summaryrefslogtreecommitdiffstats
path: root/fdk-aac/libFDK/src/scale.cpp
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2020-03-31 10:03:58 +0200
committerMatthias P. Braendli <matthias.braendli@mpb.li>2020-03-31 10:03:58 +0200
commita1eb6cf861d3c1cbd4e6c016be3cbd2a1e3d797d (patch)
tree2b4790eec8f47fb086e645717f07c53b30ace919 /fdk-aac/libFDK/src/scale.cpp
parent2f84a54ec1d10b10293c7b1f4ab9fee31f3c6327 (diff)
parentc6a73c219dbfdfe639372d9922f4eb512f06fa2f (diff)
downloadODR-AudioEnc-a1eb6cf861d3c1cbd4e6c016be3cbd2a1e3d797d.tar.gz
ODR-AudioEnc-a1eb6cf861d3c1cbd4e6c016be3cbd2a1e3d797d.tar.bz2
ODR-AudioEnc-a1eb6cf861d3c1cbd4e6c016be3cbd2a1e3d797d.zip
Merge GStreamer into next
Diffstat (limited to 'fdk-aac/libFDK/src/scale.cpp')
-rw-r--r--fdk-aac/libFDK/src/scale.cpp720
1 files changed, 720 insertions, 0 deletions
diff --git a/fdk-aac/libFDK/src/scale.cpp b/fdk-aac/libFDK/src/scale.cpp
new file mode 100644
index 0000000..24a8a5b
--- /dev/null
+++ b/fdk-aac/libFDK/src/scale.cpp
@@ -0,0 +1,720 @@
+/* -----------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
+
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------- */
+
+/******************* Library for basic calculation routines ********************
+
+ Author(s):
+
+ Description: Scaling operations
+
+*******************************************************************************/
+
+#include "common_fix.h"
+
+#include "genericStds.h"
+
+/**************************************************
+ * Inline definitions
+ **************************************************/
+
+#include "scale.h"
+
+#if defined(__mips__)
+#include "mips/scale_mips.cpp"
+
+#elif defined(__arm__)
+#include "arm/scale_arm.cpp"
+
+#endif
+
+#ifndef FUNCTION_scaleValues_SGL
+/*!
+ *
+ * \brief Multiply input vector by \f$ 2^{scalefactor} \f$
+ * \param len must be larger than 4
+ * \return void
+ *
+ */
+#define FUNCTION_scaleValues_SGL
+void scaleValues(FIXP_SGL *vector, /*!< Vector */
+ INT len, /*!< Length */
+ INT scalefactor /*!< Scalefactor */
+) {
+ INT i;
+
+ /* Return if scalefactor is Zero */
+ if (scalefactor == 0) return;
+
+ if (scalefactor > 0) {
+ scalefactor = fixmin_I(scalefactor, (INT)(FRACT_BITS - 1));
+ for (i = len & 3; i--;) {
+ *(vector++) <<= scalefactor;
+ }
+ for (i = len >> 2; i--;) {
+ *(vector++) <<= scalefactor;
+ *(vector++) <<= scalefactor;
+ *(vector++) <<= scalefactor;
+ *(vector++) <<= scalefactor;
+ }
+ } else {
+ INT negScalefactor = fixmin_I(-scalefactor, (INT)FRACT_BITS - 1);
+ for (i = len & 3; i--;) {
+ *(vector++) >>= negScalefactor;
+ }
+ for (i = len >> 2; i--;) {
+ *(vector++) >>= negScalefactor;
+ *(vector++) >>= negScalefactor;
+ *(vector++) >>= negScalefactor;
+ *(vector++) >>= negScalefactor;
+ }
+ }
+}
+#endif
+
+#ifndef FUNCTION_scaleValues_DBL
+/*!
+ *
+ * \brief Multiply input vector by \f$ 2^{scalefactor} \f$
+ * \param len must be larger than 4
+ * \return void
+ *
+ */
+#define FUNCTION_scaleValues_DBL
+SCALE_INLINE
+void scaleValues(FIXP_DBL *vector, /*!< Vector */
+ INT len, /*!< Length */
+ INT scalefactor /*!< Scalefactor */
+) {
+ INT i;
+
+ /* Return if scalefactor is Zero */
+ if (scalefactor == 0) return;
+
+ if (scalefactor > 0) {
+ scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1);
+ for (i = len & 3; i--;) {
+ *(vector++) <<= scalefactor;
+ }
+ for (i = len >> 2; i--;) {
+ *(vector++) <<= scalefactor;
+ *(vector++) <<= scalefactor;
+ *(vector++) <<= scalefactor;
+ *(vector++) <<= scalefactor;
+ }
+ } else {
+ INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1);
+ for (i = len & 3; i--;) {
+ *(vector++) >>= negScalefactor;
+ }
+ for (i = len >> 2; i--;) {
+ *(vector++) >>= negScalefactor;
+ *(vector++) >>= negScalefactor;
+ *(vector++) >>= negScalefactor;
+ *(vector++) >>= negScalefactor;
+ }
+ }
+}
+#endif
+
+#ifndef FUNCTION_scaleValuesSaturate_DBL
+/*!
+ *
+ * \brief Multiply input vector by \f$ 2^{scalefactor} \f$
+ * \param vector source/destination buffer
+ * \param len length of vector
+ * \param scalefactor amount of shifts to be applied
+ * \return void
+ *
+ */
+#define FUNCTION_scaleValuesSaturate_DBL
+SCALE_INLINE
+void scaleValuesSaturate(FIXP_DBL *vector, /*!< Vector */
+ INT len, /*!< Length */
+ INT scalefactor /*!< Scalefactor */
+) {
+ INT i;
+
+ /* Return if scalefactor is Zero */
+ if (scalefactor == 0) return;
+
+ scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1),
+ (INT) - (DFRACT_BITS - 1));
+
+ for (i = 0; i < len; i++) {
+ vector[i] = scaleValueSaturate(vector[i], scalefactor);
+ }
+}
+#endif /* FUNCTION_scaleValuesSaturate_DBL */
+
+#ifndef FUNCTION_scaleValuesSaturate_DBL_DBL
+/*!
+ *
+ * \brief Multiply input vector by \f$ 2^{scalefactor} \f$
+ * \param dst destination buffer
+ * \param src source buffer
+ * \param len length of vector
+ * \param scalefactor amount of shifts to be applied
+ * \return void
+ *
+ */
+#define FUNCTION_scaleValuesSaturate_DBL_DBL
+SCALE_INLINE
+void scaleValuesSaturate(FIXP_DBL *dst, /*!< Output */
+ FIXP_DBL *src, /*!< Input */
+ INT len, /*!< Length */
+ INT scalefactor /*!< Scalefactor */
+) {
+ INT i;
+
+ /* Return if scalefactor is Zero */
+ if (scalefactor == 0) {
+ FDKmemmove(dst, src, len * sizeof(FIXP_DBL));
+ return;
+ }
+
+ scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1),
+ (INT) - (DFRACT_BITS - 1));
+
+ for (i = 0; i < len; i++) {
+ dst[i] = scaleValueSaturate(src[i], scalefactor);
+ }
+}
+#endif /* FUNCTION_scaleValuesSaturate_DBL_DBL */
+
+#ifndef FUNCTION_scaleValuesSaturate_SGL_DBL
+/*!
+ *
+ * \brief Multiply input vector by \f$ 2^{scalefactor} \f$
+ * \param dst destination buffer (FIXP_SGL)
+ * \param src source buffer (FIXP_DBL)
+ * \param len length of vector
+ * \param scalefactor amount of shifts to be applied
+ * \return void
+ *
+ */
+#define FUNCTION_scaleValuesSaturate_SGL_DBL
+SCALE_INLINE
+void scaleValuesSaturate(FIXP_SGL *dst, /*!< Output */
+ FIXP_DBL *src, /*!< Input */
+ INT len, /*!< Length */
+ INT scalefactor) /*!< Scalefactor */
+{
+ INT i;
+ scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1),
+ (INT) - (DFRACT_BITS - 1));
+
+ for (i = 0; i < len; i++) {
+ dst[i] = FX_DBL2FX_SGL(fAddSaturate(scaleValueSaturate(src[i], scalefactor),
+ (FIXP_DBL)0x8000));
+ }
+}
+#endif /* FUNCTION_scaleValuesSaturate_SGL_DBL */
+
+#ifndef FUNCTION_scaleValuesSaturate_SGL
+/*!
+ *
+ * \brief Multiply input vector by \f$ 2^{scalefactor} \f$
+ * \param vector source/destination buffer
+ * \param len length of vector
+ * \param scalefactor amount of shifts to be applied
+ * \return void
+ *
+ */
+#define FUNCTION_scaleValuesSaturate_SGL
+SCALE_INLINE
+void scaleValuesSaturate(FIXP_SGL *vector, /*!< Vector */
+ INT len, /*!< Length */
+ INT scalefactor /*!< Scalefactor */
+) {
+ INT i;
+
+ /* Return if scalefactor is Zero */
+ if (scalefactor == 0) return;
+
+ scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1),
+ (INT) - (DFRACT_BITS - 1));
+
+ for (i = 0; i < len; i++) {
+ vector[i] = FX_DBL2FX_SGL(
+ scaleValueSaturate(FX_SGL2FX_DBL(vector[i]), scalefactor));
+ }
+}
+#endif /* FUNCTION_scaleValuesSaturate_SGL */
+
+#ifndef FUNCTION_scaleValuesSaturate_SGL_SGL
+/*!
+ *
+ * \brief Multiply input vector by \f$ 2^{scalefactor} \f$
+ * \param dst destination buffer
+ * \param src source buffer
+ * \param len length of vector
+ * \param scalefactor amount of shifts to be applied
+ * \return void
+ *
+ */
+#define FUNCTION_scaleValuesSaturate_SGL_SGL
+SCALE_INLINE
+void scaleValuesSaturate(FIXP_SGL *dst, /*!< Output */
+ FIXP_SGL *src, /*!< Input */
+ INT len, /*!< Length */
+ INT scalefactor /*!< Scalefactor */
+) {
+ INT i;
+
+ /* Return if scalefactor is Zero */
+ if (scalefactor == 0) {
+ FDKmemmove(dst, src, len * sizeof(FIXP_SGL));
+ return;
+ }
+
+ scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1),
+ (INT) - (DFRACT_BITS - 1));
+
+ for (i = 0; i < len; i++) {
+ dst[i] =
+ FX_DBL2FX_SGL(scaleValueSaturate(FX_SGL2FX_DBL(src[i]), scalefactor));
+ }
+}
+#endif /* FUNCTION_scaleValuesSaturate_SGL_SGL */
+
+#ifndef FUNCTION_scaleValues_DBLDBL
+/*!
+ *
+ * \brief Multiply input vector src by \f$ 2^{scalefactor} \f$
+ * and place result into dst
+ * \param dst detination buffer
+ * \param src source buffer
+ * \param len must be larger than 4
+ * \param scalefactor amount of left shifts to be applied
+ * \return void
+ *
+ */
+#define FUNCTION_scaleValues_DBLDBL
+SCALE_INLINE
+void scaleValues(FIXP_DBL *dst, /*!< dst Vector */
+ const FIXP_DBL *src, /*!< src Vector */
+ INT len, /*!< Length */
+ INT scalefactor /*!< Scalefactor */
+) {
+ INT i;
+
+ /* Return if scalefactor is Zero */
+ if (scalefactor == 0) {
+ if (dst != src) FDKmemmove(dst, src, len * sizeof(FIXP_DBL));
+ } else {
+ if (scalefactor > 0) {
+ scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1);
+ for (i = len & 3; i--;) {
+ *(dst++) = *(src++) << scalefactor;
+ }
+ for (i = len >> 2; i--;) {
+ *(dst++) = *(src++) << scalefactor;
+ *(dst++) = *(src++) << scalefactor;
+ *(dst++) = *(src++) << scalefactor;
+ *(dst++) = *(src++) << scalefactor;
+ }
+ } else {
+ INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1);
+ for (i = len & 3; i--;) {
+ *(dst++) = *(src++) >> negScalefactor;
+ }
+ for (i = len >> 2; i--;) {
+ *(dst++) = *(src++) >> negScalefactor;
+ *(dst++) = *(src++) >> negScalefactor;
+ *(dst++) = *(src++) >> negScalefactor;
+ *(dst++) = *(src++) >> negScalefactor;
+ }
+ }
+ }
+}
+#endif
+
+#if (SAMPLE_BITS == 16)
+#ifndef FUNCTION_scaleValues_PCMDBL
+/*!
+ *
+ * \brief Multiply input vector src by \f$ 2^{scalefactor} \f$
+ * and place result into dst
+ * \param dst detination buffer
+ * \param src source buffer
+ * \param len must be larger than 4
+ * \param scalefactor amount of left shifts to be applied
+ * \return void
+ *
+ */
+#define FUNCTION_scaleValues_PCMDBL
+SCALE_INLINE
+void scaleValues(FIXP_PCM *dst, /*!< dst Vector */
+ const FIXP_DBL *src, /*!< src Vector */
+ INT len, /*!< Length */
+ INT scalefactor /*!< Scalefactor */
+) {
+ INT i;
+
+ scalefactor -= DFRACT_BITS - SAMPLE_BITS;
+
+ /* Return if scalefactor is Zero */
+ {
+ if (scalefactor > 0) {
+ scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1);
+ for (i = len & 3; i--;) {
+ *(dst++) = (FIXP_PCM)(*(src++) << scalefactor);
+ }
+ for (i = len >> 2; i--;) {
+ *(dst++) = (FIXP_PCM)(*(src++) << scalefactor);
+ *(dst++) = (FIXP_PCM)(*(src++) << scalefactor);
+ *(dst++) = (FIXP_PCM)(*(src++) << scalefactor);
+ *(dst++) = (FIXP_PCM)(*(src++) << scalefactor);
+ }
+ } else {
+ INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1);
+ for (i = len & 3; i--;) {
+ *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor);
+ }
+ for (i = len >> 2; i--;) {
+ *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor);
+ *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor);
+ *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor);
+ *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor);
+ }
+ }
+ }
+}
+#endif
+#endif /* (SAMPLE_BITS == 16) */
+
+#ifndef FUNCTION_scaleValues_SGLSGL
+/*!
+ *
+ * \brief Multiply input vector src by \f$ 2^{scalefactor} \f$
+ * and place result into dst
+ * \param dst detination buffer
+ * \param src source buffer
+ * \param len must be larger than 4
+ * \param scalefactor amount of left shifts to be applied
+ * \return void
+ *
+ */
+#define FUNCTION_scaleValues_SGLSGL
+SCALE_INLINE
+void scaleValues(FIXP_SGL *dst, /*!< dst Vector */
+ const FIXP_SGL *src, /*!< src Vector */
+ INT len, /*!< Length */
+ INT scalefactor /*!< Scalefactor */
+) {
+ INT i;
+
+ /* Return if scalefactor is Zero */
+ if (scalefactor == 0) {
+ if (dst != src) FDKmemmove(dst, src, len * sizeof(FIXP_DBL));
+ } else {
+ if (scalefactor > 0) {
+ scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1);
+ for (i = len & 3; i--;) {
+ *(dst++) = *(src++) << scalefactor;
+ }
+ for (i = len >> 2; i--;) {
+ *(dst++) = *(src++) << scalefactor;
+ *(dst++) = *(src++) << scalefactor;
+ *(dst++) = *(src++) << scalefactor;
+ *(dst++) = *(src++) << scalefactor;
+ }
+ } else {
+ INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1);
+ for (i = len & 3; i--;) {
+ *(dst++) = *(src++) >> negScalefactor;
+ }
+ for (i = len >> 2; i--;) {
+ *(dst++) = *(src++) >> negScalefactor;
+ *(dst++) = *(src++) >> negScalefactor;
+ *(dst++) = *(src++) >> negScalefactor;
+ *(dst++) = *(src++) >> negScalefactor;
+ }
+ }
+ }
+}
+#endif
+
+#ifndef FUNCTION_scaleValuesWithFactor_DBL
+/*!
+ *
+ * \brief Multiply input vector by \f$ 2^{scalefactor} \f$
+ * \param len must be larger than 4
+ * \return void
+ *
+ */
+#define FUNCTION_scaleValuesWithFactor_DBL
+SCALE_INLINE
+void scaleValuesWithFactor(FIXP_DBL *vector, FIXP_DBL factor, INT len,
+ INT scalefactor) {
+ INT i;
+
+ /* Compensate fMultDiv2 */
+ scalefactor++;
+
+ if (scalefactor > 0) {
+ scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1);
+ for (i = len & 3; i--;) {
+ *vector = fMultDiv2(*vector, factor) << scalefactor;
+ vector++;
+ }
+ for (i = len >> 2; i--;) {
+ *vector = fMultDiv2(*vector, factor) << scalefactor;
+ vector++;
+ *vector = fMultDiv2(*vector, factor) << scalefactor;
+ vector++;
+ *vector = fMultDiv2(*vector, factor) << scalefactor;
+ vector++;
+ *vector = fMultDiv2(*vector, factor) << scalefactor;
+ vector++;
+ }
+ } else {
+ INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1);
+ for (i = len & 3; i--;) {
+ *vector = fMultDiv2(*vector, factor) >> negScalefactor;
+ vector++;
+ }
+ for (i = len >> 2; i--;) {
+ *vector = fMultDiv2(*vector, factor) >> negScalefactor;
+ vector++;
+ *vector = fMultDiv2(*vector, factor) >> negScalefactor;
+ vector++;
+ *vector = fMultDiv2(*vector, factor) >> negScalefactor;
+ vector++;
+ *vector = fMultDiv2(*vector, factor) >> negScalefactor;
+ vector++;
+ }
+ }
+}
+#endif /* FUNCTION_scaleValuesWithFactor_DBL */
+
+ /*******************************************
+
+ IMPORTANT NOTE for usage of getScalefactor()
+
+ If the input array contains negative values too, then these functions may
+ sometimes return the actual maximum value minus 1, due to the nature of the
+ applied algorithm. So be careful with possible fractional -1 values that may
+ lead to overflows when being fPow2()'ed.
+
+ ********************************************/
+
+#ifndef FUNCTION_getScalefactorShort
+/*!
+ *
+ * \brief Calculate max possible scale factor for input vector of shorts
+ *
+ * \return Maximum scale factor / possible left shift
+ *
+ */
+#define FUNCTION_getScalefactorShort
+SCALE_INLINE
+INT getScalefactorShort(const SHORT *vector, /*!< Pointer to input vector */
+ INT len /*!< Length of input vector */
+) {
+ INT i;
+ SHORT temp, maxVal = 0;
+
+ for (i = len; i != 0; i--) {
+ temp = (SHORT)(*vector++);
+ maxVal |= (temp ^ (temp >> (SHORT_BITS - 1)));
+ }
+
+ return fixmax_I((INT)0, (INT)(fixnormz_D((INT)maxVal) - (INT)1 -
+ (INT)(DFRACT_BITS - SHORT_BITS)));
+}
+#endif
+
+#ifndef FUNCTION_getScalefactorPCM
+/*!
+ *
+ * \brief Calculate max possible scale factor for input vector of shorts
+ *
+ * \return Maximum scale factor
+ *
+ */
+#define FUNCTION_getScalefactorPCM
+SCALE_INLINE
+INT getScalefactorPCM(const INT_PCM *vector, /*!< Pointer to input vector */
+ INT len, /*!< Length of input vector */
+ INT stride) {
+ INT i;
+ INT_PCM temp, maxVal = 0;
+
+ for (i = len; i != 0; i--) {
+ temp = (INT_PCM)(*vector);
+ vector += stride;
+ maxVal |= (temp ^ (temp >> ((sizeof(INT_PCM) * 8) - 1)));
+ }
+ return fixmax_I((INT)0, (INT)(fixnormz_D((INT)maxVal) - (INT)1 -
+ (INT)(DFRACT_BITS - SAMPLE_BITS)));
+}
+#endif
+
+#ifndef FUNCTION_getScalefactorShort
+/*!
+ *
+ * \brief Calculate max possible scale factor for input vector of shorts
+ * \param stride, item increment between vector members.
+ * \return Maximum scale factor
+ *
+ */
+#define FUNCTION_getScalefactorShort
+SCALE_INLINE
+INT getScalefactorShort(const SHORT *vector, /*!< Pointer to input vector */
+ INT len, /*!< Length of input vector */
+ INT stride) {
+ INT i;
+ SHORT temp, maxVal = 0;
+
+ for (i = len; i != 0; i--) {
+ temp = (SHORT)(*vector);
+ vector += stride;
+ maxVal |= (temp ^ (temp >> (SHORT_BITS - 1)));
+ }
+
+ return fixmax_I((INT)0, (INT)(fixnormz_D((INT)maxVal) - (INT)1 -
+ (INT)(DFRACT_BITS - SHORT_BITS)));
+}
+#endif
+
+#ifndef FUNCTION_getScalefactor_DBL
+/*!
+ *
+ * \brief Calculate max possible scale factor for input vector
+ *
+ * \return Maximum scale factor
+ *
+ * This function can constitute a significant amount of computational
+ * complexity - very much depending on the bitrate. Since it is a rather small
+ * function, effective assembler optimization might be possible.
+ *
+ * If all data is 0xFFFF.FFFF or 0x0000.0000 function returns 31
+ * Note: You can skip data normalization only if return value is 0
+ *
+ */
+#define FUNCTION_getScalefactor_DBL
+SCALE_INLINE
+INT getScalefactor(const FIXP_DBL *vector, /*!< Pointer to input vector */
+ INT len) /*!< Length of input vector */
+{
+ INT i;
+ FIXP_DBL temp, maxVal = (FIXP_DBL)0;
+
+ for (i = len; i != 0; i--) {
+ temp = (LONG)(*vector++);
+ maxVal |= (FIXP_DBL)((LONG)temp ^ (LONG)(temp >> (DFRACT_BITS - 1)));
+ }
+
+ return fixmax_I((INT)0, (INT)(fixnormz_D(maxVal) - 1));
+}
+#endif
+
+#ifndef FUNCTION_getScalefactor_SGL
+#define FUNCTION_getScalefactor_SGL
+SCALE_INLINE
+INT getScalefactor(const FIXP_SGL *vector, /*!< Pointer to input vector */
+ INT len) /*!< Length of input vector */
+{
+ INT i;
+ SHORT temp, maxVal = (FIXP_SGL)0;
+
+ for (i = len; i != 0; i--) {
+ temp = (SHORT)(*vector++);
+ maxVal |= (temp ^ (temp >> (FRACT_BITS - 1)));
+ }
+
+ return fixmax_I((INT)0, (INT)(fixnormz_S((FIXP_SGL)maxVal)) - 1);
+}
+#endif