aboutsummaryrefslogtreecommitdiffstats
path: root/fdk-aac/libFDK/src/qmf.cpp
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2020-03-31 10:03:58 +0200
committerMatthias P. Braendli <matthias.braendli@mpb.li>2020-03-31 10:03:58 +0200
commita1eb6cf861d3c1cbd4e6c016be3cbd2a1e3d797d (patch)
tree2b4790eec8f47fb086e645717f07c53b30ace919 /fdk-aac/libFDK/src/qmf.cpp
parent2f84a54ec1d10b10293c7b1f4ab9fee31f3c6327 (diff)
parentc6a73c219dbfdfe639372d9922f4eb512f06fa2f (diff)
downloadODR-AudioEnc-a1eb6cf861d3c1cbd4e6c016be3cbd2a1e3d797d.tar.gz
ODR-AudioEnc-a1eb6cf861d3c1cbd4e6c016be3cbd2a1e3d797d.tar.bz2
ODR-AudioEnc-a1eb6cf861d3c1cbd4e6c016be3cbd2a1e3d797d.zip
Merge GStreamer into next
Diffstat (limited to 'fdk-aac/libFDK/src/qmf.cpp')
-rw-r--r--fdk-aac/libFDK/src/qmf.cpp1135
1 files changed, 1135 insertions, 0 deletions
diff --git a/fdk-aac/libFDK/src/qmf.cpp b/fdk-aac/libFDK/src/qmf.cpp
new file mode 100644
index 0000000..6fca043
--- /dev/null
+++ b/fdk-aac/libFDK/src/qmf.cpp
@@ -0,0 +1,1135 @@
+/* -----------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
+
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------- */
+
+/******************* Library for basic calculation routines ********************
+
+ Author(s): Markus Lohwasser, Josef Hoepfl, Manuel Jander
+
+ Description: QMF filterbank
+
+*******************************************************************************/
+
+/*!
+ \file
+ \brief Complex qmf analysis/synthesis
+ This module contains the qmf filterbank for analysis [
+ cplxAnalysisQmfFiltering() ] and synthesis [ cplxSynthesisQmfFiltering() ]. It
+ is a polyphase implementation of a complex exponential modulated filter bank.
+ The analysis part usually runs at half the sample rate than the synthesis
+ part. (So called "dual-rate" mode.)
+
+ The coefficients of the prototype filter are specified in #qmf_pfilt640 (in
+ sbr_rom.cpp). Thus only a 64 channel version (32 on the analysis side) with a
+ 640 tap prototype filter are used.
+
+ \anchor PolyphaseFiltering <h2>About polyphase filtering</h2>
+ The polyphase implementation of a filterbank requires filtering at the input
+ and output. This is implemented as part of cplxAnalysisQmfFiltering() and
+ cplxSynthesisQmfFiltering(). The implementation requires the filter
+ coefficients in a specific structure as described in #sbr_qmf_64_640_qmf (in
+ sbr_rom.cpp).
+
+ This module comprises the computationally most expensive functions of the SBR
+ decoder. The accuracy of computations is also important and has a direct
+ impact on the overall sound quality. Therefore a special test program is
+ available which can be used to only test the filterbank: main_audio.cpp
+
+ This modules also uses scaling of data to provide better SNR on fixed-point
+ processors. See #QMF_SCALE_FACTOR (in sbr_scale.h) for details. An interesting
+ note: The function getScalefactor() can constitute a significant amount of
+ computational complexity - very much depending on the bitrate. Since it is a
+ rather small function, effective assembler optimization might be possible.
+
+*/
+
+#include "qmf.h"
+
+#include "FDK_trigFcts.h"
+#include "fixpoint_math.h"
+#include "dct.h"
+
+#define QSSCALE (0)
+#define FX_DBL2FX_QSS(x) (x)
+#define FX_QSS2FX_DBL(x) (x)
+
+/* moved to qmf_pcm.h: -> qmfSynPrototypeFirSlot */
+/* moved to qmf_pcm.h: -> qmfSynPrototypeFirSlot_NonSymmetric */
+/* moved to qmf_pcm.h: -> qmfSynthesisFilteringSlot */
+
+#ifndef FUNCTION_qmfAnaPrototypeFirSlot
+/*!
+ \brief Perform Analysis Prototype Filtering on a single slot of input data.
+*/
+static void qmfAnaPrototypeFirSlot(
+ FIXP_DBL *analysisBuffer,
+ INT no_channels, /*!< Number channels of analysis filter */
+ const FIXP_PFT *p_filter, INT p_stride, /*!< Stride of analysis filter */
+ FIXP_QAS *RESTRICT pFilterStates) {
+ INT k;
+
+ FIXP_DBL accu;
+ const FIXP_PFT *RESTRICT p_flt = p_filter;
+ FIXP_DBL *RESTRICT pData_0 = analysisBuffer + 2 * no_channels - 1;
+ FIXP_DBL *RESTRICT pData_1 = analysisBuffer;
+
+ FIXP_QAS *RESTRICT sta_0 = (FIXP_QAS *)pFilterStates;
+ FIXP_QAS *RESTRICT sta_1 =
+ (FIXP_QAS *)pFilterStates + (2 * QMF_NO_POLY * no_channels) - 1;
+ INT pfltStep = QMF_NO_POLY * (p_stride);
+ INT staStep1 = no_channels << 1;
+ INT staStep2 = (no_channels << 3) - 1; /* Rewind one less */
+
+ /* FIR filters 127..64 0..63 */
+ for (k = 0; k < no_channels; k++) {
+ accu = fMultDiv2(p_flt[0], *sta_1);
+ sta_1 -= staStep1;
+ accu += fMultDiv2(p_flt[1], *sta_1);
+ sta_1 -= staStep1;
+ accu += fMultDiv2(p_flt[2], *sta_1);
+ sta_1 -= staStep1;
+ accu += fMultDiv2(p_flt[3], *sta_1);
+ sta_1 -= staStep1;
+ accu += fMultDiv2(p_flt[4], *sta_1);
+ *pData_1++ = (accu << 1);
+ sta_1 += staStep2;
+
+ p_flt += pfltStep;
+ accu = fMultDiv2(p_flt[0], *sta_0);
+ sta_0 += staStep1;
+ accu += fMultDiv2(p_flt[1], *sta_0);
+ sta_0 += staStep1;
+ accu += fMultDiv2(p_flt[2], *sta_0);
+ sta_0 += staStep1;
+ accu += fMultDiv2(p_flt[3], *sta_0);
+ sta_0 += staStep1;
+ accu += fMultDiv2(p_flt[4], *sta_0);
+ *pData_0-- = (accu << 1);
+ sta_0 -= staStep2;
+ }
+}
+#endif /* !defined(FUNCTION_qmfAnaPrototypeFirSlot) */
+
+#ifndef FUNCTION_qmfAnaPrototypeFirSlot_NonSymmetric
+/*!
+ \brief Perform Analysis Prototype Filtering on a single slot of input data.
+*/
+static void qmfAnaPrototypeFirSlot_NonSymmetric(
+ FIXP_DBL *analysisBuffer,
+ int no_channels, /*!< Number channels of analysis filter */
+ const FIXP_PFT *p_filter, int p_stride, /*!< Stride of analysis filter */
+ FIXP_QAS *RESTRICT pFilterStates) {
+ const FIXP_PFT *RESTRICT p_flt = p_filter;
+ int p, k;
+
+ for (k = 0; k < 2 * no_channels; k++) {
+ FIXP_DBL accu = (FIXP_DBL)0;
+
+ p_flt += QMF_NO_POLY * (p_stride - 1);
+
+ /*
+ Perform FIR-Filter
+ */
+ for (p = 0; p < QMF_NO_POLY; p++) {
+ accu += fMultDiv2(*p_flt++, pFilterStates[2 * no_channels * p]);
+ }
+ analysisBuffer[2 * no_channels - 1 - k] = (accu << 1);
+ pFilterStates++;
+ }
+}
+#endif /* FUNCTION_qmfAnaPrototypeFirSlot_NonSymmetric */
+
+/*!
+ *
+ * \brief Perform real-valued forward modulation of the time domain
+ * data of timeIn and stores the real part of the subband
+ * samples in rSubband
+ *
+ */
+static void qmfForwardModulationLP_even(
+ HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank */
+ FIXP_DBL *timeIn, /*!< Time Signal */
+ FIXP_DBL *rSubband) /*!< Real Output */
+{
+ int i;
+ int L = anaQmf->no_channels;
+ int M = L >> 1;
+ int scale;
+ FIXP_DBL accu;
+
+ const FIXP_DBL *timeInTmp1 = (FIXP_DBL *)&timeIn[3 * M];
+ const FIXP_DBL *timeInTmp2 = timeInTmp1;
+ FIXP_DBL *rSubbandTmp = rSubband;
+
+ rSubband[0] = timeIn[3 * M] >> 1;
+
+ for (i = M - 1; i != 0; i--) {
+ accu = ((*--timeInTmp1) >> 1) + ((*++timeInTmp2) >> 1);
+ *++rSubbandTmp = accu;
+ }
+
+ timeInTmp1 = &timeIn[2 * M];
+ timeInTmp2 = &timeIn[0];
+ rSubbandTmp = &rSubband[M];
+
+ for (i = L - M; i != 0; i--) {
+ accu = ((*timeInTmp1--) >> 1) - ((*timeInTmp2++) >> 1);
+ *rSubbandTmp++ = accu;
+ }
+
+ dct_III(rSubband, timeIn, L, &scale);
+}
+
+#if !defined(FUNCTION_qmfForwardModulationLP_odd)
+static void qmfForwardModulationLP_odd(
+ HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank */
+ const FIXP_DBL *timeIn, /*!< Time Signal */
+ FIXP_DBL *rSubband) /*!< Real Output */
+{
+ int i;
+ int L = anaQmf->no_channels;
+ int M = L >> 1;
+ int shift = (anaQmf->no_channels >> 6) + 1;
+
+ for (i = 0; i < M; i++) {
+ rSubband[M + i] = (timeIn[L - 1 - i] >> 1) - (timeIn[i] >> shift);
+ rSubband[M - 1 - i] =
+ (timeIn[L + i] >> 1) + (timeIn[2 * L - 1 - i] >> shift);
+ }
+
+ dct_IV(rSubband, L, &shift);
+}
+#endif /* !defined(FUNCTION_qmfForwardModulationLP_odd) */
+
+/*!
+ *
+ * \brief Perform complex-valued forward modulation of the time domain
+ * data of timeIn and stores the real part of the subband
+ * samples in rSubband, and the imaginary part in iSubband
+ *
+ *
+ */
+#if !defined(FUNCTION_qmfForwardModulationHQ)
+static void qmfForwardModulationHQ(
+ HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank */
+ const FIXP_DBL *RESTRICT timeIn, /*!< Time Signal */
+ FIXP_DBL *RESTRICT rSubband, /*!< Real Output */
+ FIXP_DBL *RESTRICT iSubband /*!< Imaginary Output */
+) {
+ int i;
+ int L = anaQmf->no_channels;
+ int L2 = L << 1;
+ int shift = 0;
+
+ /* Time advance by one sample, which is equivalent to the complex
+ rotation at the end of the analysis. Works only for STD mode. */
+ if ((L == 64) && !(anaQmf->flags & (QMF_FLAG_CLDFB | QMF_FLAG_MPSLDFB))) {
+ FIXP_DBL x, y;
+
+ /*rSubband[0] = u[1] + u[0]*/
+ /*iSubband[0] = u[1] - u[0]*/
+ x = timeIn[1] >> 1;
+ y = timeIn[0];
+ rSubband[0] = x + (y >> 1);
+ iSubband[0] = x - (y >> 1);
+
+ /*rSubband[n] = u[n+1] - u[2M-n], n=1,...,M-1*/
+ /*iSubband[n] = u[n+1] + u[2M-n], n=1,...,M-1*/
+ for (i = 1; i < L; i++) {
+ x = timeIn[i + 1] >> 1; /*u[n+1] */
+ y = timeIn[L2 - i]; /*u[2M-n] */
+ rSubband[i] = x - (y >> 1);
+ iSubband[i] = x + (y >> 1);
+ }
+ } else {
+ for (i = 0; i < L; i += 2) {
+ FIXP_DBL x0, x1, y0, y1;
+
+ x0 = timeIn[i + 0] >> 1;
+ x1 = timeIn[i + 1] >> 1;
+ y0 = timeIn[L2 - 1 - i];
+ y1 = timeIn[L2 - 2 - i];
+
+ rSubband[i + 0] = x0 - (y0 >> 1);
+ rSubband[i + 1] = x1 - (y1 >> 1);
+ iSubband[i + 0] = x0 + (y0 >> 1);
+ iSubband[i + 1] = x1 + (y1 >> 1);
+ }
+ }
+
+ dct_IV(rSubband, L, &shift);
+ dst_IV(iSubband, L, &shift);
+
+ /* Do the complex rotation except for the case of 64 bands (in STD mode). */
+ if ((L != 64) || (anaQmf->flags & (QMF_FLAG_CLDFB | QMF_FLAG_MPSLDFB))) {
+ if (anaQmf->flags & QMF_FLAG_MPSLDFB_OPTIMIZE_MODULATION) {
+ FIXP_DBL iBand;
+ for (i = 0; i < fMin(anaQmf->lsb, L); i += 2) {
+ iBand = rSubband[i];
+ rSubband[i] = -iSubband[i];
+ iSubband[i] = iBand;
+
+ iBand = -rSubband[i + 1];
+ rSubband[i + 1] = iSubband[i + 1];
+ iSubband[i + 1] = iBand;
+ }
+ } else {
+ const FIXP_QTW *sbr_t_cos;
+ const FIXP_QTW *sbr_t_sin;
+ const int len = L; /* was len = fMin(anaQmf->lsb, L) but in case of USAC
+ the signal above lsb is actually needed in some
+ cases (HBE?) */
+ sbr_t_cos = anaQmf->t_cos;
+ sbr_t_sin = anaQmf->t_sin;
+
+ for (i = 0; i < len; i++) {
+ cplxMult(&iSubband[i], &rSubband[i], iSubband[i], rSubband[i],
+ sbr_t_cos[i], sbr_t_sin[i]);
+ }
+ }
+ }
+}
+#endif /* FUNCTION_qmfForwardModulationHQ */
+
+/*
+ * \brief Perform one QMF slot analysis of the time domain data of timeIn
+ * with specified stride and stores the real part of the subband
+ * samples in rSubband, and the imaginary part in iSubband
+ *
+ * Note: anaQmf->lsb can be greater than anaQmf->no_channels in case
+ * of implicit resampling (USAC with reduced 3/4 core frame length).
+ */
+#if (SAMPLE_BITS != DFRACT_BITS) && (QAS_BITS == DFRACT_BITS)
+void qmfAnalysisFilteringSlot(
+ HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Synthesis Bank */
+ FIXP_DBL *qmfReal, /*!< Low and High band, real */
+ FIXP_DBL *qmfImag, /*!< Low and High band, imag */
+ const LONG *RESTRICT timeIn, /*!< Pointer to input */
+ const int stride, /*!< stride factor of input */
+ FIXP_DBL *pWorkBuffer /*!< pointer to temporal working buffer */
+) {
+ int offset = anaQmf->no_channels * (QMF_NO_POLY * 2 - 1);
+ /*
+ Feed time signal into oldest anaQmf->no_channels states
+ */
+ {
+ FIXP_DBL *FilterStatesAnaTmp = ((FIXP_DBL *)anaQmf->FilterStates) + offset;
+
+ /* Feed and scale actual time in slot */
+ for (int i = anaQmf->no_channels >> 1; i != 0; i--) {
+ /* Place INT_PCM value left aligned in scaledTimeIn */
+
+ *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
+ timeIn += stride;
+ *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
+ timeIn += stride;
+ }
+ }
+
+ if (anaQmf->flags & QMF_FLAG_NONSYMMETRIC) {
+ qmfAnaPrototypeFirSlot_NonSymmetric(pWorkBuffer, anaQmf->no_channels,
+ anaQmf->p_filter, anaQmf->p_stride,
+ (FIXP_QAS *)anaQmf->FilterStates);
+ } else {
+ qmfAnaPrototypeFirSlot(pWorkBuffer, anaQmf->no_channels, anaQmf->p_filter,
+ anaQmf->p_stride, (FIXP_QAS *)anaQmf->FilterStates);
+ }
+
+ if (anaQmf->flags & QMF_FLAG_LP) {
+ if (anaQmf->flags & QMF_FLAG_CLDFB)
+ qmfForwardModulationLP_odd(anaQmf, pWorkBuffer, qmfReal);
+ else
+ qmfForwardModulationLP_even(anaQmf, pWorkBuffer, qmfReal);
+
+ } else {
+ qmfForwardModulationHQ(anaQmf, pWorkBuffer, qmfReal, qmfImag);
+ }
+ /*
+ Shift filter states
+
+ Should be realized with modulo adressing on a DSP instead of a true buffer
+ shift
+ */
+ FDKmemmove(anaQmf->FilterStates,
+ (FIXP_QAS *)anaQmf->FilterStates + anaQmf->no_channels,
+ offset * sizeof(FIXP_QAS));
+}
+#endif
+
+void qmfAnalysisFilteringSlot(
+ HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Synthesis Bank */
+ FIXP_DBL *qmfReal, /*!< Low and High band, real */
+ FIXP_DBL *qmfImag, /*!< Low and High band, imag */
+ const INT_PCM *RESTRICT timeIn, /*!< Pointer to input */
+ const int stride, /*!< stride factor of input */
+ FIXP_DBL *pWorkBuffer /*!< pointer to temporal working buffer */
+) {
+ int offset = anaQmf->no_channels * (QMF_NO_POLY * 2 - 1);
+ /*
+ Feed time signal into oldest anaQmf->no_channels states
+ */
+ {
+ FIXP_QAS *FilterStatesAnaTmp = ((FIXP_QAS *)anaQmf->FilterStates) + offset;
+
+ /* Feed and scale actual time in slot */
+ for (int i = anaQmf->no_channels >> 1; i != 0; i--) {
+ /* Place INT_PCM value left aligned in scaledTimeIn */
+#if (QAS_BITS == SAMPLE_BITS)
+ *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
+ timeIn += stride;
+ *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
+ timeIn += stride;
+#elif (QAS_BITS > SAMPLE_BITS)
+ *FilterStatesAnaTmp++ = ((FIXP_QAS)*timeIn) << (QAS_BITS - SAMPLE_BITS);
+ timeIn += stride;
+ *FilterStatesAnaTmp++ = ((FIXP_QAS)*timeIn) << (QAS_BITS - SAMPLE_BITS);
+ timeIn += stride;
+#else
+ *FilterStatesAnaTmp++ = (FIXP_QAS)((*timeIn) >> (SAMPLE_BITS - QAS_BITS));
+ timeIn += stride;
+ *FilterStatesAnaTmp++ = (FIXP_QAS)((*timeIn) >> (SAMPLE_BITS - QAS_BITS));
+ timeIn += stride;
+#endif
+ }
+ }
+
+ if (anaQmf->flags & QMF_FLAG_NONSYMMETRIC) {
+ qmfAnaPrototypeFirSlot_NonSymmetric(pWorkBuffer, anaQmf->no_channels,
+ anaQmf->p_filter, anaQmf->p_stride,
+ (FIXP_QAS *)anaQmf->FilterStates);
+ } else {
+ qmfAnaPrototypeFirSlot(pWorkBuffer, anaQmf->no_channels, anaQmf->p_filter,
+ anaQmf->p_stride, (FIXP_QAS *)anaQmf->FilterStates);
+ }
+
+ if (anaQmf->flags & QMF_FLAG_LP) {
+ if (anaQmf->flags & QMF_FLAG_CLDFB)
+ qmfForwardModulationLP_odd(anaQmf, pWorkBuffer, qmfReal);
+ else
+ qmfForwardModulationLP_even(anaQmf, pWorkBuffer, qmfReal);
+
+ } else {
+ qmfForwardModulationHQ(anaQmf, pWorkBuffer, qmfReal, qmfImag);
+ }
+ /*
+ Shift filter states
+
+ Should be realized with modulo adressing on a DSP instead of a true buffer
+ shift
+ */
+ FDKmemmove(anaQmf->FilterStates,
+ (FIXP_QAS *)anaQmf->FilterStates + anaQmf->no_channels,
+ offset * sizeof(FIXP_QAS));
+}
+
+/*!
+ *
+ * \brief Perform complex-valued subband filtering of the time domain
+ * data of timeIn and stores the real part of the subband
+ * samples in rAnalysis, and the imaginary part in iAnalysis
+ * The qmf coefficient table is symmetric. The symmetry is expoited by
+ * shrinking the coefficient table to half the size. The addressing mode
+ * takes care of the symmetries.
+ *
+ *
+ * \sa PolyphaseFiltering
+ */
+#if (SAMPLE_BITS != DFRACT_BITS) && (QAS_BITS == DFRACT_BITS)
+void qmfAnalysisFiltering(
+ HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank */
+ FIXP_DBL **qmfReal, /*!< Pointer to real subband slots */
+ FIXP_DBL **qmfImag, /*!< Pointer to imag subband slots */
+ QMF_SCALE_FACTOR *scaleFactor, const LONG *timeIn, /*!< Time signal */
+ const int timeIn_e, const int stride,
+ FIXP_DBL *pWorkBuffer /*!< pointer to temporal working buffer */
+) {
+ int i;
+ int no_channels = anaQmf->no_channels;
+
+ scaleFactor->lb_scale =
+ -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK - timeIn_e;
+ scaleFactor->lb_scale -= anaQmf->filterScale;
+
+ for (i = 0; i < anaQmf->no_col; i++) {
+ FIXP_DBL *qmfImagSlot = NULL;
+
+ if (!(anaQmf->flags & QMF_FLAG_LP)) {
+ qmfImagSlot = qmfImag[i];
+ }
+
+ qmfAnalysisFilteringSlot(anaQmf, qmfReal[i], qmfImagSlot, timeIn, stride,
+ pWorkBuffer);
+
+ timeIn += no_channels * stride;
+
+ } /* no_col loop i */
+}
+#endif
+
+void qmfAnalysisFiltering(
+ HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank */
+ FIXP_DBL **qmfReal, /*!< Pointer to real subband slots */
+ FIXP_DBL **qmfImag, /*!< Pointer to imag subband slots */
+ QMF_SCALE_FACTOR *scaleFactor, const INT_PCM *timeIn, /*!< Time signal */
+ const int timeIn_e, const int stride,
+ FIXP_DBL *pWorkBuffer /*!< pointer to temporal working buffer */
+) {
+ int i;
+ int no_channels = anaQmf->no_channels;
+
+ scaleFactor->lb_scale =
+ -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK - timeIn_e;
+ scaleFactor->lb_scale -= anaQmf->filterScale;
+
+ for (i = 0; i < anaQmf->no_col; i++) {
+ FIXP_DBL *qmfImagSlot = NULL;
+
+ if (!(anaQmf->flags & QMF_FLAG_LP)) {
+ qmfImagSlot = qmfImag[i];
+ }
+
+ qmfAnalysisFilteringSlot(anaQmf, qmfReal[i], qmfImagSlot, timeIn, stride,
+ pWorkBuffer);
+
+ timeIn += no_channels * stride;
+
+ } /* no_col loop i */
+}
+
+/*!
+ *
+ * \brief Perform low power inverse modulation of the subband
+ * samples stored in rSubband (real part) and iSubband (imaginary
+ * part) and stores the result in pWorkBuffer.
+ *
+ */
+inline static void qmfInverseModulationLP_even(
+ HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank */
+ const FIXP_DBL *qmfReal, /*!< Pointer to qmf real subband slot (input) */
+ const int scaleFactorLowBand, /*!< Scalefactor for Low band */
+ const int scaleFactorHighBand, /*!< Scalefactor for High band */
+ FIXP_DBL *pTimeOut /*!< Pointer to qmf subband slot (output)*/
+) {
+ int i;
+ int L = synQmf->no_channels;
+ int M = L >> 1;
+ int scale;
+ FIXP_DBL tmp;
+ FIXP_DBL *RESTRICT tReal = pTimeOut;
+ FIXP_DBL *RESTRICT tImag = pTimeOut + L;
+
+ /* Move input to output vector with offset */
+ scaleValues(&tReal[0], &qmfReal[0], synQmf->lsb, (int)scaleFactorLowBand);
+ scaleValues(&tReal[0 + synQmf->lsb], &qmfReal[0 + synQmf->lsb],
+ synQmf->usb - synQmf->lsb, (int)scaleFactorHighBand);
+ FDKmemclear(&tReal[0 + synQmf->usb], (L - synQmf->usb) * sizeof(FIXP_DBL));
+
+ /* Dct type-2 transform */
+ dct_II(tReal, tImag, L, &scale);
+
+ /* Expand output and replace inplace the output buffers */
+ tImag[0] = tReal[M];
+ tImag[M] = (FIXP_DBL)0;
+ tmp = tReal[0];
+ tReal[0] = tReal[M];
+ tReal[M] = tmp;
+
+ for (i = 1; i < M / 2; i++) {
+ /* Imag */
+ tmp = tReal[L - i];
+ tImag[M - i] = tmp;
+ tImag[i + M] = -tmp;
+
+ tmp = tReal[M + i];
+ tImag[i] = tmp;
+ tImag[L - i] = -tmp;
+
+ /* Real */
+ tReal[M + i] = tReal[i];
+ tReal[L - i] = tReal[M - i];
+ tmp = tReal[i];
+ tReal[i] = tReal[M - i];
+ tReal[M - i] = tmp;
+ }
+ /* Remaining odd terms */
+ tmp = tReal[M + M / 2];
+ tImag[M / 2] = tmp;
+ tImag[M / 2 + M] = -tmp;
+
+ tReal[M + M / 2] = tReal[M / 2];
+}
+
+inline static void qmfInverseModulationLP_odd(
+ HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank */
+ const FIXP_DBL *qmfReal, /*!< Pointer to qmf real subband slot (input) */
+ const int scaleFactorLowBand, /*!< Scalefactor for Low band */
+ const int scaleFactorHighBand, /*!< Scalefactor for High band */
+ FIXP_DBL *pTimeOut /*!< Pointer to qmf subband slot (output)*/
+) {
+ int i;
+ int L = synQmf->no_channels;
+ int M = L >> 1;
+ int shift = 0;
+
+ /* Move input to output vector with offset */
+ scaleValues(pTimeOut + M, qmfReal, synQmf->lsb, scaleFactorLowBand);
+ scaleValues(pTimeOut + M + synQmf->lsb, qmfReal + synQmf->lsb,
+ synQmf->usb - synQmf->lsb, scaleFactorHighBand);
+ FDKmemclear(pTimeOut + M + synQmf->usb, (L - synQmf->usb) * sizeof(FIXP_DBL));
+
+ dct_IV(pTimeOut + M, L, &shift);
+ for (i = 0; i < M; i++) {
+ pTimeOut[i] = pTimeOut[L - 1 - i];
+ pTimeOut[2 * L - 1 - i] = -pTimeOut[L + i];
+ }
+}
+
+#ifndef FUNCTION_qmfInverseModulationHQ
+/*!
+ *
+ * \brief Perform complex-valued inverse modulation of the subband
+ * samples stored in rSubband (real part) and iSubband (imaginary
+ * part) and stores the result in pWorkBuffer.
+ *
+ */
+inline static void qmfInverseModulationHQ(
+ HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank */
+ const FIXP_DBL *qmfReal, /*!< Pointer to qmf real subband slot */
+ const FIXP_DBL *qmfImag, /*!< Pointer to qmf imag subband slot */
+ const int scaleFactorLowBand, /*!< Scalefactor for Low band */
+ const int scaleFactorHighBand, /*!< Scalefactor for High band */
+ FIXP_DBL *pWorkBuffer /*!< WorkBuffer (output) */
+) {
+ int i;
+ int L = synQmf->no_channels;
+ int M = L >> 1;
+ int shift = 0;
+ FIXP_DBL *RESTRICT tReal = pWorkBuffer;
+ FIXP_DBL *RESTRICT tImag = pWorkBuffer + L;
+
+ if (synQmf->flags & QMF_FLAG_CLDFB) {
+ for (i = 0; i < synQmf->lsb; i++) {
+ cplxMult(&tImag[i], &tReal[i], scaleValue(qmfImag[i], scaleFactorLowBand),
+ scaleValue(qmfReal[i], scaleFactorLowBand), synQmf->t_cos[i],
+ synQmf->t_sin[i]);
+ }
+ for (; i < synQmf->usb; i++) {
+ cplxMult(&tImag[i], &tReal[i],
+ scaleValue(qmfImag[i], scaleFactorHighBand),
+ scaleValue(qmfReal[i], scaleFactorHighBand), synQmf->t_cos[i],
+ synQmf->t_sin[i]);
+ }
+ }
+
+ if ((synQmf->flags & QMF_FLAG_CLDFB) == 0) {
+ scaleValues(&tReal[0], &qmfReal[0], synQmf->lsb, (int)scaleFactorLowBand);
+ scaleValues(&tReal[0 + synQmf->lsb], &qmfReal[0 + synQmf->lsb],
+ synQmf->usb - synQmf->lsb, (int)scaleFactorHighBand);
+ scaleValues(&tImag[0], &qmfImag[0], synQmf->lsb, (int)scaleFactorLowBand);
+ scaleValues(&tImag[0 + synQmf->lsb], &qmfImag[0 + synQmf->lsb],
+ synQmf->usb - synQmf->lsb, (int)scaleFactorHighBand);
+ }
+
+ FDKmemclear(&tReal[synQmf->usb],
+ (synQmf->no_channels - synQmf->usb) * sizeof(FIXP_DBL));
+ FDKmemclear(&tImag[synQmf->usb],
+ (synQmf->no_channels - synQmf->usb) * sizeof(FIXP_DBL));
+
+ dct_IV(tReal, L, &shift);
+ dst_IV(tImag, L, &shift);
+
+ if (synQmf->flags & QMF_FLAG_CLDFB) {
+ for (i = 0; i < M; i++) {
+ FIXP_DBL r1, i1, r2, i2;
+ r1 = tReal[i];
+ i2 = tImag[L - 1 - i];
+ r2 = tReal[L - i - 1];
+ i1 = tImag[i];
+
+ tReal[i] = (r1 - i1) >> 1;
+ tImag[L - 1 - i] = -(r1 + i1) >> 1;
+ tReal[L - i - 1] = (r2 - i2) >> 1;
+ tImag[i] = -(r2 + i2) >> 1;
+ }
+ } else {
+ /* The array accesses are negative to compensate the missing minus sign in
+ * the low and hi band gain. */
+ /* 26 cycles on ARM926 */
+ for (i = 0; i < M; i++) {
+ FIXP_DBL r1, i1, r2, i2;
+ r1 = -tReal[i];
+ i2 = -tImag[L - 1 - i];
+ r2 = -tReal[L - i - 1];
+ i1 = -tImag[i];
+
+ tReal[i] = (r1 - i1) >> 1;
+ tImag[L - 1 - i] = -(r1 + i1) >> 1;
+ tReal[L - i - 1] = (r2 - i2) >> 1;
+ tImag[i] = -(r2 + i2) >> 1;
+ }
+ }
+}
+#endif /* #ifndef FUNCTION_qmfInverseModulationHQ */
+
+/*!
+ *
+ * \brief Create QMF filter bank instance
+ *
+ * \return 0 if successful
+ *
+ */
+static int qmfInitFilterBank(
+ HANDLE_QMF_FILTER_BANK h_Qmf, /*!< Handle to return */
+ void *pFilterStates, /*!< Handle to filter states */
+ int noCols, /*!< Number of timeslots per frame */
+ int lsb, /*!< Lower end of QMF frequency range */
+ int usb, /*!< Upper end of QMF frequency range */
+ int no_channels, /*!< Number of channels (bands) */
+ UINT flags, /*!< flags */
+ int synflag) /*!< 1: synthesis; 0: analysis */
+{
+ FDKmemclear(h_Qmf, sizeof(QMF_FILTER_BANK));
+
+ if (flags & QMF_FLAG_MPSLDFB) {
+ flags |= QMF_FLAG_NONSYMMETRIC;
+ flags |= QMF_FLAG_MPSLDFB_OPTIMIZE_MODULATION;
+
+ h_Qmf->t_cos = NULL;
+ h_Qmf->t_sin = NULL;
+ h_Qmf->filterScale = QMF_MPSLDFB_PFT_SCALE;
+ h_Qmf->p_stride = 1;
+
+ switch (no_channels) {
+ case 64:
+ h_Qmf->p_filter = qmf_mpsldfb_640;
+ h_Qmf->FilterSize = 640;
+ break;
+ case 32:
+ h_Qmf->p_filter = qmf_mpsldfb_320;
+ h_Qmf->FilterSize = 320;
+ break;
+ default:
+ return -1;
+ }
+ }
+
+ if (!(flags & QMF_FLAG_MPSLDFB) && (flags & QMF_FLAG_CLDFB)) {
+ flags |= QMF_FLAG_NONSYMMETRIC;
+ h_Qmf->filterScale = QMF_CLDFB_PFT_SCALE;
+
+ h_Qmf->p_stride = 1;
+ switch (no_channels) {
+ case 64:
+ h_Qmf->t_cos = qmf_phaseshift_cos64_cldfb;
+ h_Qmf->t_sin = qmf_phaseshift_sin64_cldfb;
+ h_Qmf->p_filter = qmf_cldfb_640;
+ h_Qmf->FilterSize = 640;
+ break;
+ case 32:
+ h_Qmf->t_cos = (synflag) ? qmf_phaseshift_cos32_cldfb_syn
+ : qmf_phaseshift_cos32_cldfb_ana;
+ h_Qmf->t_sin = qmf_phaseshift_sin32_cldfb;
+ h_Qmf->p_filter = qmf_cldfb_320;
+ h_Qmf->FilterSize = 320;
+ break;
+ case 16:
+ h_Qmf->t_cos = (synflag) ? qmf_phaseshift_cos16_cldfb_syn
+ : qmf_phaseshift_cos16_cldfb_ana;
+ h_Qmf->t_sin = qmf_phaseshift_sin16_cldfb;
+ h_Qmf->p_filter = qmf_cldfb_160;
+ h_Qmf->FilterSize = 160;
+ break;
+ case 8:
+ h_Qmf->t_cos = (synflag) ? qmf_phaseshift_cos8_cldfb_syn
+ : qmf_phaseshift_cos8_cldfb_ana;
+ h_Qmf->t_sin = qmf_phaseshift_sin8_cldfb;
+ h_Qmf->p_filter = qmf_cldfb_80;
+ h_Qmf->FilterSize = 80;
+ break;
+ default:
+ return -1;
+ }
+ }
+
+ if (!(flags & QMF_FLAG_MPSLDFB) && ((flags & QMF_FLAG_CLDFB) == 0)) {
+ switch (no_channels) {
+ case 64:
+ h_Qmf->p_filter = qmf_pfilt640;
+ h_Qmf->t_cos = qmf_phaseshift_cos64;
+ h_Qmf->t_sin = qmf_phaseshift_sin64;
+ h_Qmf->p_stride = 1;
+ h_Qmf->FilterSize = 640;
+ h_Qmf->filterScale = 0;
+ break;
+ case 40:
+ if (synflag) {
+ break;
+ } else {
+ h_Qmf->p_filter = qmf_pfilt400; /* Scaling factor 0.8 */
+ h_Qmf->t_cos = qmf_phaseshift_cos40;
+ h_Qmf->t_sin = qmf_phaseshift_sin40;
+ h_Qmf->filterScale = 1;
+ h_Qmf->p_stride = 1;
+ h_Qmf->FilterSize = no_channels * 10;
+ }
+ break;
+ case 32:
+ h_Qmf->p_filter = qmf_pfilt640;
+ if (flags & QMF_FLAG_DOWNSAMPLED) {
+ h_Qmf->t_cos = qmf_phaseshift_cos_downsamp32;
+ h_Qmf->t_sin = qmf_phaseshift_sin_downsamp32;
+ } else {
+ h_Qmf->t_cos = qmf_phaseshift_cos32;
+ h_Qmf->t_sin = qmf_phaseshift_sin32;
+ }
+ h_Qmf->p_stride = 2;
+ h_Qmf->FilterSize = 640;
+ h_Qmf->filterScale = 0;
+ break;
+ case 20:
+ h_Qmf->p_filter = qmf_pfilt200;
+ h_Qmf->p_stride = 1;
+ h_Qmf->FilterSize = 200;
+ h_Qmf->filterScale = 0;
+ break;
+ case 12:
+ h_Qmf->p_filter = qmf_pfilt120;
+ h_Qmf->p_stride = 1;
+ h_Qmf->FilterSize = 120;
+ h_Qmf->filterScale = 0;
+ break;
+ case 8:
+ h_Qmf->p_filter = qmf_pfilt640;
+ h_Qmf->p_stride = 8;
+ h_Qmf->FilterSize = 640;
+ h_Qmf->filterScale = 0;
+ break;
+ case 16:
+ h_Qmf->p_filter = qmf_pfilt640;
+ h_Qmf->t_cos = qmf_phaseshift_cos16;
+ h_Qmf->t_sin = qmf_phaseshift_sin16;
+ h_Qmf->p_stride = 4;
+ h_Qmf->FilterSize = 640;
+ h_Qmf->filterScale = 0;
+ break;
+ case 24:
+ h_Qmf->p_filter = qmf_pfilt240;
+ h_Qmf->t_cos = qmf_phaseshift_cos24;
+ h_Qmf->t_sin = qmf_phaseshift_sin24;
+ h_Qmf->p_stride = 1;
+ h_Qmf->FilterSize = 240;
+ h_Qmf->filterScale = 1;
+ break;
+ default:
+ return -1;
+ }
+ }
+
+ h_Qmf->synScalefactor = h_Qmf->filterScale;
+ // DCT|DST dependency
+ switch (no_channels) {
+ case 128:
+ h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK + 1;
+ break;
+ case 40: {
+ h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 1;
+ } break;
+ case 64:
+ h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK;
+ break;
+ case 8:
+ h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 3;
+ break;
+ case 12:
+ h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK;
+ break;
+ case 20:
+ h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK + 1;
+ break;
+ case 32:
+ h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 1;
+ break;
+ case 16:
+ h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 2;
+ break;
+ case 24:
+ h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 1;
+ break;
+ default:
+ return -1;
+ }
+
+ h_Qmf->flags = flags;
+
+ h_Qmf->no_channels = no_channels;
+ h_Qmf->no_col = noCols;
+
+ h_Qmf->lsb = fMin(lsb, h_Qmf->no_channels);
+ h_Qmf->usb = synflag
+ ? fMin(usb, h_Qmf->no_channels)
+ : usb; /* was: h_Qmf->usb = fMin(usb, h_Qmf->no_channels); */
+
+ h_Qmf->FilterStates = (void *)pFilterStates;
+
+ h_Qmf->outScalefactor =
+ (ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK + h_Qmf->filterScale) +
+ h_Qmf->synScalefactor;
+
+ h_Qmf->outGain_m =
+ (FIXP_DBL)0x80000000; /* default init value will be not applied */
+ h_Qmf->outGain_e = 0;
+
+ return (0);
+}
+
+/*!
+ *
+ * \brief Adjust synthesis qmf filter states
+ *
+ * \return void
+ *
+ */
+static inline void qmfAdaptFilterStates(
+ HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Filter Bank */
+ int scaleFactorDiff) /*!< Scale factor difference to be applied */
+{
+ if (synQmf == NULL || synQmf->FilterStates == NULL) {
+ return;
+ }
+ if (scaleFactorDiff > 0) {
+ scaleValuesSaturate((FIXP_QSS *)synQmf->FilterStates,
+ synQmf->no_channels * (QMF_NO_POLY * 2 - 1),
+ scaleFactorDiff);
+ } else {
+ scaleValues((FIXP_QSS *)synQmf->FilterStates,
+ synQmf->no_channels * (QMF_NO_POLY * 2 - 1), scaleFactorDiff);
+ }
+}
+
+/*!
+ *
+ * \brief Create QMF filter bank instance
+ *
+ *
+ * \return 0 if succesful
+ *
+ */
+int qmfInitAnalysisFilterBank(
+ HANDLE_QMF_FILTER_BANK h_Qmf, /*!< Returns handle */
+ FIXP_QAS *pFilterStates, /*!< Handle to filter states */
+ int noCols, /*!< Number of timeslots per frame */
+ int lsb, /*!< lower end of QMF */
+ int usb, /*!< upper end of QMF */
+ int no_channels, /*!< Number of channels (bands) */
+ int flags) /*!< Low Power flag */
+{
+ int err = qmfInitFilterBank(h_Qmf, pFilterStates, noCols, lsb, usb,
+ no_channels, flags, 0);
+ if (!(flags & QMF_FLAG_KEEP_STATES) && (h_Qmf->FilterStates != NULL)) {
+ FDKmemclear(h_Qmf->FilterStates,
+ (2 * QMF_NO_POLY - 1) * h_Qmf->no_channels * sizeof(FIXP_QAS));
+ }
+
+ FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->lsb);
+
+ return err;
+}
+
+/*!
+ *
+ * \brief Create QMF filter bank instance
+ *
+ *
+ * \return 0 if succesful
+ *
+ */
+int qmfInitSynthesisFilterBank(
+ HANDLE_QMF_FILTER_BANK h_Qmf, /*!< Returns handle */
+ FIXP_QSS *pFilterStates, /*!< Handle to filter states */
+ int noCols, /*!< Number of timeslots per frame */
+ int lsb, /*!< lower end of QMF */
+ int usb, /*!< upper end of QMF */
+ int no_channels, /*!< Number of channels (bands) */
+ int flags) /*!< Low Power flag */
+{
+ int oldOutScale = h_Qmf->outScalefactor;
+ int err = qmfInitFilterBank(h_Qmf, pFilterStates, noCols, lsb, usb,
+ no_channels, flags, 1);
+ if (h_Qmf->FilterStates != NULL) {
+ if (!(flags & QMF_FLAG_KEEP_STATES)) {
+ FDKmemclear(
+ h_Qmf->FilterStates,
+ (2 * QMF_NO_POLY - 1) * h_Qmf->no_channels * sizeof(FIXP_QSS));
+ } else {
+ qmfAdaptFilterStates(h_Qmf, oldOutScale - h_Qmf->outScalefactor);
+ }
+ }
+
+ FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->lsb);
+ FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->usb);
+
+ return err;
+}
+
+/*!
+ *
+ * \brief Change scale factor for output data and adjust qmf filter states
+ *
+ * \return void
+ *
+ */
+void qmfChangeOutScalefactor(
+ HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank */
+ int outScalefactor /*!< New scaling factor for output data */
+) {
+ if (synQmf == NULL) {
+ return;
+ }
+
+ /* Add internal filterbank scale */
+ outScalefactor +=
+ (ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK + synQmf->filterScale) +
+ synQmf->synScalefactor;
+
+ /* adjust filter states when scale factor has been changed */
+ if (synQmf->outScalefactor != outScalefactor) {
+ int diff;
+
+ diff = synQmf->outScalefactor - outScalefactor;
+
+ qmfAdaptFilterStates(synQmf, diff);
+
+ /* save new scale factor */
+ synQmf->outScalefactor = outScalefactor;
+ }
+}
+
+/*!
+ *
+ * \brief Get scale factor change which was set by qmfChangeOutScalefactor()
+ *
+ * \return scaleFactor
+ *
+ */
+int qmfGetOutScalefactor(
+ HANDLE_QMF_FILTER_BANK synQmf) /*!< Handle of Qmf Synthesis Bank */
+{
+ int scaleFactor = synQmf->outScalefactor
+ ? (synQmf->outScalefactor -
+ (ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK +
+ synQmf->filterScale + synQmf->synScalefactor))
+ : 0;
+ return scaleFactor;
+}
+
+/*!
+ *
+ * \brief Change gain for output data
+ *
+ * \return void
+ *
+ */
+void qmfChangeOutGain(
+ HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank */
+ FIXP_DBL outputGain, /*!< New gain for output data (mantissa) */
+ int outputGainScale /*!< New gain for output data (exponent) */
+) {
+ synQmf->outGain_m = outputGain;
+ synQmf->outGain_e = outputGainScale;
+}
+
+/* When QMF_16IN_32OUT is set, synthesis functions for 16 and 32 bit parallel
+ * output is compiled */
+#define INT_PCM_QMFOUT INT_PCM
+#define SAMPLE_BITS_QMFOUT SAMPLE_BITS
+#include "qmf_pcm.h"