summaryrefslogtreecommitdiffstats
path: root/fdk-aac/libAACdec/src/rvlcconceal.cpp
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2020-03-31 10:03:58 +0200
committerMatthias P. Braendli <matthias.braendli@mpb.li>2020-03-31 10:03:58 +0200
commita1eb6cf861d3c1cbd4e6c016be3cbd2a1e3d797d (patch)
tree2b4790eec8f47fb086e645717f07c53b30ace919 /fdk-aac/libAACdec/src/rvlcconceal.cpp
parent2f84a54ec1d10b10293c7b1f4ab9fee31f3c6327 (diff)
parentc6a73c219dbfdfe639372d9922f4eb512f06fa2f (diff)
downloadODR-AudioEnc-a1eb6cf861d3c1cbd4e6c016be3cbd2a1e3d797d.tar.gz
ODR-AudioEnc-a1eb6cf861d3c1cbd4e6c016be3cbd2a1e3d797d.tar.bz2
ODR-AudioEnc-a1eb6cf861d3c1cbd4e6c016be3cbd2a1e3d797d.zip
Merge GStreamer into next
Diffstat (limited to 'fdk-aac/libAACdec/src/rvlcconceal.cpp')
-rw-r--r--fdk-aac/libAACdec/src/rvlcconceal.cpp787
1 files changed, 787 insertions, 0 deletions
diff --git a/fdk-aac/libAACdec/src/rvlcconceal.cpp b/fdk-aac/libAACdec/src/rvlcconceal.cpp
new file mode 100644
index 0000000..77fda68
--- /dev/null
+++ b/fdk-aac/libAACdec/src/rvlcconceal.cpp
@@ -0,0 +1,787 @@
+/* -----------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
+
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------- */
+
+/**************************** AAC decoder library ******************************
+
+ Author(s):
+
+ Description:
+
+*******************************************************************************/
+
+/*!
+ \file
+ \brief rvlc concealment
+ \author Josef Hoepfl
+*/
+
+#include "rvlcconceal.h"
+
+#include "block.h"
+#include "rvlc.h"
+
+/*---------------------------------------------------------------------------------------------
+ function: calcRefValFwd
+
+ description: The function determines the scalefactor which is closed to the
+scalefactorband conceal_min. The same is done for intensity data and noise
+energies.
+-----------------------------------------------------------------------------------------------
+ output: - reference value scf
+ - reference value internsity data
+ - reference value noise energy
+-----------------------------------------------------------------------------------------------
+ return: -
+--------------------------------------------------------------------------------------------
+*/
+
+static void calcRefValFwd(CErRvlcInfo *pRvlc,
+ CAacDecoderChannelInfo *pAacDecoderChannelInfo,
+ int *refIsFwd, int *refNrgFwd, int *refScfFwd) {
+ int band, bnds, group, startBand;
+ int idIs, idNrg, idScf;
+ int conceal_min, conceal_group_min;
+ int MaximumScaleFactorBands;
+
+ if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
+ MaximumScaleFactorBands = 16;
+ else
+ MaximumScaleFactorBands = 64;
+
+ conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
+ conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
+
+ /* calculate first reference value for approach in forward direction */
+ idIs = idNrg = idScf = 1;
+
+ /* set reference values */
+ *refIsFwd = -SF_OFFSET;
+ *refNrgFwd = pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain -
+ SF_OFFSET - 90 - 256;
+ *refScfFwd =
+ pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain - SF_OFFSET;
+
+ startBand = conceal_min - 1;
+ for (group = conceal_group_min; group >= 0; group--) {
+ for (band = startBand; band >= 0; band--) {
+ bnds = 16 * group + band;
+ switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
+ case ZERO_HCB:
+ break;
+ case INTENSITY_HCB:
+ case INTENSITY_HCB2:
+ if (idIs) {
+ *refIsFwd =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ idIs = 0; /* reference value has been set */
+ }
+ break;
+ case NOISE_HCB:
+ if (idNrg) {
+ *refNrgFwd =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ idNrg = 0; /* reference value has been set */
+ }
+ break;
+ default:
+ if (idScf) {
+ *refScfFwd =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ idScf = 0; /* reference value has been set */
+ }
+ break;
+ }
+ }
+ startBand = pRvlc->maxSfbTransmitted - 1;
+ }
+}
+
+/*---------------------------------------------------------------------------------------------
+ function: calcRefValBwd
+
+ description: The function determines the scalefactor which is closed to the
+scalefactorband conceal_max. The same is done for intensity data and noise
+energies.
+-----------------------------------------------------------------------------------------------
+ output: - reference value scf
+ - reference value internsity data
+ - reference value noise energy
+-----------------------------------------------------------------------------------------------
+ return: -
+--------------------------------------------------------------------------------------------
+*/
+
+static void calcRefValBwd(CErRvlcInfo *pRvlc,
+ CAacDecoderChannelInfo *pAacDecoderChannelInfo,
+ int *refIsBwd, int *refNrgBwd, int *refScfBwd) {
+ int band, bnds, group, startBand;
+ int idIs, idNrg, idScf;
+ int conceal_max, conceal_group_max;
+ int MaximumScaleFactorBands;
+
+ if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
+ MaximumScaleFactorBands = 16;
+ else
+ MaximumScaleFactorBands = 64;
+
+ conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
+ conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
+
+ /* calculate first reference value for approach in backward direction */
+ idIs = idNrg = idScf = 1;
+
+ /* set reference values */
+ *refIsBwd = pRvlc->dpcm_is_last_position - SF_OFFSET;
+ *refNrgBwd = pRvlc->rev_global_gain + pRvlc->dpcm_noise_last_position -
+ SF_OFFSET - 90 - 256 + pRvlc->dpcm_noise_nrg;
+ *refScfBwd = pRvlc->rev_global_gain - SF_OFFSET;
+
+ startBand = conceal_max + 1;
+
+ /* if needed, re-set reference values */
+ for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
+ for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
+ bnds = 16 * group + band;
+ switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
+ case ZERO_HCB:
+ break;
+ case INTENSITY_HCB:
+ case INTENSITY_HCB2:
+ if (idIs) {
+ *refIsBwd =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ idIs = 0; /* reference value has been set */
+ }
+ break;
+ case NOISE_HCB:
+ if (idNrg) {
+ *refNrgBwd =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ idNrg = 0; /* reference value has been set */
+ }
+ break;
+ default:
+ if (idScf) {
+ *refScfBwd =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ idScf = 0; /* reference value has been set */
+ }
+ break;
+ }
+ }
+ startBand = 0;
+ }
+}
+
+/*---------------------------------------------------------------------------------------------
+ function: BidirectionalEstimation_UseLowerScfOfCurrentFrame
+
+ description: This approach by means of bidirectional estimation is generally
+performed when a single bit error has been detected, the bit error can be
+isolated between 'conceal_min' and 'conceal_max' and the 'sf_concealment' flag
+is not set. The sets of scalefactors decoded in forward and backward direction
+are compared with each other. The smaller scalefactor will be considered as the
+correct one respectively. The reconstruction of the scalefactors with this
+approach archieve good results in audio quality. The strategy must be applied to
+scalefactors, intensity data and noise energy seperately.
+-----------------------------------------------------------------------------------------------
+ output: Concealed scalefactor, noise energy and intensity data between
+conceal_min and conceal_max
+-----------------------------------------------------------------------------------------------
+ return: -
+--------------------------------------------------------------------------------------------
+*/
+
+void BidirectionalEstimation_UseLowerScfOfCurrentFrame(
+ CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
+ CErRvlcInfo *pRvlc =
+ &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
+ int band, bnds, startBand, endBand, group;
+ int conceal_min, conceal_max;
+ int conceal_group_min, conceal_group_max;
+ int MaximumScaleFactorBands;
+
+ if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
+ MaximumScaleFactorBands = 16;
+ } else {
+ MaximumScaleFactorBands = 64;
+ }
+
+ /* If an error was detected just in forward or backward direction, set the
+ corresponding border for concealment to a appropriate scalefactor band. The
+ border is set to first or last sfb respectively, because the error will
+ possibly not follow directly after the corrupt bit but just after decoding
+ some more (wrong) scalefactors. */
+ if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0;
+
+ if (pRvlc->conceal_max == CONCEAL_MAX_INIT)
+ pRvlc->conceal_max =
+ (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1;
+
+ conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
+ conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
+ conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
+ conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
+
+ if (pRvlc->conceal_min == pRvlc->conceal_max) {
+ int refIsFwd, refNrgFwd, refScfFwd;
+ int refIsBwd, refNrgBwd, refScfBwd;
+
+ bnds = pRvlc->conceal_min;
+ calcRefValFwd(pRvlc, pAacDecoderChannelInfo, &refIsFwd, &refNrgFwd,
+ &refScfFwd);
+ calcRefValBwd(pRvlc, pAacDecoderChannelInfo, &refIsBwd, &refNrgBwd,
+ &refScfBwd);
+
+ switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
+ case ZERO_HCB:
+ break;
+ case INTENSITY_HCB:
+ case INTENSITY_HCB2:
+ if (refIsFwd < refIsBwd)
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsFwd;
+ else
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsBwd;
+ break;
+ case NOISE_HCB:
+ if (refNrgFwd < refNrgBwd)
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refNrgFwd;
+ else
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refNrgBwd;
+ break;
+ default:
+ if (refScfFwd < refScfBwd)
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfFwd;
+ else
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfBwd;
+ break;
+ }
+ } else {
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfFwd[pRvlc->conceal_max] =
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[pRvlc->conceal_max];
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[pRvlc->conceal_min] =
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfFwd[pRvlc->conceal_min];
+
+ /* consider the smaller of the forward and backward decoded value as the
+ * correct one */
+ startBand = conceal_min;
+ if (conceal_group_min == conceal_group_max)
+ endBand = conceal_max;
+ else
+ endBand = pRvlc->maxSfbTransmitted - 1;
+
+ for (group = conceal_group_min; group <= conceal_group_max; group++) {
+ for (band = startBand; band <= endBand; band++) {
+ bnds = 16 * group + band;
+ if (pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds] <
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds])
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ else
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ }
+ startBand = 0;
+ if ((group + 1) == conceal_group_max) endBand = conceal_max;
+ }
+ }
+
+ /* now copy all data to the output buffer which needs not to be concealed */
+ if (conceal_group_min == 0)
+ endBand = conceal_min;
+ else
+ endBand = pRvlc->maxSfbTransmitted;
+ for (group = 0; group <= conceal_group_min; group++) {
+ for (band = 0; band < endBand; band++) {
+ bnds = 16 * group + band;
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ }
+ if ((group + 1) == conceal_group_min) endBand = conceal_min;
+ }
+
+ startBand = conceal_max + 1;
+ for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
+ for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
+ bnds = 16 * group + band;
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ }
+ startBand = 0;
+ }
+}
+
+/*---------------------------------------------------------------------------------------------
+ function: BidirectionalEstimation_UseScfOfPrevFrameAsReference
+
+ description: This approach by means of bidirectional estimation is generally
+performed when a single bit error has been detected, the bit error can be
+isolated between 'conceal_min' and 'conceal_max', the 'sf_concealment' flag is
+set and the previous frame has the same block type as the current frame. The
+scalefactor decoded in forward and backward direction and the scalefactor of the
+previous frame are compared with each other. The smaller scalefactor will be
+considered as the correct one. At this the codebook of the previous and current
+frame must be of the same set (scf, nrg, is) in each scalefactorband. Otherwise
+the scalefactor of the previous frame is not considered in the minimum
+calculation. The reconstruction of the scalefactors with this approach archieve
+good results in audio quality. The strategy must be applied to scalefactors,
+intensity data and noise energy seperately.
+-----------------------------------------------------------------------------------------------
+ output: Concealed scalefactor, noise energy and intensity data between
+conceal_min and conceal_max
+-----------------------------------------------------------------------------------------------
+ return: -
+--------------------------------------------------------------------------------------------
+*/
+
+void BidirectionalEstimation_UseScfOfPrevFrameAsReference(
+ CAacDecoderChannelInfo *pAacDecoderChannelInfo,
+ CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
+ CErRvlcInfo *pRvlc =
+ &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
+ int band, bnds, startBand, endBand, group;
+ int conceal_min, conceal_max;
+ int conceal_group_min, conceal_group_max;
+ int MaximumScaleFactorBands;
+ SHORT commonMin;
+
+ if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
+ MaximumScaleFactorBands = 16;
+ } else {
+ MaximumScaleFactorBands = 64;
+ }
+
+ /* If an error was detected just in forward or backward direction, set the
+ corresponding border for concealment to a appropriate scalefactor band. The
+ border is set to first or last sfb respectively, because the error will
+ possibly not follow directly after the corrupt bit but just after decoding
+ some more (wrong) scalefactors. */
+ if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0;
+
+ if (pRvlc->conceal_max == CONCEAL_MAX_INIT)
+ pRvlc->conceal_max =
+ (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1;
+
+ conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
+ conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
+ conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
+ conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
+
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfFwd[pRvlc->conceal_max] =
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[pRvlc->conceal_max];
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[pRvlc->conceal_min] =
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfFwd[pRvlc->conceal_min];
+
+ /* consider the smaller of the forward and backward decoded value as the
+ * correct one */
+ startBand = conceal_min;
+ if (conceal_group_min == conceal_group_max)
+ endBand = conceal_max;
+ else
+ endBand = pRvlc->maxSfbTransmitted - 1;
+
+ for (group = conceal_group_min; group <= conceal_group_max; group++) {
+ for (band = startBand; band <= endBand; band++) {
+ bnds = 16 * group + band;
+ switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
+ case ZERO_HCB:
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
+ break;
+
+ case INTENSITY_HCB:
+ case INTENSITY_HCB2:
+ if ((pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) ||
+ (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) {
+ commonMin = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousScaleFactor[bnds]);
+ } else {
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
+ }
+ break;
+
+ case NOISE_HCB:
+ if (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] == NOISE_HCB) {
+ commonMin = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousScaleFactor[bnds]);
+ } else {
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
+ }
+ break;
+
+ default:
+ if ((pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] != ZERO_HCB) &&
+ (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] != NOISE_HCB) &&
+ (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) &&
+ (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) {
+ commonMin = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousScaleFactor[bnds]);
+ } else {
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
+ }
+ break;
+ }
+ }
+ startBand = 0;
+ if ((group + 1) == conceal_group_max) endBand = conceal_max;
+ }
+
+ /* now copy all data to the output buffer which needs not to be concealed */
+ if (conceal_group_min == 0)
+ endBand = conceal_min;
+ else
+ endBand = pRvlc->maxSfbTransmitted;
+ for (group = 0; group <= conceal_group_min; group++) {
+ for (band = 0; band < endBand; band++) {
+ bnds = 16 * group + band;
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ }
+ if ((group + 1) == conceal_group_min) endBand = conceal_min;
+ }
+
+ startBand = conceal_max + 1;
+ for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
+ for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
+ bnds = 16 * group + band;
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ }
+ startBand = 0;
+ }
+}
+
+/*---------------------------------------------------------------------------------------------
+ function: StatisticalEstimation
+
+ description: This approach by means of statistical estimation is generally
+performed when both the start value and the end value are different and no
+further errors have been detected. Considering the forward and backward decoded
+scalefactors, the set with the lower scalefactors in sum will be considered as
+the correct one. The scalefactors are differentially encoded. Normally it would
+reach to compare one pair of the forward and backward decoded scalefactors to
+specify the lower set. But having detected no further errors does not
+necessarily mean the absence of errors. Therefore all scalefactors decoded in
+forward and backward direction are summed up seperately. The set with the lower
+sum will be used. The strategy must be applied to scalefactors, intensity data
+and noise energy seperately.
+-----------------------------------------------------------------------------------------------
+ output: Concealed scalefactor, noise energy and intensity data
+-----------------------------------------------------------------------------------------------
+ return: -
+--------------------------------------------------------------------------------------------
+*/
+
+void StatisticalEstimation(CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
+ CErRvlcInfo *pRvlc =
+ &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
+ int band, bnds, group;
+ int sumIsFwd, sumIsBwd; /* sum of intensity data forward/backward */
+ int sumNrgFwd, sumNrgBwd; /* sum of noise energy data forward/backward */
+ int sumScfFwd, sumScfBwd; /* sum of scalefactor data forward/backward */
+ int useIsFwd, useNrgFwd, useScfFwd; /* the flags signals the elements which
+ are used for the final result */
+
+ sumIsFwd = sumIsBwd = sumNrgFwd = sumNrgBwd = sumScfFwd = sumScfBwd = 0;
+ useIsFwd = useNrgFwd = useScfFwd = 0;
+
+ /* calculate sum of each group (scf,nrg,is) of forward and backward direction
+ */
+ for (group = 0; group < pRvlc->numWindowGroups; group++) {
+ for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
+ bnds = 16 * group + band;
+ switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
+ case ZERO_HCB:
+ break;
+
+ case INTENSITY_HCB:
+ case INTENSITY_HCB2:
+ sumIsFwd +=
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ sumIsBwd +=
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ break;
+
+ case NOISE_HCB:
+ sumNrgFwd +=
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ sumNrgBwd +=
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ break;
+
+ default:
+ sumScfFwd +=
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ sumScfBwd +=
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ break;
+ }
+ }
+ }
+
+ /* find for each group (scf,nrg,is) the correct direction */
+ if (sumIsFwd < sumIsBwd) useIsFwd = 1;
+
+ if (sumNrgFwd < sumNrgBwd) useNrgFwd = 1;
+
+ if (sumScfFwd < sumScfBwd) useScfFwd = 1;
+
+ /* conceal each group (scf,nrg,is) */
+ for (group = 0; group < pRvlc->numWindowGroups; group++) {
+ for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
+ bnds = 16 * group + band;
+ switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
+ case ZERO_HCB:
+ break;
+
+ case INTENSITY_HCB:
+ case INTENSITY_HCB2:
+ if (useIsFwd)
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ else
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ break;
+
+ case NOISE_HCB:
+ if (useNrgFwd)
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ else
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ break;
+
+ default:
+ if (useScfFwd)
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
+ else
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
+ break;
+ }
+ }
+ }
+}
+
+/*---------------------------------------------------------------------------------------------
+ description: Approach by means of predictive interpolation
+ This approach by means of predictive estimation is generally
+performed when the error cannot be isolated between 'conceal_min' and
+'conceal_max', the 'sf_concealment' flag is set and the previous frame has the
+same block type as the current frame. Check for each scalefactorband if the same
+type of data (scalefactor, internsity data, noise energies) is transmitted. If
+so use the scalefactor (intensity data, noise energy) in the current frame.
+Otherwise set the scalefactor (intensity data, noise energy) for this
+scalefactorband to zero.
+-----------------------------------------------------------------------------------------------
+ output: Concealed scalefactor, noise energy and intensity data
+-----------------------------------------------------------------------------------------------
+ return: -
+--------------------------------------------------------------------------------------------
+*/
+
+void PredictiveInterpolation(
+ CAacDecoderChannelInfo *pAacDecoderChannelInfo,
+ CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
+ CErRvlcInfo *pRvlc =
+ &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
+ int band, bnds, group;
+ SHORT commonMin;
+
+ for (group = 0; group < pRvlc->numWindowGroups; group++) {
+ for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
+ bnds = 16 * group + band;
+ switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
+ case ZERO_HCB:
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
+ break;
+
+ case INTENSITY_HCB:
+ case INTENSITY_HCB2:
+ if ((pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) ||
+ (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) {
+ commonMin = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousScaleFactor[bnds]);
+ } else {
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110;
+ }
+ break;
+
+ case NOISE_HCB:
+ if (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] == NOISE_HCB) {
+ commonMin = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousScaleFactor[bnds]);
+ } else {
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110;
+ }
+ break;
+
+ default:
+ if ((pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] != ZERO_HCB) &&
+ (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] != NOISE_HCB) &&
+ (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) &&
+ (pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) {
+ commonMin = fMin(
+ pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
+ pAacDecoderChannelInfo->pComData->overlay.aac
+ .aRvlcScfBwd[bnds]);
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
+ fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
+ .aRvlcPreviousScaleFactor[bnds]);
+ } else {
+ pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
+ }
+ break;
+ }
+ }
+ }
+}