summaryrefslogtreecommitdiffstats
path: root/fdk-aac/libAACdec/src/usacdec_fac.cpp
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2020-03-31 10:03:58 +0200
committerMatthias P. Braendli <matthias.braendli@mpb.li>2020-03-31 10:03:58 +0200
commita1eb6cf861d3c1cbd4e6c016be3cbd2a1e3d797d (patch)
tree2b4790eec8f47fb086e645717f07c53b30ace919 /fdk-aac/libAACdec/src/usacdec_fac.cpp
parent2f84a54ec1d10b10293c7b1f4ab9fee31f3c6327 (diff)
parentc6a73c219dbfdfe639372d9922f4eb512f06fa2f (diff)
downloadODR-AudioEnc-a1eb6cf861d3c1cbd4e6c016be3cbd2a1e3d797d.tar.gz
ODR-AudioEnc-a1eb6cf861d3c1cbd4e6c016be3cbd2a1e3d797d.tar.bz2
ODR-AudioEnc-a1eb6cf861d3c1cbd4e6c016be3cbd2a1e3d797d.zip
Merge GStreamer into next
Diffstat (limited to 'fdk-aac/libAACdec/src/usacdec_fac.cpp')
-rw-r--r--fdk-aac/libAACdec/src/usacdec_fac.cpp745
1 files changed, 745 insertions, 0 deletions
diff --git a/fdk-aac/libAACdec/src/usacdec_fac.cpp b/fdk-aac/libAACdec/src/usacdec_fac.cpp
new file mode 100644
index 0000000..0d3d844
--- /dev/null
+++ b/fdk-aac/libAACdec/src/usacdec_fac.cpp
@@ -0,0 +1,745 @@
+/* -----------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
+
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------- */
+
+/**************************** AAC decoder library ******************************
+
+ Author(s): Manuel Jander
+
+ Description: USAC FAC
+
+*******************************************************************************/
+
+#include "usacdec_fac.h"
+
+#include "usacdec_const.h"
+#include "usacdec_lpc.h"
+#include "usacdec_acelp.h"
+#include "usacdec_rom.h"
+#include "dct.h"
+#include "FDK_tools_rom.h"
+#include "mdct.h"
+
+#define SPEC_FAC(ptr, i, gl) ((ptr) + ((i) * (gl)))
+
+FIXP_DBL *CLpd_FAC_GetMemory(CAacDecoderChannelInfo *pAacDecoderChannelInfo,
+ UCHAR mod[NB_DIV], int *pState) {
+ FIXP_DBL *ptr;
+ int i;
+ int k = 0;
+ int max_windows = 8;
+
+ FDK_ASSERT(*pState >= 0 && *pState < max_windows);
+
+ /* Look for free space to store FAC data. 2 FAC data blocks fit into each TCX
+ * spectral data block. */
+ for (i = *pState; i < max_windows; i++) {
+ if (mod[i >> 1] == 0) {
+ break;
+ }
+ }
+
+ *pState = i + 1;
+
+ if (i == max_windows) {
+ ptr = pAacDecoderChannelInfo->data.usac.fac_data0;
+ } else {
+ FDK_ASSERT(mod[(i >> 1)] == 0);
+ ptr = SPEC_FAC(pAacDecoderChannelInfo->pSpectralCoefficient, i,
+ pAacDecoderChannelInfo->granuleLength << k);
+ }
+
+ return ptr;
+}
+
+int CLpd_FAC_Read(HANDLE_FDK_BITSTREAM hBs, FIXP_DBL *pFac, SCHAR *pFacScale,
+ int length, int use_gain, int frame) {
+ FIXP_DBL fac_gain;
+ int fac_gain_e = 0;
+
+ if (use_gain) {
+ CLpd_DecodeGain(&fac_gain, &fac_gain_e, FDKreadBits(hBs, 7));
+ }
+
+ if (CLpc_DecodeAVQ(hBs, pFac, 1, 1, length) != 0) {
+ return -1;
+ }
+
+ {
+ int scale;
+
+ scale = getScalefactor(pFac, length);
+ scaleValues(pFac, length, scale);
+ pFacScale[frame] = DFRACT_BITS - 1 - scale;
+ }
+
+ if (use_gain) {
+ int i;
+
+ pFacScale[frame] += fac_gain_e;
+
+ for (i = 0; i < length; i++) {
+ pFac[i] = fMult(pFac[i], fac_gain);
+ }
+ }
+ return 0;
+}
+
+/**
+ * \brief Apply synthesis filter with zero input to x. The overall filter gain
+ * is 1.0.
+ * \param a LPC filter coefficients.
+ * \param length length of the input/output data vector x.
+ * \param x input/output vector, where the synthesis filter is applied in place.
+ */
+static void Syn_filt_zero(const FIXP_LPC a[], const INT a_exp, INT length,
+ FIXP_DBL x[]) {
+ int i, j;
+ FIXP_DBL L_tmp;
+
+ for (i = 0; i < length; i++) {
+ L_tmp = (FIXP_DBL)0;
+
+ for (j = 0; j < fMin(i, M_LP_FILTER_ORDER); j++) {
+ L_tmp -= fMultDiv2(a[j], x[i - (j + 1)]) >> (LP_FILTER_SCALE - 1);
+ }
+
+ L_tmp = scaleValue(L_tmp, a_exp + LP_FILTER_SCALE);
+ x[i] = fAddSaturate(x[i], L_tmp);
+ }
+}
+
+/* Table is also correct for coreCoderFrameLength = 768. Factor 3/4 is canceled
+ out: gainFac = 0.5 * sqrt(fac_length/lFrame)
+*/
+static const FIXP_DBL gainFac[4] = {0x40000000, 0x2d413ccd, 0x20000000,
+ 0x16a09e66};
+
+void CFac_ApplyGains(FIXP_DBL fac_data[LFAC], const INT fac_length,
+ const FIXP_DBL tcx_gain, const FIXP_DBL alfd_gains[],
+ const INT mod) {
+ FIXP_DBL facFactor;
+ int i;
+
+ FDK_ASSERT((fac_length == 128) || (fac_length == 96));
+
+ /* 2) Apply gain factor to FAC data */
+ facFactor = fMult(gainFac[mod], tcx_gain);
+ for (i = 0; i < fac_length; i++) {
+ fac_data[i] = fMult(fac_data[i], facFactor);
+ }
+
+ /* 3) Apply spectrum deshaping using alfd_gains */
+ for (i = 0; i < fac_length / 4; i++) {
+ int k;
+
+ k = i >> (3 - mod);
+ fac_data[i] = fMult(fac_data[i], alfd_gains[k])
+ << 1; /* alfd_gains is scaled by one bit. */
+ }
+}
+
+static void CFac_CalcFacSignal(FIXP_DBL *pOut, FIXP_DBL *pFac,
+ const int fac_scale, const int fac_length,
+ const FIXP_LPC A[M_LP_FILTER_ORDER],
+ const INT A_exp, const int fAddZir,
+ const int isFdFac) {
+ FIXP_LPC wA[M_LP_FILTER_ORDER];
+ FIXP_DBL tf_gain = (FIXP_DBL)0;
+ int wlength;
+ int scale = fac_scale;
+
+ /* obtain tranform gain. */
+ imdct_gain(&tf_gain, &scale, isFdFac ? 0 : fac_length);
+
+ /* 4) Compute inverse DCT-IV of FAC data. Output scale of DCT IV is 16 bits.
+ */
+ dct_IV(pFac, fac_length, &scale);
+ /* dct_IV scale = log2(fac_length). "- 7" is a factor of 2/128 */
+ if (tf_gain != (FIXP_DBL)0) { /* non-radix 2 transform gain */
+ int i;
+
+ for (i = 0; i < fac_length; i++) {
+ pFac[i] = fMult(tf_gain, pFac[i]);
+ }
+ }
+ scaleValuesSaturate(pOut, pFac, fac_length,
+ scale); /* Avoid overflow issues and saturate. */
+
+ E_LPC_a_weight(wA, A, M_LP_FILTER_ORDER);
+
+ /* We need the output of the IIR filter to be longer than "fac_length".
+ For this reason we run it with zero input appended to the end of the input
+ sequence, i.e. we generate its ZIR and extend the output signal.*/
+ FDKmemclear(pOut + fac_length, fac_length * sizeof(FIXP_DBL));
+ wlength = 2 * fac_length;
+
+ /* 5) Apply weighted synthesis filter to FAC data, including optional Zir (5.
+ * item 4). */
+ Syn_filt_zero(wA, A_exp, wlength, pOut);
+}
+
+INT CLpd_FAC_Mdct2Acelp(H_MDCT hMdct, FIXP_DBL *output, FIXP_DBL *pFac,
+ const int fac_scale, FIXP_LPC *A, INT A_exp,
+ INT nrOutSamples, const INT fac_length,
+ const INT isFdFac, UCHAR prevWindowShape) {
+ FIXP_DBL *pOvl;
+ FIXP_DBL *pOut0;
+ const FIXP_WTP *pWindow;
+ int i, fl, nrSamples = 0;
+
+ FDK_ASSERT(fac_length <= 1024 / (4 * 2));
+
+ fl = fac_length * 2;
+
+ pWindow = FDKgetWindowSlope(fl, prevWindowShape);
+
+ /* Adapt window slope length in case of frame loss. */
+ if (hMdct->prev_fr != fl) {
+ int nl = 0;
+ imdct_adapt_parameters(hMdct, &fl, &nl, fac_length, pWindow, nrOutSamples);
+ FDK_ASSERT(nl == 0);
+ }
+
+ if (nrSamples < nrOutSamples) {
+ pOut0 = output;
+ nrSamples += hMdct->ov_offset;
+ /* Purge buffered output. */
+ FDKmemcpy(pOut0, hMdct->overlap.time, hMdct->ov_offset * sizeof(pOut0[0]));
+ hMdct->ov_offset = 0;
+ }
+
+ pOvl = hMdct->overlap.freq + hMdct->ov_size - 1;
+
+ if (nrSamples >= nrOutSamples) {
+ pOut0 = hMdct->overlap.time + hMdct->ov_offset;
+ hMdct->ov_offset += hMdct->prev_nr + fl / 2;
+ } else {
+ pOut0 = output + nrSamples;
+ nrSamples += hMdct->prev_nr + fl / 2;
+ }
+ if (hMdct->prevPrevAliasSymmetry == 0) {
+ for (i = 0; i < hMdct->prev_nr; i++) {
+ FIXP_DBL x = -(*pOvl--);
+ *pOut0 = IMDCT_SCALE_DBL(x);
+ pOut0++;
+ }
+ } else {
+ for (i = 0; i < hMdct->prev_nr; i++) {
+ FIXP_DBL x = (*pOvl--);
+ *pOut0 = IMDCT_SCALE_DBL(x);
+ pOut0++;
+ }
+ }
+ hMdct->prev_nr = 0;
+
+ {
+ if (pFac != NULL) {
+ /* Note: The FAC gain might have been applied directly after bit stream
+ * parse in this case. */
+ CFac_CalcFacSignal(pOut0, pFac, fac_scale, fac_length, A, A_exp, 0,
+ isFdFac);
+ } else {
+ /* Clear buffer because of the overlap and ADD! */
+ FDKmemclear(pOut0, fac_length * sizeof(FIXP_DBL));
+ }
+ }
+
+ i = 0;
+
+ if (hMdct->prevPrevAliasSymmetry == 0) {
+ for (; i < fl / 2; i++) {
+ FIXP_DBL x0;
+
+ /* Overlap Add */
+ x0 = -fMult(*pOvl--, pWindow[i].v.re);
+
+ *pOut0 += IMDCT_SCALE_DBL(x0);
+ pOut0++;
+ }
+ } else {
+ for (; i < fl / 2; i++) {
+ FIXP_DBL x0;
+
+ /* Overlap Add */
+ x0 = fMult(*pOvl--, pWindow[i].v.re);
+
+ *pOut0 += IMDCT_SCALE_DBL(x0);
+ pOut0++;
+ }
+ }
+ if (hMdct->pFacZir !=
+ 0) { /* this should only happen for ACELP -> TCX20 -> ACELP transition */
+ FIXP_DBL *pOut = pOut0 - fl / 2; /* fl/2 == fac_length */
+ for (i = 0; i < fl / 2; i++) {
+ pOut[i] += IMDCT_SCALE_DBL(hMdct->pFacZir[i]);
+ }
+ hMdct->pFacZir = NULL;
+ }
+
+ hMdct->prev_fr = 0;
+ hMdct->prev_nr = 0;
+ hMdct->prev_tl = 0;
+ hMdct->prevPrevAliasSymmetry = hMdct->prevAliasSymmetry;
+
+ return nrSamples;
+}
+
+INT CLpd_FAC_Acelp2Mdct(H_MDCT hMdct, FIXP_DBL *output, FIXP_DBL *_pSpec,
+ const SHORT spec_scale[], const int nSpec,
+ FIXP_DBL *pFac, const int fac_scale,
+ const INT fac_length, INT noOutSamples, const INT tl,
+ const FIXP_WTP *wrs, const INT fr, FIXP_LPC A[16],
+ INT A_exp, CAcelpStaticMem *acelp_mem,
+ const FIXP_DBL gain, const int last_frame_lost,
+ const int isFdFac, const UCHAR last_lpd_mode,
+ const int k, int currAliasingSymmetry) {
+ FIXP_DBL *pCurr, *pOvl, *pSpec;
+ const FIXP_WTP *pWindow;
+ const FIXP_WTB *FacWindowZir_conceal;
+ UCHAR doFacZirConceal = 0;
+ int doDeemph = 1;
+ const FIXP_WTB *FacWindowZir, *FacWindowSynth;
+ FIXP_DBL *pOut0 = output, *pOut1;
+ int w, i, fl, nl, nr, f_len, nrSamples = 0, s = 0, scale, total_gain_e;
+ FIXP_DBL *pF, *pFAC_and_FAC_ZIR = NULL;
+ FIXP_DBL total_gain = gain;
+
+ FDK_ASSERT(fac_length <= 1024 / (4 * 2));
+ switch (fac_length) {
+ /* coreCoderFrameLength = 1024 */
+ case 128:
+ pWindow = SineWindow256;
+ FacWindowZir = FacWindowZir128;
+ FacWindowSynth = FacWindowSynth128;
+ break;
+ case 64:
+ pWindow = SineWindow128;
+ FacWindowZir = FacWindowZir64;
+ FacWindowSynth = FacWindowSynth64;
+ break;
+ case 32:
+ pWindow = SineWindow64;
+ FacWindowZir = FacWindowZir32;
+ FacWindowSynth = FacWindowSynth32;
+ break;
+ /* coreCoderFrameLength = 768 */
+ case 96:
+ pWindow = SineWindow192;
+ FacWindowZir = FacWindowZir96;
+ FacWindowSynth = FacWindowSynth96;
+ break;
+ case 48:
+ pWindow = SineWindow96;
+ FacWindowZir = FacWindowZir48;
+ FacWindowSynth = FacWindowSynth48;
+ break;
+ default:
+ FDK_ASSERT(0);
+ return 0;
+ }
+
+ FacWindowZir_conceal = FacWindowSynth;
+ /* Derive NR and NL */
+ fl = fac_length * 2;
+ nl = (tl - fl) >> 1;
+ nr = (tl - fr) >> 1;
+
+ if (noOutSamples > nrSamples) {
+ /* Purge buffered output. */
+ FDKmemcpy(pOut0, hMdct->overlap.time, hMdct->ov_offset * sizeof(pOut0[0]));
+ nrSamples = hMdct->ov_offset;
+ hMdct->ov_offset = 0;
+ }
+
+ if (nrSamples >= noOutSamples) {
+ pOut1 = hMdct->overlap.time + hMdct->ov_offset;
+ if (hMdct->ov_offset < fac_length) {
+ pOut0 = output + nrSamples;
+ } else {
+ pOut0 = pOut1;
+ }
+ hMdct->ov_offset += fac_length + nl;
+ } else {
+ pOut1 = output + nrSamples;
+ pOut0 = output + nrSamples;
+ }
+
+ {
+ pFAC_and_FAC_ZIR = CLpd_ACELP_GetFreeExcMem(acelp_mem, 2 * fac_length);
+ {
+ const FIXP_DBL *pTmp1, *pTmp2;
+
+ doFacZirConceal |= ((last_frame_lost != 0) && (k == 0));
+ doDeemph &= (last_lpd_mode != 4);
+ if (doFacZirConceal) {
+ /* ACELP contribution in concealment case:
+ Use ZIR with a modified ZIR window to preserve some more energy.
+ Dont use FAC, which contains wrong information for concealed frame
+ Dont use last ACELP samples, but double ZIR, instead (afterwards) */
+ FDKmemclear(pFAC_and_FAC_ZIR, 2 * fac_length * sizeof(FIXP_DBL));
+ FacWindowSynth = (FIXP_WTB *)pFAC_and_FAC_ZIR;
+ FacWindowZir = FacWindowZir_conceal;
+ } else {
+ CFac_CalcFacSignal(pFAC_and_FAC_ZIR, pFac, fac_scale + s, fac_length, A,
+ A_exp, 1, isFdFac);
+ }
+ /* 6) Get windowed past ACELP samples and ACELP ZIR signal */
+
+ /*
+ * Get ACELP ZIR (pFac[]) and ACELP past samples (pOut0[]) and add them
+ * to the FAC synth signal contribution on pOut1[].
+ */
+ {
+ {
+ CLpd_Acelp_Zir(A, A_exp, acelp_mem, fac_length, pFac, doDeemph);
+
+ pTmp1 = pOut0;
+ pTmp2 = pFac;
+ }
+
+ for (i = 0, w = 0; i < fac_length; i++) {
+ FIXP_DBL x;
+ /* Div2 is compensated by table scaling */
+ x = fMultDiv2(pTmp2[i], FacWindowZir[w]);
+ x += fMultDiv2(pTmp1[-i - 1], FacWindowSynth[w]);
+ x += pFAC_and_FAC_ZIR[i];
+ pOut1[i] = x;
+
+ w++;
+ }
+ }
+
+ if (doFacZirConceal) {
+ /* ZIR is the only ACELP contribution, so double it */
+ scaleValues(pOut1, fac_length, 1);
+ }
+ }
+ }
+
+ if (nrSamples < noOutSamples) {
+ nrSamples += fac_length + nl;
+ }
+
+ /* Obtain transform gain */
+ total_gain = gain;
+ total_gain_e = 0;
+ imdct_gain(&total_gain, &total_gain_e, tl);
+
+ /* IMDCT overlap add */
+ scale = total_gain_e;
+ pSpec = _pSpec;
+
+ /* Note:when comming from an LPD frame (TCX/ACELP) the previous alisaing
+ * symmetry must always be 0 */
+ if (currAliasingSymmetry == 0) {
+ dct_IV(pSpec, tl, &scale);
+ } else {
+ FIXP_DBL _tmp[1024 + ALIGNMENT_DEFAULT / sizeof(FIXP_DBL)];
+ FIXP_DBL *tmp = (FIXP_DBL *)ALIGN_PTR(_tmp);
+ C_ALLOC_ALIGNED_REGISTER(tmp, sizeof(_tmp));
+ dst_III(pSpec, tmp, tl, &scale);
+ C_ALLOC_ALIGNED_UNREGISTER(tmp);
+ }
+
+ /* Optional scaling of time domain - no yet windowed - of current spectrum */
+ if (total_gain != (FIXP_DBL)0) {
+ for (i = 0; i < tl; i++) {
+ pSpec[i] = fMult(pSpec[i], total_gain);
+ }
+ }
+ int loc_scale = fixmin_I(spec_scale[0] + scale, (INT)DFRACT_BITS - 1);
+ scaleValuesSaturate(pSpec, tl, loc_scale);
+
+ pOut1 += fl / 2 - 1;
+ pCurr = pSpec + tl - fl / 2;
+
+ for (i = 0; i < fl / 2; i++) {
+ FIXP_DBL x1;
+
+ /* FAC signal is already on pOut1, because of that the += operator. */
+ x1 = fMult(*pCurr++, pWindow[i].v.re);
+ FDK_ASSERT((pOut1 >= hMdct->overlap.time &&
+ pOut1 < hMdct->overlap.time + hMdct->ov_size) ||
+ (pOut1 >= output && pOut1 < output + 1024));
+ *pOut1 += IMDCT_SCALE_DBL(-x1);
+ pOut1--;
+ }
+
+ /* NL output samples TL/2+FL/2..TL. - current[FL/2..0] */
+ pOut1 += (fl / 2) + 1;
+
+ pFAC_and_FAC_ZIR += fac_length; /* set pointer to beginning of FAC ZIR */
+
+ if (nl == 0) {
+ /* save pointer to write FAC ZIR data later */
+ hMdct->pFacZir = pFAC_and_FAC_ZIR;
+ } else {
+ FDK_ASSERT(nl >= fac_length);
+ /* FAC ZIR will be added now ... */
+ hMdct->pFacZir = NULL;
+ }
+
+ pF = pFAC_and_FAC_ZIR;
+ f_len = fac_length;
+
+ pCurr = pSpec + tl - fl / 2 - 1;
+ for (i = 0; i < nl; i++) {
+ FIXP_DBL x = -(*pCurr--);
+ /* 5) (item 4) Synthesis filter Zir component, FAC ZIR (another one). */
+ if (i < f_len) {
+ x += *pF++;
+ }
+
+ FDK_ASSERT((pOut1 >= hMdct->overlap.time &&
+ pOut1 < hMdct->overlap.time + hMdct->ov_size) ||
+ (pOut1 >= output && pOut1 < output + 1024));
+ *pOut1 = IMDCT_SCALE_DBL(x);
+ pOut1++;
+ }
+
+ hMdct->prev_nr = nr;
+ hMdct->prev_fr = fr;
+ hMdct->prev_wrs = wrs;
+ hMdct->prev_tl = tl;
+ hMdct->prevPrevAliasSymmetry = hMdct->prevAliasSymmetry;
+ hMdct->prevAliasSymmetry = currAliasingSymmetry;
+ fl = fr;
+ nl = nr;
+
+ pOvl = pSpec + tl / 2 - 1;
+ pOut0 = pOut1;
+
+ for (w = 1; w < nSpec; w++) /* for ACELP -> FD short */
+ {
+ const FIXP_WTP *pWindow_prev;
+
+ /* Setup window pointers */
+ pWindow_prev = hMdct->prev_wrs;
+
+ /* Current spectrum */
+ pSpec = _pSpec + w * tl;
+
+ scale = total_gain_e;
+
+ /* For the second, third, etc. short frames the alisaing symmetry is equal,
+ * either (0,0) or (1,1) */
+ if (currAliasingSymmetry == 0) {
+ /* DCT IV of current spectrum */
+ dct_IV(pSpec, tl, &scale);
+ } else {
+ dst_IV(pSpec, tl, &scale);
+ }
+
+ /* Optional scaling of time domain - no yet windowed - of current spectrum
+ */
+ /* and de-scale current spectrum signal (time domain, no yet windowed) */
+ if (total_gain != (FIXP_DBL)0) {
+ for (i = 0; i < tl; i++) {
+ pSpec[i] = fMult(pSpec[i], total_gain);
+ }
+ }
+ loc_scale = fixmin_I(spec_scale[w] + scale, (INT)DFRACT_BITS - 1);
+ scaleValuesSaturate(pSpec, tl, loc_scale);
+
+ if (noOutSamples <= nrSamples) {
+ /* Divert output first half to overlap buffer if we already got enough
+ * output samples. */
+ pOut0 = hMdct->overlap.time + hMdct->ov_offset;
+ hMdct->ov_offset += hMdct->prev_nr + fl / 2;
+ } else {
+ /* Account output samples */
+ nrSamples += hMdct->prev_nr + fl / 2;
+ }
+
+ /* NR output samples 0 .. NR. -overlap[TL/2..TL/2-NR] */
+ for (i = 0; i < hMdct->prev_nr; i++) {
+ FIXP_DBL x = -(*pOvl--);
+ *pOut0 = IMDCT_SCALE_DBL(x);
+ pOut0++;
+ }
+
+ if (noOutSamples <= nrSamples) {
+ /* Divert output second half to overlap buffer if we already got enough
+ * output samples. */
+ pOut1 = hMdct->overlap.time + hMdct->ov_offset + fl / 2 - 1;
+ hMdct->ov_offset += fl / 2 + nl;
+ } else {
+ pOut1 = pOut0 + (fl - 1);
+ nrSamples += fl / 2 + nl;
+ }
+
+ /* output samples before window crossing point NR .. TL/2.
+ * -overlap[TL/2-NR..TL/2-NR-FL/2] + current[NR..TL/2] */
+ /* output samples after window crossing point TL/2 .. TL/2+FL/2.
+ * -overlap[0..FL/2] - current[TL/2..FL/2] */
+ pCurr = pSpec + tl - fl / 2;
+ if (currAliasingSymmetry == 0) {
+ for (i = 0; i < fl / 2; i++) {
+ FIXP_DBL x0, x1;
+
+ cplxMult(&x1, &x0, *pCurr++, -*pOvl--, pWindow_prev[i]);
+ *pOut0 = IMDCT_SCALE_DBL(x0);
+ *pOut1 = IMDCT_SCALE_DBL(-x1);
+ pOut0++;
+ pOut1--;
+ }
+ } else {
+ if (hMdct->prevPrevAliasSymmetry == 0) {
+ /* Jump DST II -> DST IV for the second window */
+ for (i = 0; i < fl / 2; i++) {
+ FIXP_DBL x0, x1;
+
+ cplxMult(&x1, &x0, *pCurr++, -*pOvl--, pWindow_prev[i]);
+ *pOut0 = IMDCT_SCALE_DBL(x0);
+ *pOut1 = IMDCT_SCALE_DBL(x1);
+ pOut0++;
+ pOut1--;
+ }
+ } else {
+ /* Jump DST IV -> DST IV from the second window on */
+ for (i = 0; i < fl / 2; i++) {
+ FIXP_DBL x0, x1;
+
+ cplxMult(&x1, &x0, *pCurr++, *pOvl--, pWindow_prev[i]);
+ *pOut0 = IMDCT_SCALE_DBL(x0);
+ *pOut1 = IMDCT_SCALE_DBL(x1);
+ pOut0++;
+ pOut1--;
+ }
+ }
+ }
+
+ if (hMdct->pFacZir != 0) {
+ /* add FAC ZIR of previous ACELP -> mdct transition */
+ FIXP_DBL *pOut = pOut0 - fl / 2;
+ FDK_ASSERT(fl / 2 <= 128);
+ for (i = 0; i < fl / 2; i++) {
+ pOut[i] += IMDCT_SCALE_DBL(hMdct->pFacZir[i]);
+ }
+ hMdct->pFacZir = NULL;
+ }
+ pOut0 += (fl / 2);
+
+ /* NL output samples TL/2+FL/2..TL. - current[FL/2..0] */
+ pOut1 += (fl / 2) + 1;
+ pCurr = pSpec + tl - fl / 2 - 1;
+ for (i = 0; i < nl; i++) {
+ FIXP_DBL x = -(*pCurr--);
+ *pOut1 = IMDCT_SCALE_DBL(x);
+ pOut1++;
+ }
+
+ /* Set overlap source pointer for next window pOvl = pSpec + tl/2 - 1; */
+ pOvl = pSpec + tl / 2 - 1;
+
+ /* Previous window values. */
+ hMdct->prev_nr = nr;
+ hMdct->prev_fr = fr;
+ hMdct->prev_tl = tl;
+ hMdct->prev_wrs = pWindow_prev;
+ hMdct->prevPrevAliasSymmetry = hMdct->prevAliasSymmetry;
+ hMdct->prevAliasSymmetry = currAliasingSymmetry;
+ }
+
+ /* Save overlap */
+
+ pOvl = hMdct->overlap.freq + hMdct->ov_size - tl / 2;
+ FDK_ASSERT(pOvl >= hMdct->overlap.time + hMdct->ov_offset);
+ FDK_ASSERT(tl / 2 <= hMdct->ov_size);
+ for (i = 0; i < tl / 2; i++) {
+ pOvl[i] = _pSpec[i + (w - 1) * tl];
+ }
+
+ return nrSamples;
+}