineLevel[0];
+
+ if (pSineLevel[0] != FL2FXCONST_DBL(0.0f))
+ tone_count++;
+ else if (!noNoiseFlag) {
+ /* Add noisefloor to the amplified signal */
+ index &= (SBR_NF_NO_RANDOM_VAL - 1);
+ signalReal =
+ signalReal +
+ (fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], pNoiseLevel[0])
+ << 4);
+ }
+
+ if (!(harmIndex & 0x1)) {
+ /* harmIndex 0,2 */
+ *ptrReal = signalReal + ((sineSign) ? -sineLevel : sineLevel);
+ } else {
+ /* harmIndex 1,3 in combination with freqInvFlag */
+ if (tone_count <= 16) {
+ if (freqInvFlag) {
+ *ptrReal++ = signalReal - sineLevelPrev;
+ if (noSubbands + lowSubband < 63)
+ *ptrReal = *ptrReal + fMultDiv2(C1, sineLevel);
+ } else {
+ *ptrReal++ = signalReal + sineLevelPrev;
+ if (noSubbands + lowSubband < 63)
+ *ptrReal = *ptrReal - fMultDiv2(C1, sineLevel);
+ }
+ } else
+ *ptrReal = signalReal;
+ }
+ }
+ *ptrHarmIndex = (harmIndex + 1) & 3;
+ *ptrPhaseIndex = index & (SBR_NF_NO_RANDOM_VAL - 1);
+}
+
+static void adjustTimeSlotHQ_GainAndNoise(
+ FIXP_DBL *RESTRICT
+ ptrReal, /*!< Subband samples to be adjusted, real part */
+ FIXP_DBL *RESTRICT
+ ptrImag, /*!< Subband samples to be adjusted, imag part */
+ HANDLE_SBR_CALCULATE_ENVELOPE h_sbr_cal_env, ENV_CALC_NRGS *nrgs,
+ int lowSubband, /*!< Lowest QMF-channel in the currently used SBR range. */
+ int noSubbands, /*!< Number of QMF subbands */
+ int scale_change, /*!< Number of bits to shift adjusted samples */
+ FIXP_SGL smooth_ratio, /*!< Impact of last envelope */
+ int noNoiseFlag, /*!< Start index to random number array */
+ int filtBufferNoiseShift) /*!< Shift factor of filtBufferNoise */
+{
+ FIXP_DBL *RESTRICT gain = nrgs->nrgGain; /*!< Gains of current envelope */
+ FIXP_DBL *RESTRICT noiseLevel =
+ nrgs->noiseLevel; /*!< Noise levels of current envelope */
+ FIXP_DBL *RESTRICT pSineLevel = nrgs->nrgSine; /*!< Sine levels */
+
+ FIXP_DBL *RESTRICT filtBuffer =
+ h_sbr_cal_env->filtBuffer; /*!< Gains of last envelope */
+ FIXP_DBL *RESTRICT filtBufferNoise =
+ h_sbr_cal_env->filtBufferNoise; /*!< Noise levels of last envelope */
+ int *RESTRICT ptrPhaseIndex =
+ &h_sbr_cal_env->phaseIndex; /*!< Start index to random number array */
+
+ int k;
+ FIXP_DBL signalReal, signalImag;
+ FIXP_DBL noiseReal, noiseImag;
+ FIXP_DBL smoothedGain, smoothedNoise;
+ FIXP_SGL direct_ratio =
+ /*FL2FXCONST_SGL(1.0f) */ (FIXP_SGL)MAXVAL_SGL - smooth_ratio;
+ int index = *ptrPhaseIndex;
+ int shift;
+
+ *ptrPhaseIndex = (index + noSubbands) & (SBR_NF_NO_RANDOM_VAL - 1);
+
+ filtBufferNoiseShift +=
+ 1; /* due to later use of fMultDiv2 instead of fMult */
+ if (filtBufferNoiseShift < 0) {
+ shift = fixMin(DFRACT_BITS - 1, -filtBufferNoiseShift);
+ } else {
+ shift = fixMin(DFRACT_BITS - 1, filtBufferNoiseShift);
+ }
+
+ if (smooth_ratio > FL2FXCONST_SGL(0.0f)) {
+ for (k = 0; k < noSubbands; k++) {
+ /*
+ Smoothing: The old envelope has been bufferd and a certain ratio
+ of the old gains and noise levels is used.
+ */
+ smoothedGain =
+ fMult(smooth_ratio, filtBuffer[k]) + fMult(direct_ratio, gain[k]);
+
+ if (filtBufferNoiseShift < 0) {
+ smoothedNoise = (fMultDiv2(smooth_ratio, filtBufferNoise[k]) >> shift) +
+ fMult(direct_ratio, noiseLevel[k]);
+ } else {
+ smoothedNoise = (fMultDiv2(smooth_ratio, filtBufferNoise[k]) << shift) +
+ fMult(direct_ratio, noiseLevel[k]);
+ }
+
+ /*
+ The next 2 multiplications constitute the actual envelope adjustment
+ of the signal and should be carried out with full accuracy
+ (supplying #DFRACT_BITS valid bits).
+ */
+ signalReal = fMultDiv2(*ptrReal, smoothedGain) << ((int)scale_change);
+ signalImag = fMultDiv2(*ptrImag, smoothedGain) << ((int)scale_change);
+
+ index++;
+
+ if ((pSineLevel[k] != FL2FXCONST_DBL(0.0f)) || noNoiseFlag) {
+ /* Just the amplified signal is saved */
+ *ptrReal++ = signalReal;
+ *ptrImag++ = signalImag;
+ } else {
+ /* Add noisefloor to the amplified signal */
+ index &= (SBR_NF_NO_RANDOM_VAL - 1);
+ noiseReal =
+ fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], smoothedNoise)
+ << 4;
+ noiseImag =
+ fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][1], smoothedNoise)
+ << 4;
+ *ptrReal++ = (signalReal + noiseReal);
+ *ptrImag++ = (signalImag + noiseImag);
+ }
+ }
+ } else {
+ for (k = 0; k < noSubbands; k++) {
+ smoothedGain = gain[k];
+ signalReal = fMultDiv2(*ptrReal, smoothedGain) << scale_change;
+ signalImag = fMultDiv2(*ptrImag, smoothedGain) << scale_change;
+
+ index++;
+
+ if ((pSineLevel[k] == FL2FXCONST_DBL(0.0f)) && (noNoiseFlag == 0)) {
+ /* Add noisefloor to the amplified signal */
+ smoothedNoise = noiseLevel[k];
+ index &= (SBR_NF_NO_RANDOM_VAL - 1);
+ noiseReal =
+ fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], smoothedNoise);
+ noiseImag =
+ fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][1], smoothedNoise);
+
+ /* FDK_sbrDecoder_sbr_randomPhase is downscaled by 2^3 */
+ signalReal += noiseReal << 4;
+ signalImag += noiseImag << 4;
+ }
+ *ptrReal++ = signalReal;
+ *ptrImag++ = signalImag;
+ }
+ }
+}
+
+static void adjustTimeSlotHQ_AddHarmonics(
+ FIXP_DBL *RESTRICT
+ ptrReal, /*!< Subband samples to be adjusted, real part */
+ FIXP_DBL *RESTRICT
+ ptrImag, /*!< Subband samples to be adjusted, imag part */
+ HANDLE_SBR_CALCULATE_ENVELOPE h_sbr_cal_env, ENV_CALC_NRGS *nrgs,
+ int lowSubband, /*!< Lowest QMF-channel in the currently used SBR range. */
+ int noSubbands, /*!< Number of QMF subbands */
+ int scale_change /*!< Scale mismatch between QMF input and sineLevel
+ exponent. */
+) {
+ FIXP_DBL *RESTRICT pSineLevel = nrgs->nrgSine; /*!< Sine levels */
+ UCHAR *RESTRICT ptrHarmIndex =
+ &h_sbr_cal_env->harmIndex; /*!< Harmonic index */
+
+ int k;
+ FIXP_DBL signalReal, signalImag;
+ UCHAR harmIndex = *ptrHarmIndex;
+ int freqInvFlag = (lowSubband & 1);
+ FIXP_DBL sineLevel;
+
+ *ptrHarmIndex = (harmIndex + 1) & 3;
+
+ for (k = 0; k < noSubbands; k++) {
+ sineLevel = pSineLevel[k];
+ freqInvFlag ^= 1;
+ if (sineLevel != FL2FXCONST_DBL(0.f)) {
+ signalReal = ptrReal[k];
+ signalImag = ptrImag[k];
+ sineLevel = scaleValue(sineLevel, scale_change);
+ if (harmIndex & 2) {
+ /* case 2,3 */
+ sineLevel = -sineLevel;
+ }
+ if (!(harmIndex & 1)) {
+ /* case 0,2: */
+ ptrReal[k] = signalReal + sineLevel;
+ } else {
+ /* case 1,3 */
+ if (!freqInvFlag) sineLevel = -sineLevel;
+ ptrImag[k] = signalImag + sineLevel;
+ }
+ }
+ }
+}
+
+static void adjustTimeSlotHQ(
+ FIXP_DBL *RESTRICT
+ ptrReal, /*!< Subband samples to be adjusted, real part */
+ FIXP_DBL *RESTRICT
+ ptrImag, /*!< Subband samples to be adjusted, imag part */
+ HANDLE_SBR_CALCULATE_ENVELOPE h_sbr_cal_env, ENV_CALC_NRGS *nrgs,
+ int lowSubband, /*!< Lowest QMF-channel in the currently used SBR range. */
+ int noSubbands, /*!< Number of QMF subbands */
+ int scale_change, /*!< Number of bits to shift adjusted samples */
+ FIXP_SGL smooth_ratio, /*!< Impact of last envelope */
+ int noNoiseFlag, /*!< Start index to random number array */
+ int filtBufferNoiseShift) /*!< Shift factor of filtBufferNoise */
+{
+ FIXP_DBL *RESTRICT gain = nrgs->nrgGain; /*!< Gains of current envelope */
+ FIXP_DBL *RESTRICT noiseLevel =
+ nrgs->noiseLevel; /*!< Noise levels of current envelope */
+ FIXP_DBL *RESTRICT pSineLevel = nrgs->nrgSine; /*!< Sine levels */
+
+ FIXP_DBL *RESTRICT filtBuffer =
+ h_sbr_cal_env->filtBuffer; /*!< Gains of last envelope */
+ FIXP_DBL *RESTRICT filtBufferNoise =
+ h_sbr_cal_env->filtBufferNoise; /*!< Noise levels of last envelope */
+ UCHAR *RESTRICT ptrHarmIndex =
+ &h_sbr_cal_env->harmIndex; /*!< Harmonic index */
+ int *RESTRICT ptrPhaseIndex =
+ &h_sbr_cal_env->phaseIndex; /*!< Start index to random number array */
+
+ int k;
+ FIXP_DBL signalReal, signalImag;
+ FIXP_DBL noiseReal, noiseImag;
+ FIXP_DBL smoothedGain, smoothedNoise;
+ FIXP_SGL direct_ratio =
+ /*FL2FXCONST_SGL(1.0f) */ (FIXP_SGL)MAXVAL_SGL - smooth_ratio;
+ int index = *ptrPhaseIndex;
+ UCHAR harmIndex = *ptrHarmIndex;
+ int freqInvFlag = (lowSubband & 1);
+ FIXP_DBL sineLevel;
+ int shift;
+
+ *ptrPhaseIndex = (index + noSubbands) & (SBR_NF_NO_RANDOM_VAL - 1);
+ *ptrHarmIndex = (harmIndex + 1) & 3;
+
+ /*
+ Possible optimization:
+ smooth_ratio and harmIndex stay constant during the loop.
+ It might be faster to include a separate loop in each path.
+
+ the check for smooth_ratio is now outside the loop and the workload
+ of the whole function decreased by about 20 %
+ */
+
+ filtBufferNoiseShift +=
+ 1; /* due to later use of fMultDiv2 instead of fMult */
+ if (filtBufferNoiseShift < 0)
+ shift = fixMin(DFRACT_BITS - 1, -filtBufferNoiseShift);
+ else
+ shift = fixMin(DFRACT_BITS - 1, filtBufferNoiseShift);
+
+ if (smooth_ratio > FL2FXCONST_SGL(0.0f)) {
+ for (k = 0; k < noSubbands; k++) {
+ /*
+ Smoothing: The old envelope has been bufferd and a certain ratio
+ of the old gains and noise levels is used.
+ */
+
+ smoothedGain =
+ fMult(smooth_ratio, filtBuffer[k]) + fMult(direct_ratio, gain[k]);
+
+ if (filtBufferNoiseShift < 0) {
+ smoothedNoise = (fMultDiv2(smooth_ratio, filtBufferNoise[k]) >> shift) +
+ fMult(direct_ratio, noiseLevel[k]);
+ } else {
+ smoothedNoise = (fMultDiv2(smooth_ratio, filtBufferNoise[k]) << shift) +
+ fMult(direct_ratio, noiseLevel[k]);
+ }
+
+ /*
+ The next 2 multiplications constitute the actual envelope adjustment
+ of the signal and should be carried out with full accuracy
+ (supplying #DFRACT_BITS valid bits).
+ */
+ signalReal = fMultDiv2(*ptrReal, smoothedGain) << ((int)scale_change);
+ signalImag = fMultDiv2(*ptrImag, smoothedGain) << ((int)scale_change);
+
+ index++;
+
+ if (pSineLevel[k] != FL2FXCONST_DBL(0.0f)) {
+ sineLevel = pSineLevel[k];
+
+ switch (harmIndex) {
+ case 0:
+ *ptrReal++ = (signalReal + sineLevel);
+ *ptrImag++ = (signalImag);
+ break;
+ case 2:
+ *ptrReal++ = (signalReal - sineLevel);
+ *ptrImag++ = (signalImag);
+ break;
+ case 1:
+ *ptrReal++ = (signalReal);
+ if (freqInvFlag)
+ *ptrImag++ = (signalImag - sineLevel);
+ else
+ *ptrImag++ = (signalImag + sineLevel);
+ break;
+ case 3:
+ *ptrReal++ = signalReal;
+ if (freqInvFlag)
+ *ptrImag++ = (signalImag + sineLevel);
+ else
+ *ptrImag++ = (signalImag - sineLevel);
+ break;
+ }
+ } else {
+ if (noNoiseFlag) {
+ /* Just the amplified signal is saved */
+ *ptrReal++ = (signalReal);
+ *ptrImag++ = (signalImag);
+ } else {
+ /* Add noisefloor to the amplified signal */
+ index &= (SBR_NF_NO_RANDOM_VAL - 1);
+ /* FDK_sbrDecoder_sbr_randomPhase is downscaled by 2^3 */
+ noiseReal =
+ fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], smoothedNoise)
+ << 4;
+ noiseImag =
+ fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][1], smoothedNoise)
+ << 4;
+ *ptrReal++ = (signalReal + noiseReal);
+ *ptrImag++ = (signalImag + noiseImag);
+ }
+ }
+ freqInvFlag ^= 1;
+ }
+
+ } else {
+ for (k = 0; k < noSubbands; k++) {
+ smoothedGain = gain[k];
+ signalReal = fMultDiv2(*ptrReal, smoothedGain) << scale_change;
+ signalImag = fMultDiv2(*ptrImag, smoothedGain) << scale_change;
+
+ index++;
+
+ if ((sineLevel = pSineLevel[k]) != FL2FXCONST_DBL(0.0f)) {
+ switch (harmIndex) {
+ case 0:
+ signalReal += sineLevel;
+ break;
+ case 1:
+ if (freqInvFlag)
+ signalImag -= sineLevel;
+ else
+ signalImag += sineLevel;
+ break;
+ case 2:
+ signalReal -= sineLevel;
+ break;
+ case 3:
+ if (freqInvFlag)
+ signalImag += sineLevel;
+ else
+ signalImag -= sineLevel;
+ break;
+ }
+ } else {
+ if (noNoiseFlag == 0) {
+ /* Add noisefloor to the amplified signal */
+ smoothedNoise = noiseLevel[k];
+ index &= (SBR_NF_NO_RANDOM_VAL - 1);
+ noiseReal = fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0],
+ smoothedNoise);
+ noiseImag = fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][1],
+ smoothedNoise);
+
+ /* FDK_sbrDecoder_sbr_randomPhase is downscaled by 2^3 */
+ signalReal += noiseReal << 4;
+ signalImag += noiseImag << 4;
+ }
+ }
+ *ptrReal++ = signalReal;
+ *ptrImag++ = signalImag;
+
+ freqInvFlag ^= 1;
+ }
+ }
+}
+
+/*!
+ \brief Reset limiter bands.
+
+ Build frequency band table for the gain limiter dependent on
+ the previously generated transposer patch areas.
+
+ \return SBRDEC_OK if ok, SBRDEC_UNSUPPORTED_CONFIG on error
+*/
+SBR_ERROR
+ResetLimiterBands(
+ UCHAR *limiterBandTable, /*!< Resulting band borders in QMF channels */
+ UCHAR *noLimiterBands, /*!< Resulting number of limiter band */
+ UCHAR *freqBandTable, /*!< Table with possible band borders */
+ int noFreqBands, /*!< Number of bands in freqBandTable */
+ const PATCH_PARAM *patchParam, /*!< Transposer patch parameters */
+ int noPatches, /*!< Number of transposer patches */
+ int limiterBands, /*!< Selected 'band density' from bitstream */
+ UCHAR sbrPatchingMode, int xOverQmf[MAX_NUM_PATCHES], int b41Sbr) {
+ int i, k, isPatchBorder[2], loLimIndex, hiLimIndex, tempNoLim, nBands;
+ UCHAR workLimiterBandTable[MAX_FREQ_COEFFS / 2 + MAX_NUM_PATCHES + 1];
+ int patchBorders[MAX_NUM_PATCHES + 1];
+ int kx, k2;
+
+ int lowSubband = freqBandTable[0];
+ int highSubband = freqBandTable[noFreqBands];
+
+ /* 1 limiter band. */
+ if (limiterBands == 0) {
+ limiterBandTable[0] = 0;
+ limiterBandTable[1] = highSubband - lowSubband;
+ nBands = 1;
+ } else {
+ if (!sbrPatchingMode && xOverQmf != NULL) {
+ noPatches = 0;
+
+ if (b41Sbr == 1) {
+ for (i = 1; i < MAX_NUM_PATCHES_HBE; i++)
+ if (xOverQmf[i] != 0) noPatches++;
+ } else {
+ for (i = 1; i < MAX_STRETCH_HBE; i++)
+ if (xOverQmf[i] != 0) noPatches++;
+ }
+ for (i = 0; i < noPatches; i++) {
+ patchBorders[i] = xOverQmf[i] - lowSubband;
+ }
+ } else {
+ for (i = 0; i < noPatches; i++) {
+ patchBorders[i] = patchParam[i].guardStartBand - lowSubband;
+ }
+ }
+ patchBorders[i] = highSubband - lowSubband;
+
+ /* 1.2, 2, or 3 limiter bands/octave plus bandborders at patchborders. */
+ for (k = 0; k <= noFreqBands; k++) {
+ workLimiterBandTable[k] = freqBandTable[k] - lowSubband;
+ }
+ for (k = 1; k < noPatches; k++) {
+ workLimiterBandTable[noFreqBands + k] = patchBorders[k];
+ }
+
+ tempNoLim = nBands = noFreqBands + noPatches - 1;
+ shellsort(workLimiterBandTable, tempNoLim + 1);
+
+ loLimIndex = 0;
+ hiLimIndex = 1;
+
+ while (hiLimIndex <= tempNoLim) {
+ FIXP_DBL div_m, oct_m, temp;
+ INT div_e = 0, oct_e = 0, temp_e = 0;
+
+ k2 = workLimiterBandTable[hiLimIndex] + lowSubband;
+ kx = workLimiterBandTable[loLimIndex] + lowSubband;
+
+ div_m = fDivNorm(k2, kx, &div_e);
+
+ /* calculate number of octaves */
+ oct_m = fLog2(div_m, div_e, &oct_e);
+
+ /* multiply with limiterbands per octave */
+ /* values 1, 1.2, 2, 3 -> scale factor of 2 */
+ temp = fMultNorm(
+ oct_m, FDK_sbrDecoder_sbr_limiterBandsPerOctaveDiv4_DBL[limiterBands],
+ &temp_e);
+
+ /* overall scale factor of temp ist addition of scalefactors from log2
+ calculation, limiter bands scalefactor (2) and limiter bands
+ multiplication */
+ temp_e += oct_e + 2;
+
+ /* div can be a maximum of 64 (k2 = 64 and kx = 1)
+ -> oct can be a maximum of 6
+ -> temp can be a maximum of 18 (as limiterBandsPerOctoave is a maximum
+ factor of 3)
+ -> we need a scale factor of 5 for comparisson
+ */
+ if (temp >> (5 - temp_e) < FL2FXCONST_DBL(0.49f) >> 5) {
+ if (workLimiterBandTable[hiLimIndex] ==
+ workLimiterBandTable[loLimIndex]) {
+ workLimiterBandTable[hiLimIndex] = highSubband;
+ nBands--;
+ hiLimIndex++;
+ continue;
+ }
+ isPatchBorder[0] = isPatchBorder[1] = 0;
+ for (k = 0; k <= noPatches; k++) {
+ if (workLimiterBandTable[hiLimIndex] == patchBorders[k]) {
+ isPatchBorder[1] = 1;
+ break;
+ }
+ }
+ if (!isPatchBorder[1]) {
+ workLimiterBandTable[hiLimIndex] = highSubband;
+ nBands--;
+ hiLimIndex++;
+ continue;
+ }
+ for (k = 0; k <= noPatches; k++) {
+ if (workLimiterBandTable[loLimIndex] == patchBorders[k]) {
+ isPatchBorder[0] = 1;
+ break;
+ }
+ }
+ if (!isPatchBorder[0]) {
+ workLimiterBandTable[loLimIndex] = highSubband;
+ nBands--;
+ }
+ }
+ loLimIndex = hiLimIndex;
+ hiLimIndex++;
+ }
+ shellsort(workLimiterBandTable, tempNoLim + 1);
+
+ /* Test if algorithm exceeded maximum allowed limiterbands */
+ if (nBands > MAX_NUM_LIMITERS || nBands <= 0) {
+ return SBRDEC_UNSUPPORTED_CONFIG;
+ }
+
+ /* Copy limiterbands from working buffer into final destination */
+ for (k = 0; k <= nBands; k++) {
+ limiterBandTable[k] = workLimiterBandTable[k];
+ }
+ }
+ *noLimiterBands = nBands;
+
+ return SBRDEC_OK;
+}