
Single-Frequency Network Support for
the CRC mmbTools Open-Source
Software-Defined DAB+ Transmitter

Master project

Matthias P. Brändli
matthias.braendli@epfl.ch

EPFL IC LAP – 2012

Supervised by:
René Beuchat – EPFL IC LAP

http://lap.epfl.ch

Mathias Coinchon – European Broadcasting Union
http://tech.ebu.ch

EBU UER

mailto:matthias.braendli@epfl.ch
http://lap.epfl.ch
http://tech.ebu.ch

Contents

Contents

Contents iii

Acronyms v

1 Introduction 1

2 The Digital Audio Broadcasting Standard 3
2.1 History and design . 3
2.2 Modulation . 3
2.3 Ensemble Transport Interface . 5
2.4 Single-Frequency Networks . 8
2.5 Existing transmission systems . 10

3 The CRC Open-Source DAB+ Transmitter 11
3.1 Overview of the CRC mmbTools transmission chain 11
3.2 CRC mmbTools Transmission chain . 11
3.3 Ensemble multiplexing using CRC-DABMUX 14
3.4 OFDM modulation using CRC-DABMOD 15
3.5 Conversion to analog using the USRP . 16

4 Adding SFN Support to the CRC mmbTools 19
4.1 Motivation and goals . 19
4.2 Requirements in a single-frequency network 20

4.2.1 Tolerable relative delay between transmitters 20
4.2.2 Distribution of the ETI data to all transmitters 20
4.2.3 Delay management and fault handling 21

4.3 Time handling in the USRP . 22
4.4 Modifications in the CRC mmbTools . 25

4.4.1 Encoding time into the ETI data . 25
4.4.2 Decoding timestamps in CRC-DABMOD 27
4.4.3 Multi-threaded modulation and USRP driver output 27
4.4.4 Handling per-modulator transmission delay 29
4.4.5 Filtering . 29
4.4.6 Distribution of ETI over an IP network 31
4.4.7 Summary of changes to CRC-DABMOD 33

5 GPS as Time Synchronisation Source 35
5.1 Overview . 35
5.2 Comparison of oscillator types . 35
5.3 Using GPS to discipline oscillators . 36
5.4 Evaluation of the suitability of GPS receivers 37

6 Laboratory Setup Used for Functional Verification 41
6.1 Using signal generators as time-source . 41
6.2 Instantiation and communication between multiplexer and modulators . . 43
6.3 Results . 43

–iii–

Contents

7 Further work 47
7.1 Evaluating other ETI transport protocols . 47
7.2 Porting the modulator to an embedded platform 47
7.3 Adding Transmitter Identification Information support to CRC-DABMOD 47
7.4 CRC-DABMUX multiplex reconfiguration 47
7.5 Monitoring of CRC-DABMOD . 48

8 Conclusion 49

9 Acknowledgments 51

A Software versions and equipment 53

B u-blox LEA-6T GPSDO design 55

C CRC-DABMUX ETI file formats 59

References 61

–iv–

Acronyms

Acronyms

1PPS One pulse per second

CIF Common Interleaved Frame

CRC Communications Research Centre Canada

DAB Digital Audio Broadcasting

DMB Digital Multimedia Broadcasting

ETI Ensemble Transport Interface

ETSI European Telecommunications Standards Institute

FIC Fast Information Channel

HE-AAC High Efficiency Advanced Audio Codec

mmbTools Mobile Multimedia Broadcasting Tools

MNSC Multiplex Network Signalling Channel

NTP Network Time Protocol

OCXO Oven-Controlled Crystal Oscillator

OFDM Orthogonal Frequency-Division Multiplexing

PRBS Pseudo-Random Bit Sequence

SFN Single-Frequency Network

TCXO Temperature-Compensated Crystal Oscillator

TIST Timestamp field in the ETI frame

TM Transmission Mode

UHD USRP Hardware Driver

USRP Universal Software-Radio Peripheral

–v–

Acronyms

–vi–

1 Introduction

1 Introduction

The world of audio broadcasting is slowly moving away from the well-established analog
FM standard to a new digital standard called “Digital Audio Broadcasting” (DAB), in the
same way television is doing it. This digital switchover brings better signal quality to the
listener and is more robust, especially in the case of mobile reception. For broadcasters,
this new technology also brings improvements in regard to coverage planning and energy
consumption, thanks to the ability to create single-frequency networks, using which a
large coverage is achieved by running several transmitters in unison, simultaneously
transmitting the same signal on the same frequency.

However, these improvements come at a certain cost: while in analog broadcasting it
is possible for a small community radio to set up a small FM transmitter for a modest fee,
it is much more complex in digital transmission. For one, it is not possible anymore to
build and run a transmitter cheaply, partly because digital technology is more complex,
but also because it is more recent. Secondly, the commercial solutions that exist on the
market are too expensive for small broadcasters, who do not have the means to invest
into a new technology, especially if the old one is still working fine. But DAB is especially
interesting for small broadcasters, which often lose the fight for FM spectrum against
larger entities, because it opens up much more spectrum, allowing a more diverse and
larger set of radio programmes to be broadcast in a given region.

The Communications Research Centre Canada has developed a set of tools that
may very well change this situation. Based on the software-defined radio principle,
their open-source “Mobile Multimedia Broadcasting Tools” (mmbTools) can be used
to transform any normal Linux computer into a DAB transmitter. These tools, when
combined with a hardware interface that allows the computer to output a radio-frequency
signal, compose a complete but affordable DAB transmitter. This solution has enabled
several trial broadcasts in different countries.

While this solution is very interesting for experimentation and broadcasts with a
small coverage, it does not support the creation of single-frequency networks, which is
necessary for larger coverages. In this project, I have added this feature to the mmbTools,
so as to open up the possibility to use these tools for larger projects.

–1–

1 Introduction

–2–

2 The Digital Audio Broadcasting Standard

2 The Digital Audio Broadcasting Standard

2.1 History and design

Digital Audio Broadcasting, or DAB for short, is a technology developed in the late eighties
with the intent to replace analog FM radio by a more robust and feature-rich digital
broadcasting technology. It is standardised by ETSI, which gives free access to the
documents describing the whole transmission and reception chain [6]. It has already been
deployed in several countries, notably in the United Kingdom, and in several European
countries.

The radio programmes are encoded with a digital audio codec, and are transmitted
using a digital modulation technique. The original DAB standard has been upgraded in
2007 with a new and more efficient audio encoder: In the original standard, MPEG Audio
Layer 2 (MP2) is used to encode the audio programme, whereas DAB+ uses MPEG-4
High Efficiency Advanced Audio Coding (HE-AAC). The ETSI standard TS 102 563 [12]
describes the changes between DAB and DAB+. The DAB+ extension integrates well
in the original standard, and many components are identical between DAB and DAB+.
Newer DAB+ receivers must also be able to receive the older DAB standard, but old
receivers cannot since they lack the HE-AAC decoder.

Contrary to analogue FM transmission, several radio programmes are put together in
one Ensemble, which is then transmitted from one or several locations. Each ensemble
contains up to 18 programmes–the number depending on the desired audio quality–which
are transmitted at once.

It is also possible to transmit data, pictures and text information, which can for
instance be used to show programme-related content on a receiver. For instance, a radio
programme might show the CD cover of the currently playing song, or a camera picture
of traffic on congested highway segments. Since these are auxiliary channels to the
radio programme, the bit-rate of such picture channels is quite low, and the picture only
changes every few seconds. This feature is called a slideshow.

The same modulation chain can also be used to transmit video, that is described
in a related standard called Digital Multimedia Broadcasting, formalised in two ETSI
standards [7, 8]. In that case, a MPEG transport stream is transmitted as a data service
over DAB.

2.2 Modulation

The modulation scheme used in DAB has been chosen to cope with the adverse channel
conditions that arise for mobile reception in urban environments, as illustrated in figure 1.
Due to the environment that creates reflections, these channels are characterised by
multipath propagation with long echoes. Several out of phase contributions resulting
from those reflections will reach the receiver with different delays, and will interfere with
each other. In some situations, reflections with a length of up to 50 km are possible; this
corresponds to a delay of 50000

c ≈ 165µs. This interference pattern is frequency selective,
with some parts of the spectrum that are subjected to constructive interference, while
other parts interfere destructively. This results in a non-flat spectrum at the receiver.

For a mobile receiver, this effect does not only vary in frequency, but also in time.
Furthermore, the receiver will experience a Doppler shift for each contribution–each
of which arriving at the receiver from a different direction–leading to what is called a
Doppler spectrum.

These channel conditions make it impossible to use a single-carrier modulation (e.g. a
single QPSK modulation) without advanced techniques, because for a 1 Mbps bandwidth,

–3–

2 The Digital Audio Broadcasting Standard

Figure 1: Reflections are extremely common in urban environments.

the symbol duration will be shorter than the reflections, leading to strong inter-symbol
interference. For the QPSK example, which carries two bits per symbol using this
bandwidth, the symbol duration Ts =

2 bpsym
1 Mbps = 2µs. In that case, even a reflection of

one kilometer–each kilometer corresponds to a delay of 3.3µs–will lead to inter-symbol
interference that is very difficult to cope with. Several techniques can be used in this
situation, and the technique used in DAB to overcome these constraints is multi-carrier
modulation.

In the multi-carrier approach, the total data-rate is split among several carriers, which
therefore carry only a fraction of the total data-rate. If there are K carriers, the data-rate
can be split in K, and the symbol duration will be K times larger. With enough carriers,
the symbol duration can be made longer that the longest expected echoes.

The most frequently used technique used to implement a multi-carrier approach is
Orthogonal Frequency-Division Multiplexing (OFDM), which uses the orthogonality
of the Fourier transform to create the multiple channels. Thanks to the FFT algorithm
for the calculation of the Fourier transform, this approach is very efficient in terms of
computational complexity.

OFDM is a modulation technique designed to be resistant against multipath prop-
agation channels. For a wide signal, like DAB which uses 1.5 MHz of spectrum,
self-interference from multipath reflections results in a non-flat fading, i.e. the attenuation
of the signal will not be the same for all frequencies. This leads to the aforementioned
problems if a single carrier is used. However, for DAB, between 256 and 2048 OFDM
carriers are used1, each of which is then modulated with data. These sub-carriers will be
narrow, and each will therefore only experience flat fading. Thus, instead of being unable
to demodulate the whole signal, it will be possible to decode most sub-carriers, except
those that as subjected to the strongest fading. This missing data can be compensated
using forward error correction.

Furthermore, the total data throughput is distributed over all sub-carriers. Each
sub-carrier transmits only a low throughput, and therefore has a low symbol rate. This
makes it possible to insert a guard interval between symbols, and each sub-carrier will
be much less affected by inter-symbol interference (ISI). The guard interval in this case
is a cyclic prefix, and its length is related to the longest reflection that can accepted
without degradation. The time for a radio signal to propagate over 1 km is about 3.3µs,
from which the required guard interval is calculated for a given maximum reflection
length that the system must be able to cope with. The guard interval must be larger than

1The value depends on the transmission mode: TM 1: 2048, TM 2: 512, TM 3: 256, TM 4: 1024.

–4–

2 The Digital Audio Broadcasting Standard

the delay of the latest reflection. In DAB, the guard interval Tg is 24.6% of the symbol
duration Ts, which depends on the transmission mode:

Mode Ts Tg max reflection
[µs] [µs] [km]

TM 1 1000 246.00 75
TM 2 250 61.50 19
TM 3 125 30.75 9
TM 4 500 123.00 37

Table 1: The maximum reflection length depends on the mode-specific guard
interval length.

The maximal length of the reflections can be calculated using the formula c ·Tg, where
c is the speed of light.

From a time perspective, a DAB transmission looks like a sequence of transmission
frames that are composed of the null symbol, the phase reference symbol and the data
symbols. Their respective lengths depend on the transmission mode, and are given
in elementary periods. The elementary period is defined as 1

2′048′000 s. Section 15.2 of
EN 300 401 [10] gives the durations of those elements. On an oscilloscope, it is difficult to
see the difference between phase reference symbol and the data symbols, but the null
symbol is easily recognisable because the transmitter is off during that symbol. This
symbol is used for receiver synchronisation and it is very important to respect it’s timing,
otherwise reception will break down. Some receivers are not even able to resynchronise
without user intervention. On the oscilloscope, this can be seen as shown on figure 2 and
figure 3, where two null symbols can be seen.

Thanks to this null symbol, it is easy to measure the duration of a transmission frame
using an oscilloscope, which is given here :

• TM 1: T f = 96 ms

• TM 2: T f = 24 ms

• TM 3: T f = 24 ms

• TM 4: T f = 48 ms

2.3 Ensemble Transport Interface

In the DAB specification, there is also a standard defining the data interface between
ensemble multiplexers and modulators. This interface is called the Ensemble Transport
Interface, and is defined in ETS 300 799 [5].

Since the ensemble can possibly be transported over several types of communication
channels, the ETI uses a layered definition, where first a logical definition is given that
can then be adapted to several physical layers. The logical interface is called ETI(LI). It
contains all information required to modulate a DAB signal, such that two transmitters
that receive the same ETI(LI) will output identical modulated RF waveforms. The
information contained in one ETI(LI) frame cannot be changed when the interface is
adapted to a physical layer.

The ETI(LI) frames do not have a constant length, and their nominal rate is one
ETI frame each 24 ms. In transmission mode 2 and 3, one transmission frame can be

–5–

2 The Digital Audio Broadcasting Standard

Figure 2: In TM 1, each transmission frame is 96 ms long.

modulated from the data contained in one ETI frame. In TM 1, four ETI frames for one
transmission frames are taken together, whereas TM 4 combines two.

There are too many different fields in each frame to enumerate them all here, but
some are more important for this project, and will be explained in detail. They are the
following:

FCT The frame counter is a counter, that is in the range 0 to 249. This counter is
incremented by one for each ETI frame, and therefore has a periodicity of 6 s.

MNSC One part of the time synchronisation data is transmitted in the Multiplex Network
Signalling Channel. This channel contains additional information that is parallel to the
programme data. It can contain either frame synchronous signalling information (FSS),
or frame asynchronous signalling (ASS). In the case of frame synchronous signalling,
the data transmitted in the MNSC is related to a particular frame. The MNSC is a low
bandwidth channel, that uses only two bytes in each ETI frame. A signalling group
consists of eight bytes, and is transmitted in the MNSC fields of four consecutive ETI
frames. Time information is only one kind of data that can be transmitted as one signalling
group, but will be the only information used in this project. Its encoding is defined in
annex A of ETS 300 799 [5], and represents time with a one-second accuracy. It is frame
synchronous, and the time information applies to the ETI frame containing the first two
bytes of the signalling group.

–6–

2 The Digital Audio Broadcasting Standard

Figure 3: In TM 2, each transmission frame is 24 ms long.

FP The frame phase is a modulo-8 counter, that is used for two important aspects: the
alignment of frames in TM 1 and TM 4, and in the transmission of the MNSC. In TM 2
and TM 3, one ETI frame is modulated into exactly one transmission frame, consisting of
the null symbol, the phase reference symbol and the data symbols. However, in TM 1,
four ETI frames are taken together to create one transmission frame. In TM 4, two ETI
frames create one transmission frame. The grouping of the ETI frames is defined by the
frame phase: in TM 1, a group of frames is composed either of four consecutive frames
with FP = 0, 1, 2, 3 or with FP = 4, 5, 6, 7. In TM 4, it is analogous for FP values of 0, 1; 1, 2;
3, 4; 5, 6 and 7, 8. For the MNSC, the frame phase is used to define which bytes of the
signalling group are contained in a specific ETI frame.

TIST This Timestamp field contains a value between 0 and 0.999 999 939 seconds, in
61 ns resolution, that specifies the time at which a frame must be transmitted. Combined
with the time information transmitted in the MNSC, it defines the absolute time when a
transmission frame must be sent, up to a constant offset. This field is also called the “one
pulse per second” (1PPS) offset, because it can be understood as the offset between the
rising edge of the 1PPS signal and the time when the frame has to be transmitted.

The ETI(LI) cannot be directly used to save ensemble data to a file2 or to send it over
some channel to another device, because there is no mechanism to synchronise frames.
The layered approach defines an ETI network independent layer called ETI(NI), that
adds synchronisation data and padding to the ETI(LI). ETI(NI) frames contain exactly

2Except maybe if one file per frame is used, which is by no means practical.

–7–

2 The Digital Audio Broadcasting Standard

6144 bytes per frame, which gives a bitrate of 2048 kbps. This format is used in this
project.

2.4 Single-Frequency Networks

From the point of view of the receiver, it is impossible to distinguish a reflection from a
second transmitter when both transmitters send exactly the same signal. Figure 4 gives a
simple illustration of this. The nice side-effect of reflection tolerance is therefore that it
is possible to create a network of transmitters that can reuse the same frequency, have
overlapping coverage, and the receivers will be able to take advantage of the multiple
contributions.

Figure 4: The reflection from the building has been replaced by another trans-
mitter. There is no difference from the point of view of the receiver.

One first advantage of these networks, especially when considering mobile receivers,
is that there is no need to switch frequencies at coverage boundaries, as it is the case
for analog FM reception. The mobile receiver can stay tuned to the same frequency
while moving through a region much larger than the coverage of a single transmitter
and does not have to compare the quality of the transmission on different frequencies.
Furthermore, the absence of switchover will create a better listener experience, because
there will be no audible effect.

There are also less obvious advantages of single-frequency networks. For one,
coverage planning is somewhat simplified, because it is not necessary to find free
frequencies if the service quality has to be improved in an existing network. In FM
broadcasting, frequency channels are a very scarce resource because a given frequency
can only be reused at another transmitter if the coverage zones do not interfere with each
other. The ability to create single-frequency networks in DAB makes a better use of this
spectrum resource. Additionally, the fact that the receiver can combine different incoming
signals leads to what is called network gain. The result of this combination is that it is
possible to receive and decode correctly even in places where the individual incoming
signals have a too low signal-to-noise ratio to be decoded independently. Compared
to a multi-frequency network, where the receiver must switch from one transmitter to
another, less power is necessary for the same coverage. This is illustrated in Figure 5,
where (1) represents the network gain, (2) the minimum signal strength required for
reception and (3) the transmit power of the transmitter. Thanks to the network gain, it is
possible to lower transmission power while still guaranteeing enough signal strength,
this would be represented as a downward translation of the dashed line.

These advantages come at the cost of higher transmitter complexity. Naturally, the

–8–

2 The Digital Audio Broadcasting Standard

(1)

(2)

(3)
Received
power

Figure 5: The red and blue lines represent the signal strength for two transmitters
using different frequencies. The dashed line corresponds to signal strength in a
SFN with identical transmitter power.

considerations on the relative delays that apply to reflections also apply to the incoming
transmissions from different transmitters. This implies that for a good single-frequency
network, the transmitters have to be perfectly synchronised on two key aspects:

1. Each frame transmission must start at the same absolute time for all transmitters.
If there is a delay between the two transmitters, the whole system becomes less
robust to multi-path, or breaks down if the delay is too large.

2. The transmission frequencies must be identical, so that the sub-carriers align
properly. Otherwise, resistance against Doppler shift will be degraded.

Some delay and some frequency deviation can be tolerated, which depends on the
modulation parameters used. The maximum delay that can be accepted is the length
of the guard interval Tg, that is shown page 5. Since one kilometer corresponds to
3.3µs propagation time, each millisecond additional delay worsens the possible coverage
boundary by up to 300 m. The less relative delay there is between transmitters, the better
the network will be, but in order to achieve good performance, a delay shorter than 1µs
should be guaranteed. The carrier frequency should be kept within 1% of the carrier
spacing according to section 7.3.2 of Hoeg and Lauterbach [14].

To achieve the required frequency stability and precision, several approaches can be
considered. Essentially, an identical clock must be present at each transmission site. A
precise frequency standard alone (e.g. a rubidium or a cesium standard) is not sufficient,
because it cannot be used to define a precise absolute time, unless it is used to drive a
calibrated clock. Another approach is to use a system that receives synchronous time
information from a single source. For the latter, DCF77 and GPS are possible solutions,
with GPS being preferable because a GPS receiver has an internal clock that is aligned
to GPS time and many receivers have a one pulse per second (1PPS) signal that is
aligned to the GPS second change. In comparison, if DCF77 is used, an additional
compensation must be applied at the receiver, depending on its location to correct for the
signal propagation delay.

–9–

2 The Digital Audio Broadcasting Standard

The transmitter must then use this timing information to align its carrier frequency,
and to apply a controlled delay on the transmissions.

2.5 Existing transmission systems

Transmission of digital audio broadcasting is usually done with professional equipment
that uses dedicated integrated circuits to process the data (e.g. for encoding, multiplexing,
modulation, etc.). The cost of such devices is driven up by the fact that they are very
specific to their application and are not mass-produced, because there is no large demand
for such equipment. Also, broadcasters also want to guarantee the reliability of their
transmission, preferring transmission equipment that offers redundancy and comes with
quality guarantees. According to research done by OpenDigitalRadio,3 such equipment
can easily cost over 20′000 EUR for one transmitter.

The software-defined radio approach, in which the radio-frequency samples are
not generated by dedicated hardware but using software is becoming more and more
prevalent in this domain. This is true with commercial equipment4 but also with more
experimental systems. The mmbTools are of these experimental toolsets. Created by the
Communications Research Centre Canada, the mmbTools are a set of PC-based software
that build up software-defined radio transmission chain. Being open-source, I have been
able to base my project on it. It is described in the next section.

3See slide 7 of the presentation http://www.opendigitalradio.org/files/unikom_presentation_pub.
pdf.

4Unique Broadcast Systems Ltd. (http://www.uniquesys.com/) for instance sells a transmitter that can
modulate DVB-T, DAB and many other modulations using different on-board software.

–10–

http://www.opendigitalradio.org/files/unikom_presentation_pub.pdf
http://www.opendigitalradio.org/files/unikom_presentation_pub.pdf
http://www.uniquesys.com/

3 The CRC Open-Source DAB+ Transmitter

3 The CRC Open-Source DAB+ Transmitter

3.1 Overview of the CRC mmbTools transmission chain

The open-source transmitter for DAB and DAB+ that is part of the CRC mmbTools5 has
been developed by the Communications Research Centre Canada. It is built upon the
software-defined radio principle, where the RF signal is not generated and modulated
using dedicated hardware, but is calculated by a general-purpose processor–in this case,
a normal PC is used–and then fed to a modulation-agnostic hardware transmitter. The
main advantage of this solution, for the specific case of a DAB, is to drastically lower the
price for a transmitter by replacing dedicated hardware for which the market is small
by general purpose and readily available computers. The open-source nature of this
software also enables modifications and adaptation of these tools to changing needs, and
render the tools interesting for studying DAB multiplexing and modulation. Compared
to a commercial transmission chain built out of dedicated hardware, the software-defined
radio approach inherits from all the complexity coming from a general-purpose computer
with its operating system. That makes it more difficult to set up, and requires more
tinkering and testing to achieve an error-free function.

These tools have been used for several test and demonstration transmissions by the
OpenDigitalRadio6 project, and both the mmbTools and the OpenDigitalRadio project
are still evolving.

In this section, I present the versions of the mmbTools on which this project is built.
When joined together, the CRC mmbTools compose a complete transmission chain for
one transmitter. In order to create a single-frequency network, I have cut the linear chain
described below, so that several modulators can run simultaneously and drive more than
one transmitter. Furthermore, I have modified and improved these elements to make
sure the timing constraints described in section 2.4 are met.

In section 4, I will explain in detail what these modifications consist of.

3.2 CRC mmbTools Transmission chain

We will now go through the whole transmission chain shown in figure 6.

Audio encoders Multiplexer
CRC-DABMUX Modulator

CRC-DABMOD
GNU Radio
Resampling
Filtering
USRP interfacing

USRP
with WBX
daughterboardData service

sources

Sets parameters
for the multiplex
Defines protection
levels

(2) (3) (4) (5) (6) (7) (8) (10)(9)(1)

Figure 6: DAB transmission chain used with the CRC mmbTools

Short summary The first section, comprising parts 1 to 7, is entirely in software and is
composed of the preparation of the content that is to be transmitted (audio coding), the
multiplexing the services (audio and data), the error-correction and the modulation to
baseband.

This modulated sampled baseband signal must then be transmitted. The signal must
be converted to analog form using a high-speed digital-analog converter, and up-mixed

5http://mmbtools.crc.ca/
6http://www.opendigitalradio.org

–11–

http://mmbtools.crc.ca/
http://www.opendigitalradio.org

3 The CRC Open-Source DAB+ Transmitter

to the desired transmission frequency. The USRP family of devices from Ettus Research is
used for this (9). These devices are generic software-defined radio platforms, and consist
of all components needed to receive and create RF signals. The hardware is connected
either through USB or through Gigabit Ethernet (8) to a computer running GNU Radio
(7), which interfaces the CRC mmbTools with the USRP driver.

Programme and data sources (1) Since one ensemble contains several programmes, it
is necessary to gather them on one computer to assemble them into a single data stream.
Each of those programmes must be properly encoded, either into MP2 or into HE-AAC,
with suitable parameters.

The audio source can be a sound card, an audio file or a network stream of audio
samples. To encode the source into MP2, the open-source toolame encoder can be used.
To encode into HE-AAC, CRC-DABPLUS can be used. The latter is not open-source
because of patent issues.

Additional data sources (slide-show pictures, text, etc.) can also be defined. CRC has
developed a closed-source software that can be used to generate slide-shows.

Contribution (2) of each encoded audio programme to the multiplexer (3) The mul-
tiplexer, implemented in CRC-DABMUX, receives the encoded audio programmes from
each source. The contributions can be done using a network stream, a fifo or a file.

This allows the radio stations to encode their programme in their own studios, but at
the same time allows encoding on the computer on which the multiplexer runs if it is
necessary.

Multiplexing (3) The multiplexer, CRC-DABMUX, creates the ensemble by combin-
ing all input sources. When this program is called, all multiplex parameters (name,
programmes, bitrates, etc.) must be specified.

One ensemble contains several services, which can be selected by the user on the
receiver. Each service has one or more components, which carry data. For instance, a
radio programme called “Radio Foo Bar” which transmits both audio and slide-show,
will have one service (which is likely to be called “FOO BAR”) with two components.
Each component is then mapped to a sub-channel, which has a specific bit-rate and
protection. An example structure is given in figure 7.

The output is an Ensemble Transport Interface (ETI) stream, which is described below.
CRC-DABMUX is written in C++, and has been released under an open-source license.

ETI Stream (4) All data concerning an ensemble is contained in an ETI stream, which
can be saved to a file, or transmitted to a modulator. This ETI stream already contains
the error-corrected data and is at a constant rate of 2.048 Mbps.

The multiplexer output (4) is an ETI stream, which is standardised in the specification
ETS 300 799 [5]. However, the file format containing an ETI stream is not standardised,
and CRC-DABMUX supports three formats, with different encapsulations. The supported
formats are enumerated in appendix C. This becomes an issue only if the output is saved
into a file.

This stream can be transported through a pipe if the multiplexer is on the same
computer as the modulator, over IP networks or even over special interfaces.

–12–

3 The CRC Open-Source DAB+ Transmitter

Service 1

Ensemble

Service 2 Service 3

SC 1 SC 2 SC 3 SC 4 SC 5 SC 6

SubCh 8 SubCh 60SubCh 1 ... SubCh 8 ...

Figure 7: An example composition of an ensemble, showing three services, six service
components mapped onto four sub-channels, taken from the CRC-DABMUX documen-
tation [4].

Modulation (5) and baseband signal (6) Modulation consists of creating the RF wave-
form that will be used to transmit the ensemble. Details about how the DAB modulation
is built are given in section 2.2.

The open-source C++ project CRC-DABMOD is used for this task. Its input and
output can be files or pipes.

The modulator output (6) is the RF waveform is represented in quadrature (I/Q)
baseband (2 ∗ 16 bits per sample), with a parametrisable sample rate. The nominal sample
rate is 2048 kSps, but can be changed by resampling.

GNU Radio (7) Before this baseband signal gets sent to the hardware platform, it must
be filtered to improve the transmission quality, and to respect the spectrum allocation.
Furthermore, it is necessary to parametrise the hardware platform. Important settings
are:

• The carrier centre frequency;

• The upsampling factor on the FPGA;

• The sample rate used on the USB;

• Which antenna to use, and the analog transmission gain.

These steps are performed by GNURadio, a software-defined radio framework written
in C++, whose DSP blocks can be instantiated and connected using python code. It also
includes a graphical designer called GNURadio Companion.

GNU Radio uses the UHD driver to interface to the USRP hardware platform.

Hardware platform (9) and its connection (8) Most hardware platforms from the USRP
family have been used for trial transmissions. The first models (USRP1) have been most

–13–

3 The CRC Open-Source DAB+ Transmitter

used. The newer models (USRP2, USRP B100) are working, but have not been used for
24/7 transmissions yet. Their stability still has to be evaluated.

The USRP1 and the USRP B100 are connected to their host computer using USB 2.0.
The USRP2 has a Gigabit Ethernet connection. Both connection types are abstracted by
the UHD driver, and can be used in the same way with GNU Radio.

The hardware platform contains a communication interface, an FPGA used to buffer
and upsample data, one or two digital-analog converters, each of which is connected to
a RF daughterboard. There are several daughterboards available, the most interesting
one for DAB transmission in Band III is the WBX board, which has adequate frequency
coverage (50 MHz to 2.2 GHz). This daughterboard then mixes the baseband transmission
with a local oscillator (LO) so that the transmission is done at the right frequency.

Antenna system (10) The RF output is connected to an antenna system which may
include additional filters, amplifiers or to laboratory test equipment.

3.3 Ensemble multiplexing using CRC-DABMUX

As mentioned above in the overview, CRC-DABMUX can be used to create an ETI stream.
CRC-DABMUX is a command-line tool that is written in C++. First, its invocation
will be presented using a simple example, where two programmes (called “Prog1” and
“Prog2”) are multiplexed into one ensemble called “Test Ensemble”. Both programmes
are pre-encoded .mp2 files that have been prepared in advance using toolame, according
to instructions on opendigitalradio.7 Both prog1.mp2 and prog2.mp2 are encoded at
128 kbps.

The output ETI stream is written to standard output, in “raw” format, also called
ETI(NI, G.703) in the standard ETS 300 799[5]. The raw format is composed of 6144-byte
ETI frames, without any additional headers, with padding bytes according to the standard.
CRC-DABMUX also supports other output formats, that are described in appendix C.

The invocation one could use in this case is the following:

CRC-DabMux -L "Test Ensemble" \
-A prog1.mp2 -b 128 -i 10 -S -L "Prog1" -C \
-A prog2.mp2 -b 128 -i 3 -S -L "Prog2" -C \
-O fifo:///dev/stdout?type=raw

Each line beginning with -A creates a new subchannel, with one service using -S and
one component -C. The other options define parameters for the subchannels and the
parameters, and are described in detail in the CRC-DABMUX manpage.

In this example, the multiplexer will generate ETI frames as fast as possible, and
not at the nominal rate of one frame every 24 ms. This is not an issue if the multiplexer
is part of a blocking chain of programs, where the subsequent elements in the chain
will back-pressure the multiplexer to the right speed. However, when used with a
non-blocking output (e.g. a UDP multicast socket), the simul output can be added to the
list of outputs as follows. This will rate-limit the ETI stream to one frame every 24 ms.

CRC-DabMux -L "Test Ensemble" \
-A prog1.mp2 -b 128 -i 10 -S -L "Prog1" -C \
-A prog2.mp2 -b 128 -i 3 -S -L "Prog2" -C \

7http://www.opendigitalradio.org/index.php/DAB/DAB%2B_encoding

–14–

http://www.opendigitalradio.org/index.php/DAB/DAB%2B_encoding

3 The CRC Open-Source DAB+ Transmitter

-O fifo:///dev/stdout?type=raw \
-O simul://

3.4 OFDM modulation using CRC-DABMOD

The multiplexed ensemble, carried in the ensemble transport interface (ETI) stream, has
to be modulated in order to be transmitted. The modulator offers much less options than
the multiplexer, because most settings are defined in the ETI stream.

The modulators supports three options related to modulation:8

• -g gainMode selects how the modulator computes the OFDM symbol gain;

• -r samplingRate defines the output sample rate;

• -c clockrate enables the pre-emphasis for the interpolation filter in the FPGA.

The modulator is written as a flow graph, that is built as shown on figure 8.

fic ficPrbs ficConv ficPunc

cifPrbs cifMux

For each subchannel

subch

subchPrbs

subchConv

subchPunc

subchInterleave

cifPart

cifMap

cifFreq
cifOFDM

cifGain

cifGuardcifDiff

cifRef

cifNull

cifSig

cifCicEq

cifRes

ETI
reader

OutputFile

Figure 8: The flowgraph in the CRC-DABMOD modulator (version 0.2.0), black
arrows represent data, blue arrows are complex floating-point samples. Dashed
boxes are only enabled in some circumstances.

Each of the blocks will now be presented:

• ETI reader: reads one ETI frame into structures;

• fic (Fast information channel): This fic source block is created by the ETI reader,
and is used as a flowgraph source for FIC data;

• ficPrbs, subchPrbs and cifPrbs are Pseudo-random bit sequence generators, used
energy dispersal;

• ficConv and subchConv are convolutional encoders for error correction;
8The options are described on http://www.opendigitalradio.org/index.php/CRC-DabMod

–15–

http://www.opendigitalradio.org/index.php/CRC-DabMod

3 The CRC Open-Source DAB+ Transmitter

• ficPunc and subchPunc apply puncturing after the convolutional encoders;

• subchInterleave takes several data streams from the subchannels, and interleaves
them together into one single data stream;

• cifMux: This frame multiplexer writes the PRBS, the FIC and the subchannels into
one CIF frame;

• cifPart: The CIF block partitioner takes the CIF frame and creates blocks of a size
suitable for modulation. It only supports TM 2;

• cifMap is the QPSK symbol mapper, that maps two bits on each symbol. It outputs
complex float I/Q data;

• cifFreq applies a permutation of the subcarriers, so as to disperse data among them;

• cifDiff transforms the QPSK symbols to DQPSK, and adds a phase offset to each
symbol defined by cifRef;

• cifNull creates the NULL symbols, which get combined to the DQPSK symbols by
the signal multiplexer cifSig;

• If the -c command line option was given, cifCicEq is used to equalise the CIC filter
in the FPGA;

• Then the QPSK symbols are OFDM-modulated by cifOFDM, that takes the inverse
Fourier transform of each frame. cifOFDM outputs I/Q samples.

• The guard interval is inserted by cifGuard at the beginning of each symbol;

• Finally, if the output sampling rate is not 2.048 Msps, cifRes is used to resample the
I/Q data to the desired sample rate.

The output data (composed of 32 bits per complex sample, interleaved I/Q at the specified
sample rate) is then written to a file or a pipe.

3.5 Conversion to analog using the USRP

In the original transmission chain, the output data from CRC-DABMOD is fed into a
GNURadio script (written in python or designed using gnuradio-companion). This
script, called a “baseband wave player” serves as interface between the modulator and
the USRP, and applies two transformations to the I/Q signal:

• (optional) Filtering: applies a 800 kHz low pass filter to the I/Q signal, so as to have
less energy out of band. The transmitted signal will be limited to about 1600 kHz
bandwidth. This value has been empirically found. With this filter, less energy will
be wasted in the mask-filter between the power amplifier and the antenna system;

• Normalisation: The USRP driver expects the samples to be in the range [−1.0, 1.0],
but DABMOD outputs samples in the range [−32768.0, 32768.0]. These values are
normalised by the “Multiply const” block in the wave player shown in figure 9.

These two transformations can be seen in gnuradio-companion, as shown in the
screenshot in figure 9.

–16–

3 The CRC Open-Source DAB+ Transmitter

Figure 9: The coinwap-uhdwave player as seen in gnuradio-companion.

–17–

3 The CRC Open-Source DAB+ Transmitter

–18–

4 Adding SFN Support to the CRC mmbTools

4 Adding SFN Support to the CRC mmbTools

4.1 Motivation and goals

The main goal of this project is to make it possible to use the existing CRC mmbTools to
create an single-frequency network, using the Ettus Research USRP family of devices.
In the present state, the mmbTools form a rich set of tools for experimentation with
DAB, trials and short temporary transmissions in DAB and DAB+. Without SFN support,
they however lack an important feature necessary in larger projects requiring extended
coverage areas. By adding this feature, these open-source tools will become more suitable
for a larger range of broadcasting projects, while still keeping the cost-effectiveness of
the USRP hardware platform.

In order to achieve this goal, I have developed a way to synchronise the modulators
and the transmitters to a master clock. Also, the ETI stream gets distributed to all
transmitters, while respecting important timing constraints, using a small program I
wrote for this. A normal IP network is used for this.

With these modifications, the setup described in figure 10 is now working. In this
setup, each transmitter has one modulator and all of them receive the same ETI stream
over an IP network. The whole system must cope with the additional delay caused by
the IP network.

...

Multiplexer
CRC-DABMUX

Modulator
CRC-DABMOD

USRP

Includes timestamps
into ETI stream

Modulator
CRC-DABMOD

USRP

IP Network

USRP

Time
standard

10MHz & 1PPS

10MHz & 1PPS

S
e
v
e
ra

l
kmTime

standard

Multiplex operator

Transmitter site #2

Transmitter site #1

Figure 10: Proposed system for a time-synchronised SFN transmission with two
transmitters.

This is not the only possible setup. It could also be possible to transmit the modulated
baseband RF signal to each transmitter location, and have only one modulator. However,
this leads to a thirty-two-fold increase in required network bandwidth: The ensemble
transport interface, designed for the transmission of ensemble data from the multiplexer
to the modulator, has a bit-rate of up to 2.048 Mbps, whereas the RF signal is represented
32 bit samples at a rate of 2.048 Msps. Furthermore, it would also require a non-standard
encapsulation to transmit the timestamps.

This reason, combined with the desire to stay compatible with professional multi-
plexing and modulation equipment that is interconnected by the ensemble transport
interface has rendered the first approach preferable.

–19–

4 Adding SFN Support to the CRC mmbTools

In this section, I will define what are the requirements for the creation of a single-
frequency network, show what features of the drivers are useful, and finally explain the
modifications done on the mmbTools.

4.2 Requirements in a single-frequency network

4.2.1 Tolerable relative delay between transmitters

As explained in section 2.4, the relative delay between different transmitters must be
below 1µs. This means that the granularity of the delay control for each transmitter
offset must be smaller that this value and that each transmitter must respect the specified
offset with this precision.

4.2.2 Distribution of the ETI data to all transmitters

Until now, all experiments and test transmissions using the CRC mmbTools have used a
single PC for multiplexing and modulation, and the communication between the two
has only been done through UNIX pipes and files.

In a single-frequency network, and more generally in the case where there are several
transmitters, it is necessary to place multiplexing and modulation at distinct physical
locations. This implies that a distribution network for the multiplexed ensemble must be
put in place. This is the network described as “IP Network” in figure 10. The distribution
network connects all transmission sites to the multiplex site, and carries the ETI stream.

The ETSI standards TS 102 693 [11] and TS 102 821 [9] define a transport mechanism
for the ETI distribution, and a transport protocol, but do not discuss the implications of
using them on an existing IP network.

For cost-efficiency, it is preferable to use an existing network over a dedicated one
(leased lines). The most interesting network in this case is the Internet, because of the
following advantages it offers:

• Enough bandwidth theoretically available, even in more rural areas;

• Lower price than leased lines thanks to the wide spread deployment of xDSL
residential Internet access connections;

• IP-based, enabling the use of diverse transport protocols.

However, being a packet-switched network, there are some drawbacks:

• No real-time guarantees concerning packet delivery times, leading to unpredictable
delays;

• All traffic is best-effort, and shared among several users, which might pose band-
width constraints.

Then, a suitable transport protocol has to be chosen. It is important for CRC-DABMOD
that one ETI frame arrives completely, because there is no resynchronisation possible if a
part of a frame is lost. In this happens, the modulator will crash. Also, the ETI stream
must not suffer errors. Therefore, the chosen transport protocol must guarantee that one
ETI frame reaches either correctly and in its entirety, or not at all.

If some of frames are missing, the modulator will resume modulation afterwards
without problems, because the frame numbering is not verified. However, this also
means that if two frames arrive in the wrong order, they will be considered in the wrong

–20–

4 Adding SFN Support to the CRC mmbTools

order too. In the transmission modes where several ETI frames are taken together to
modulate (TM 1 and TM 4), this can pose problems even if timestamps are defined.

Therefore, when using TM 1 or TM 4, the transport protocol must also ensure that all
frames arrive at the modulator, and that they are in order.

4.2.3 Delay management and fault handling

Delay planning is an important aspect of single-frequency network planning. In a
network of several transmitters, it must be possible to control the relative delay for each
transmitter. Section 7.6.4 of Hoeg and Lauterbach [14] gives an example of an existing
DAB SFN with the corresponding transmitter delays.

Figure 11 shows the timing of the ETI data at three different places: At the multiplexer,
where the frames are created, and at two modulators, connected through a network to the
multiplexer. We will consider frame number 51, but the same applies to all frames. We
assume that the three entities possess a synchronised clock. The multiplexer generates
frame i at time ti, and includes that information in the timestamp, in the frame itself. We
want all modulators to output the modulated RF waveform corresponding to the ETI
frame at time tTX,i, defined by a constant offset:

tTX,i = ti + offset

Because of the network, each modulator receives the frame with a different delay tNET.
Since all modulators share the same clock, they will be able to delay transmission until
exactly the right point in time.

51 52 53 5450Mux

t51

51

51

tTX,51

Mod 1

Mod 2

offset
tNET2

tNET1

Figure 11: The ETI frame arrival time depends on the network delay.

It is important to note that the offset cannot be shorter than the maximal network
delay, which comes from the fact that the network link with the highest latency defines
the minimal latency between multiplexing and modulation.

–21–

4 Adding SFN Support to the CRC mmbTools

4.3 Time handling in the USRP

There are two ways of using a precise time reference for the USRPs. The simple solution
is to add the official, internal GPSDO that is available from Ettus Research.9 This GPSDO
is based on the Jackson Labs Firefly-1A device. It is also possible to use an external time
source, thanks to the 10 MHz REFCLK and 1PPS inputs.

In both cases, the reference clock is used as main clock for the FPGA, the D/A
converters and the analog circuit parts. On the USRP2, the clock is used by the Analog
Devices AD9510 PLL and clock distribution IC.10 On the USRP B100, the Analog Devices
AD9522-4 is used for the same purpose. Because the REF clock is directly used in
a phase-locked loop, which is sensitive to phase noise, care must be taken to have a
reference clock of good quality.

In order to tell the USRP to use the external reference clock and the external 1PPS
source (both on SMA connectors), the following must be executed by the program using
the device (usrp is a pointer to the usrp device object):

1 uhd::clock_config_t clock_config;
2 clock_config.ref_source = uhd::clock_config_t::REF_SMA;
3 clock_config.pps_source = uhd::clock_config_t::PPS_SMA;
4 clock_config.pps_polarity = uhd::clock_config_t::PPS_POS;
5 usrp->set_clock_config(clock_config ,
6 uhd::usrp::multi_usrp::ALL_MBOARDS);

Listing 1: Setting clock configuration for the USRP

The 1PPS input is used to define the time inside the FPGA. The idea is to tell the
FPGA to start the internal clock at a precise moment in time, while the clock advances
at the speed defined by the reference clock input. The information about what time it
is is given over another communication channel, either internally when the GPSDO is
used, or by the computer (over USB or Gigabit Ethernet) otherwise. The UHD driver
exports functions that allow the time to be set synchronously to the 1PPS rising edge.
The simplest function sets the time at the next 1PPS rising edge:

1 usrp->set_time_next_pps(const time_spec_t &time_spec ,
2 size_t mboard = ALL_MBOARDS);

Listing 2: Specifying the time at the next 1PPS rising edge

This function can be used if the host computer also receives the 1PPS input, and
knows when the rising edges occur. As this is not always the case,11 it is also possible to
synchronise the USRP time using another approach. Using the network time protocol
(NTP), computer time can by synchronised to UTC, with a precision of at least 100 ms,
often much better12 as seen on figure 12.

When synchronised using NTP, the clock difference between the host computer and
the GPS receiver is less than the estimated NTP offset, with a very high probability. This

9More details about the Ettus GPSDO: https://www.ettus.com/product/details/GPSDO-KIT
10Schematics for select models of USRPs and daughterboards have been published, from which this

information has been taken. See the website http://code.ettus.com/redmine/ettus/projects/public/
documents for more details.

11Additional interfacing circuitry between the GPS receiver and the PC is required, e.g. a serial RS232
connection, a parallel port or a dedicated 1PPS interface card. See http://linuxpps.org and the relevant
documentation in the linux kernel source tree (Documentation/pps/pps.txt) for more details about how to
interface a 1PPS signal to a linux computer.

12This depends on the PC clock quality and the manner in which the internal PC clock is handled. Often, an
estimate error smaller than 10 ms can be achieved.

–22–

https://www.ettus.com/product/details/GPSDO-KIT
http://code.ettus.com/redmine/ettus/projects/public/documents
http://code.ettus.com/redmine/ettus/projects/public/documents
http://linuxpps.org

4 Adding SFN Support to the CRC mmbTools

Figure 12: Network delay, clock offset and jitter monitored and graphed on a
standard Linux based PC. Over the course of one year, the clock offset always
was below 5 ms even in varying network conditions. Three different NTP servers
are used on this client. The outage in may was due to other reasons.

fact can then be used to synchronise the USRP clock using the protocol outline in figure 13.
The middle arrow shows code flow in listing 3. It is assumed that the GPS time has a
negligible offset to NTP time, and I will use the term absolute time to represent either of
those. Also, the GPS receiver offset relative to absolute time is assumed to be less than
±100 ns. The host computer time is also assumed to be synchronised to absolute time
with a maximal (positive or negative) offset of 20 ms. The protocol used is the follwing:

• First, wait for the host computer clock to change second;

• Then, wait for a timespan that guarantees that the 1PPS rising edge has passed;

• Finally, call set_time_unknown_pps, which waits on for the next 1PPS rising edge,
and sets the time in the USRP on the subsequent one by calling set_time_next_pps.

1 void set_usrp_time() {
2 struct timespec now;
3 time_t seconds;
4 clock_gettime(CLOCK_REALTIME , &now);
5

6 seconds = now.tv_sec;
7

8 while (seconds + 1 > now.tv_sec) {
9 usleep(1);

10 if (clock_gettime(CLOCK_REALTIME , &now)) {
11 error();
12 }
13 }
14 /* We are now shortly after the second change. */
15

16 usleep(200000); // 0.2s, we want the PPS to be later
17 usrp->set_time_unknown_pps(uhd::time_spec_t(seconds + 2));

–23–

4 Adding SFN Support to the CRC mmbTools

18 }

Listing 3: Synchronising the USRP clock using a NTP synchronised host and a GPS as
1PPS source

Abs.
time

PC
time

GPS
1PPS

14:55:36 14:55:37 14:55:3814:55:35

< 100ns

14:55:36 14:55:37 14:55:3814:55:35

< 20ms

set_time_unknown_pps(14:55:38)

WAIT...

sleep(0.2s)
set_usrp_time()

WAIT
set_time_next_pps(14:55:38) USRP

time set

+
2s

Figure 13: Setting time in the USRP from a NTP synchronised host, with the
1PPS generated by a GPS receiver requires several steps.

Once the time is set, it is possible to add a timestamp to samples that have to be
transmitted. Each sample that is sent to the USRP is accompanied by metadata structure.
The metadata in UHD is defined by:

1 struct tx_metadata_t {
2 bool has_time_spec;
3 time_spec_t time_spec;
4 bool start_of_burst;
5 bool end_of_burst;
6 tx_metadata_t(void);
7 };

Listing 4: UHD transmit metadata structure

The start of burst (end of burst) field is used to signal the USRP when a series of samples,
called a burst starts (stops), which is used when transmitting non-continuously. This is
not used in the DAB transmitter application, because it uses continuous streaming.

The has_time_spec specifies if the time_spec field is valid and should be considered.
This contains the exact time at which the first sample of the burst shall be sent. These
timestamps are considered each time streaming begins and at each beginning of a burst.

Assuming the precise time at which a sample must be transmitted is given as the
sum of an unsigned tx_second and a floating point value pps_offset between 0 and 1,
timestamped transmission can be achieved as follows:

1 struct tx_metadata_t md;
2 md.has_time_spec = true;
3 md.time_spec = uhd::time_spec_t(tx_second , pps_offset);

–24–

4 Adding SFN Support to the CRC mmbTools

4 uhd::stream_args_t stream_args("fc32"); //complex floats
5 uhd::tx_streamer::sptr myTxStream = usrp->get_tx_stream(

stream_args);
6 size_t bufsize = myTxStream ->get_max_num_samps();
7 while (running && (num_acc_samps < samplebuffer_size)) {
8 size_t samps_to_send = std::min(samplebuffer_size -

num_acc_samps , bufsize);
9 //send a single packet

10 size_t num_tx_samps = myTxStream ->send(
11 &in[num_acc_samps], samps_to_send , md, timeout);
12 num_acc_samps += num_tx_samps;
13 md.time_spec = uhd::time_spec_t(tx_second , pps_offset)
14 + uhd::time_spec_t(0, num_acc_samps/sampleRate)

;
15 }

Listing 5: Setting time in the transmit metadata structure

Since it is not known in advance how often sendmust be called, a loop is required. In
each iteration, I accumulate the number of transmitted samples into num_acc_samps, and
update the time specification in the metadata according to the sample rate.

In the FPGA fabric on the USRP, the vita_tx_control.vmodule reads the timestamp,
encoded on 64-bit, and compares it to a counter defined in time_64bit.v. This counter is
incremented in each cycle in the FPGA. The translation from numeric time (as represented
in struct tx_metadata_t) to 64-bit raw form is done by the host code in UHD.

Thanks to this setup, the USRP hardware driver allows to transmit samples at an
accuracy up to one FPGA clock cycle, and forms the basis on which the DAB transmission
generated by the CRC mmbTools can be synchronised.

4.4 Modifications in the CRC mmbTools

In order to support timestamped transmission, I have modified several parts of the
transmission chain. These modifications are illustrated in figure 14, in which the shaded
parts represent support for timestamps. CRC-DABMUX has partial support because it
defines the TIST field, but does not transmit time information. With nothing else that the
TIST, there is an ambiguity about which second the frame has to be transmitted. The
CRC-DABMOD modulator ignores the timestamps, and cannot give any information
to GNU Radio about timing. The UHD driver and the USRP support timestamps as
described above.

The arrow summarises the changes I have done to the different parts, mainly in
CRC-DABMUX and CRC-DABMOD. I have added precise time information in CRC-
DABMUX, and included the UHD driver into CRC-DABMOD. The latter takes care of
the delay calculation that is communicated to the USRP.

Thanks to these modifications, it is possible to transmit synchronously using the
mmbTools and the USRP platform.

4.4.1 Encoding time into the ETI data

In order to support synchronised transmission, the transmission time must be embedded
into the ETI frames. As explained in section 2.3, the time information is transmitted
in two fields in the ETI frame: the MNSC contains the absolute date and time up to
one-second resolution and the TIST field contains the 1PPS offset in 61 ns resolution. The

–25–

4 Adding SFN Support to the CRC mmbTools

MOD GNU Radio USRP

U
H

D

MUX MOD USRP
U

H
D

MUX

Figure 14: timestamp support has been added to CRC-DABMOD, that directly
interfaces with the hardware.

precise details about TIST encoding are given in annex C in ETS 300 799 [5]. The PPS
offset is encoded as a 24-bit unsigned integer, representing a multiple of 16.384 MHz
clock periods. If all TIST bits are set to “1”, the timestamp is disabled. TIST encoding can
be selectively enabled using command-line arguments.

I have modified CRC-DABMUX such that these two fields are correctly defined. They
are synchronously updated, so that the MNSC time gets incremented each time the TIST
rolls over. The TIST is incremented by 24 ms for each frame, and taken modulo 1 s.

For the time in the MNSC, the information must be split over several frames, according
to sections 5.5.1 and A.2.2 of ETS 300 791 [5]. Table 2 lists the information contained in
the MNSC for four ETI frames, that compose a complete time signalling group.

FP & 0x3 MNSC byte 0 MNSC byte 1
0 type=Time –
1 second/accuracy minute/sync-to-frame
2 hour day
3 month year

Table 2: The time is encoded into four ETI MNSC fields.

This time information is synchronous to the frame with FP (mod) = 0 (i.e. the first
of the four frames), and does not have to be included regularly. The MNSC can also be
used to send other information than time to the modulators. This is not a big issue, since
the modulators can keep track of time using the TIST field, incrementing the time each
time the TIST rolls over.

The time encoded in MNSC is the actual time when the multiplexer creates the frame,
and is represented in UTC. Care has to be taken that all devices reading this time are
properly synchronised in regard to the UTC leap seconds.

These modifications respect the standard, and allow the combination of CRC-
DABMUX with commercial modulators. At first, I have implemented a non-standard
way of transmitting time in the padding of ETI(NI). This approach was simpler because it
was not subjected to the bitrate and coding constraints of the MNSC, and it was possible
to encode the full timestamp into each ETI frame. After discussing the implications of the
non-standard encoding, I have then decided to implement the standard way. However,
this first encoding has acted as a proof of concept for the synchronisation of two DAB

–26–

4 Adding SFN Support to the CRC mmbTools

transmitters.

4.4.2 Decoding timestamps in CRC-DABMOD

The timestamp that CRC-DABMUX encodes into the ETI data obviously has to be
decoded at the modulator. This is done at two different places in CRC-DABMOD. for
this, I have modified the ETIReader module, and created a new TimestampDecoder
module. The first module extracts the TIST and the MNSC fields into C structures,
and then calls the function updateTimestampEti(int framephase, uint16_t mnsc,
double pps) defined in the TimestampDecoder module. This decoder combines the
information carried in the MNSC with the TIST that is included in each frame. Each
transmission frame is then associated with a complete timestamp.

The decoder does not assume that the time is sent regularly using the MNSC, because
that same channel can carry other kinds of data. Therefore, the rollover of TIST field is
used to know when the second changes. The data from the MNSC is however required
to set the time initially.

In order to avoid transmitting frames at the wrong time, transmission is inhibited as
long as no complete timestamp has been decoded.

4.4.3 Multi-threaded modulation and USRP driver output

In the transmission chain used in the previous trials and experiments, GNU Radio
was used to interface the modulator with the USRP. The GNU Radio script (also called
“Baseband wave player”) performs filtering and normalisation of all samples to the
range [−1.0; 1.0]. As explained in section 4.3, the USRP platform supports timestamped
transmission, but this feature is not yet available in GNU Radio, even though it also uses
the UHD driver.

Therefore, a way must be found to give the time information to UHD. For synchroni-
sation, it is better to carry the time information along with the data itself, and not over
distinct paths. This makes it complicated to keep GNU Radio. Putting the UHD interface
into CRC-DABMOD is a much cleaner approach, because the management of the time
information is done only in one program. For this reason, GNU Radio has been removed.

Using UHD directly from CRC-DABMOD has several advantages:

• Less buffers between modulation and transmission device, leading to better timing
control of the modulation chain;

• Tighter control of timestamps, because both data and time information are available
in the same code.

The disadvantages are that the filtering part has to be re-engineered in CRC-DABMOD,
and that showing the digital spectrum display is not possible anymore. I have reimple-
mented the filtering, which is described in section 4.4.5.

I have added an additional output module called OutputUHD to CRC-DABMOD. This
output modules creates a new “UHD Worker” thread that sends data to the USRP. The
main thread receives data from the other modules in the modulator and writes them
into a double-buffer. The data to be sent is read from the double-buffer by the worker
thread. Both threads are synchronised by a barrier, that blocks thread execution until
both threads have called wait() on the barrier. At each barrier, the two threads exchange
their buffers, so that one buffer is written to by the main thread while the other buffer is
being read and sent by the worker thread. This principle is shown in figure 15. We do
not know how often sendmust be called to transmit a complete DAB transmission frame.

–27–

4 Adding SFN Support to the CRC mmbTools

In this example, we assume three times. I have used the threading and synchronisation
primitives from the Boost C++ library boost_thread.13

On the timing diagram, upward pointing arrows represent call to the barrier wait()
function, and downward pointing arrows show when the thread can go on after the
barrier. In order for this system to work, the main thread must wait first, which is
equivalent to saying that modulation must be faster than transmission.

Main thread Double buffers UHD Worker Thread

Time-stamp:
- In the past: DROP
- In the future: SLEEP
- otherwise: send()

t

Thread:

Main

UHD Worker

Modulate ModulateModulate Modulate

sendsend send sendsendsend send sendsendsend send send

Barrier

Figure 15: Multi-threading in the UHD output module allows that modulation
and data transmission to the USRP can happen simultaneously.

The worker thread not only sends the frames to the USRP, but also verifies the
timestamps. If the timestamp is in the past, then the frame is dropped. When this
happens, the barrier will be reached in a time shorter than 24 ms, and the input buffer of
the modulator will be emptied faster than it is filled.14 The modulator will thus catch up
on the late frames, until the timestamps are not in the past anymore.

On the other hand, if the timestamps are too far in the future, the worker sleeps so as
to fill the input buffer, and to bring the timestamp to the near future. Then, the frame is
sent with its accompanying metadata. The FPGA fabric in the USRP then takes care to
free the samples at the right time.

The OutputUHDmodule also sets the following parameters: Transmission frequency,
sample-rate for the USRP, transmission gain of the programmable-gain amplifier of the
WBX daughterboard and the clock configuration given in listing 1.

I have modified the main module DabMod.cpp that handles command line arguments
parsing, so as to offer additional options:

• -f name : Use file output with given filename. (use /dev/stdout for standard output)

• -u device : Use UHD output with given device string. (use for default device)

• -F frequency: Set the transmit frequency when using UHD output. (mandatory
option when using UHD)

• -G txgain : Set the transmit gain for the UHD driver (default: 0)

• -o offset : (UHD only) Set the timestamp offset added to the timestamp in the ETI.
The offset is a double.

13http://www.boost.org/libs/thread
14The fill-rate is defined by the ETI data rate, which is one frame every 24 ms.

–28–

http://www.boost.org/libs/thread

4 Adding SFN Support to the CRC mmbTools

• -O offset-file : (UHD only) Set the file containing the timestamp offset added to the
timestamp in the ETI. The file is read every six seconds, and must contain a double
value. Specifying either -o or -O makes DABMOD mute frames that do not contain
a valid timestamp.

• -T taps-file : Enable filtering before the output, using the specified file containing
the filter taps.

4.4.4 Handling per-modulator transmission delay

Delay management is very important in single-frequency networks. We must be able to
give a different offset to each modulator, that is then added to the full timestamp.

There are two different ways that have been implemented to achieve this. The
simple way is to set an offset on the command-line, when launching CRC-DABMOD.
The offset is then constant for the whole runtime. This is done using the -o <offset>
option, where offset is a floating point value in seconds. The second way, more flexible
because it allows changing the offset without stopping CRC-DABMOD, is using the -O
<offsetfile> option. The offset is written into a file (a single floating point value, on
one line), which is then read by CRC-DABMOD in regular intervals. When the offset
changes, transmission is interrupted and restarts at the right time.

In both cases, the TimestampDecoder.cppmodule takes care of adding the offset to
the decoded time information.

Information specific to transmitters is usually conveyed in the MNSC, and the
standard defines a way to transmit delay information to modulators. However, since
CRC-DABMUX does not yet support multiplex reconfiguration without a restart, it would
be awkward to include this feature in the MNSC. Implementing the offset definition at the
transmitter site makes tuning more complicated, but the multiplexer can be left running.
If the multiplexer would have to be stopped each time the offset for one transmitter has
to be changed, it would hamper delay management.

4.4.5 Filtering

Because of the missing timestamp support in GNU Radio, the modulator must work
without it. While the normalisation is trivial to implement since the modulator already
includes a gain module (cifGain), filtering is more complex.

In GNU Radio, the low-pass filter is a finite impulse response filter (FIR filter). The
filter taps are calculated using the firdes function that is included in GNU Radio.
Listing 6 shows how to calculate the taps for a low-pass filter described by the cutoff
frequency, and the transition width. The resulting filter coefficients are shown on figure 16.
These filter taps are then convolved with the sample data to apply the low-pass filter.

1 import gnuradio
2 from gnuradio import gr
3

4 gain = 1
5 rate = 2.048e6
6 cutoff = 810e3
7 transition_width = 150e3
8 beta = 6.76
9

10 taps = gr.firdes_low_pass(gain, rate, cutoff, transition_width ,
gr.firdes.WIN_HAMMING , beta)

–29–

4 Adding SFN Support to the CRC mmbTools

11 print(len(taps))
12 for t in taps:
13 print(t)

Listing 6: Using gr.firdes to calculate the taps for a low-pass filter

0 5 10 15 20 25 30 35 40 45
0.2

0.0

0.2

0.4

0.6

0.8
FIR Filter low pass taps

Figure 16: The default low-pass filter generated using firdes has length 45.

Implementing this filtering in CRC-DABMOD is simplified by the fact that the filter
length is short compared to the length of the null symbol, that is shortest in TM 1 with
length 345. Thanks to this, it is possible to filter each frame independently, because we
can consider that the frame boundaries represent samples that are zero.

A FIR filter block has been implemented that calculates the convolution in two different
manners, depending on the availability of the SSE extensions: One takes advantage of
the SSE SIMD instruction set extension available in x86 processors by executing four
multiplications with one instruction. If SSE is not available a slower unrolled loop is
used. On my ThinkPad T420 (Intel Core i7-2640M, 2.8 GHz), the SSE version is 1.5 times
faster than the unrolled loop. The FIRFilter module includes a timing code for this,
measuring time passed in the processing loop. The values have been averaged over ten
runs.

In order to avoid doing both modulation and filtering in a single thread, the FIRFilter
module creates another thread. Data synchronisation is achieved through a thread-safe,
blocking queue, as shown in figure 17.

The read-only filter coefficients are read from a file at startup, and need not be
synchronised across the threads. The python program in listing 6 can directly be used to
create a file containing the coefficients. The file must be in the following format:

• The file is saved in a human-readable format, with one value per line. Line endings
are system dependent;

• The first line must contain an integer, specifying the number of taps n_taps;

• Then, the file must contains n_taps lines, with one real floating point value on each
line.

–30–

4 Adding SFN Support to the CRC mmbTools

cifGuard

cifRes

cifFilter

convolution

worker thread

mutex input

mutex output

Filter coefficients

Figure 17: The basic structure of the FIRFilter block, with the worker thread in
the shaded area.

The filter coefficient file is given to CRC-DABMOD using the new -T <filtertaps>
command line, that also enables the filter block.

4.4.6 Distribution of ETI over an IP network

The simplest transport protocol to use over IP is TCP. As a stream protocol, it considers
that the transferred data is continuous. If it is used to transmit the ETI(NI) stream, the
frame boundaries will be lost, but thanks to the synchronisation and the constant frame
size, this does not pose a problem. Also, TCP guarantees that the stream will reach
the receiver in the same form as it has been sent, without errors. To insure this, TCP
retransmits data that was lost on the network or that is erroneous. TCP offers more than
enough guarantees to be used to directly transport ETI(NI) data, without the need of
an additional encapsulation. However, its retransmissions can potentially be harmful,
because network resources are used to retransmit data for ETI frames that will possibly
be too late to be useful on arrival.

To alleviate this, a UDP-based protocol could be used instead of plain TCP. UDP
does not send a continuous stream of data, but sends units of data called “datagrams”.
However, these datagrams could get lost on the network, or reach the receiver in another
order than they were sent. For UDP to be usable to transport ETI(NI) data, an application
protocol that solves these issues has to be created. This application protocol could
use a forward error correction code to compensate for lost packets, and must support
reordering at the receiver.

Since the drawbacks of using TCP are not really significant, and because it is much
simpler to set up, I have implemented a small TCP server to transmit ETI(NI) data. CRC-
DABMUX possesses a TCP server output too, which does not support several connections.
Furthermore, care has to be taken that the TCP sockets do not block multiplexing, which
should always run at the nominal rate regardless of the ETI consumers. The small server
uses queues whose writes are non-blocking to make sure that the multiplexer never

–31–

4 Adding SFN Support to the CRC mmbTools

blocks, as illustrated in figure 18. The queue write either succeeds, writing all requested
data into the queue, or fails when the queue cannot accept one more ETI frame. That way,
no ETI frame is partially written. Furthermore, Eti-TCP disables Nagle’s algorithm15 to
shorten the latency between server and client.

Read 6144
bytes from
stdin

Non-blocking
queue write

TCP socket
to modulator

Figure 18: The Eti-TCP server sends data to several connections. The third
connection has stalled and its queue is full, but this does neither harm the other
connections nor the multiplexer. Each queue element represents one ETI(NI)
frame (6144 bytes).

The Eti-TCP server is implemented in python and is multi-threaded. One thread is
used to read from standard input and fill the queues, one thread listens for new incoming
connections, and each connection creates one thread. In total, N + 2 threads are used
when N connections are active.

With TCP, there is no need for a sophisticated client, because there is no additional
application protocol. Thanks to this, the netcat tool16 can be used to receive the ETI data.
The data is then piped into CRC-DABMOD’s standard input using an operating system
pipe.

15Described in RFC 896, section “The solution to the small-packet problem” [15], and suggested by Baset et
al. [3].

16Several versions exist of this old UNIX tool exist, e.g. GNU Netcat http://netcat.sf.net

–32–

http://netcat.sf.net

4 Adding SFN Support to the CRC mmbTools

4.4.7 Summary of changes to CRC-DABMOD

A summary of all changes done to CRC-DABMOD can be seen in figure 19.

OutputUHD

fic ficPrbs ficConv ficPunc

cifPrbs cifMux

For each subchannel

subch

subchPrbs

subchConv

subchPunc

subchInterleave

cifPart

cifMap

cifFreq
cifOFDM

cifGain

cifGuardcifDiff

cifRef

cifNull

cifSig

cifCicEq

cifRes

ETI
reader

cifFilter

TimestampDecoder

OutputFile

Figure 19: The flowgraph of the modified CRC-DABMOD modulator (version
0.3.3), black arrows represent data, blue arrows are complex floating-point
samples and the dashed arrows show time information. Dashed boxes are only
enabled in some circumstances. Modules with a bold font have been modified,
and those with a star have been added.

–33–

4 Adding SFN Support to the CRC mmbTools

–34–

5 GPS as Time Synchronisation Source

5 GPS as Time Synchronisation Source

5.1 Overview

For a single-frequency network to work well, it is necessary to have a precisely synchro-
nised time at each transmitter. I will discuss this aspect more in depth here, and compare
several solutions. It will become clear why GPS is the preferred time source for such
applications, and why most commercial solutions are based on it.

First, recall that two key parameters have to be synchronised:

• Frequency : carrier frequency, sampling frequency, symbol rate, etc. are derived
from it;

• and Time : the point in time at which a specific frame gets transmitted.

Many types of oscillators exist that can be used as a frequency source, with a wide
range of precision and cost. For the time synchronisation however, it is more difficult to
find a simple source. These will be discussed here.

5.2 Comparison of oscillator types

Because they are so important in electronics, communications and many other fields,
oscillators exist in a wide variety of technologies and performance. In order to be able to
compare their performance, some metrics have to be defined first.

The first important metric is short-term stability. This characterises the deviation of an
oscillator over a short timespan (of the order of seconds), that is mainly caused by noise
in the active elements of the oscillator. Averaging over a longer time helps to remove
this noise. A more important metric is long-term stability, also called aging. For a crystal
oscillator, the Anritsu application note “Understanding Frequency Accuracy in Crystal
Controlled Instruments” [1] mentions three important factors that influence its aging:
“relaxation of mechanical stress”, which is due to the fact that the crystal is subjected
to mechanical stress when mounted in its enclosure ; “movement of impurities” that
migrate through the crystal ; and the fact that “material comes loose from, or adheres to
the crystal.”

Finally, we want our oscillators to have a high accuracy, meaning that the actual
frequency corresponds to the design frequency. One of the parameters that strongly
influences accuracy is temperature. Crystal oscillators are very sensitive to temperature
variations, and a good oscillator will have to control the crystal temperature.

Another important aspect for oscillators is phase noise. It is related to jitter, the term
used for digital signals. The effect of phase noise, for a pure tone, is to spread out the
energy around the centre frequency of the signal. This aspect is covered more in depth in
chapter “Phase noise” in “Fractional/Integer-N PLL Basics” [2].

Oscillators can be used in several ways, which will be presented here.

Room temperature The simplest way to use a crystal oscillator is without any temper-
ature control. The crystal oscillator will be subjected to temperature variations of the
environment, and the accuracy will be fair. When used like this, the oscillator is simply
called a “crystal oscillator” (“XO”).

–35–

5 GPS as Time Synchronisation Source

Temperature-compensated crystal oscillator A TCXO contains additional tuning circ-
tuitry that measures temperature and compensates the measured variations. This
compensation can be done with an analog or with a digital circuit. In both cases, it is
important to know the temperature behaviour of the crystal precisely, in order to do a
good compensation. These TCXO oscillators have a much better accuracy than simple
crystal oscillators.

Oven-controlled crystal oscillator To get even better performance, it is necessary to
control the operating temperature of the crystal. This is achieved using a small heater
and an enclosure that stabilises the temperature at a specific value. Using this oven, the
factor most strongly influencing accuracy is effectively controlled. These OCXO have the
best performance practically achieveable using crystals.

For these three types of oscillators, quartz is the most commonly used crystal, because
of its good characteristics and its high Q-factor. Oscillators based on other materials than
piezo-electric crystals also exist.

Atomic standard Caesium atomic clocks are the most precise frequency standards
existing today, and the second in the SI system of units has been defined using this clock.
The same principle also exists with another material, rubidium, that can be used to create
small frequency standards. A rubidium frequency standard has a better accuracy than
OXCOs.

5.3 Using GPS to discipline oscillators

Using well-calibrated crystal oscillators, it is possible to have a very good long-term
stability. But for the DAB SFN application, a synchronised pulse-per-second signal is
also required at each transmitter site. This requires some common clock between all
transmitters.

In order to calculate the position, GPS receivers need to do precise timing measure-
ments, and need to align their internal clock to the global GPS clock. The availability of
cheap GPS receivers makes it possible to have an affordable way to synchronise time
in geographically distant places. Furthermore, many receiver modules have an output
signal that is aligned to the GPS second change. The delay between the rising edge of
this signal and the change of second is often shorter than 200 ns.

By combining a GPS receiver with a precise oscillator, it is possible to synchronise
both time and frequency at several places. However, if the oscillator frequency is also
used for timekeeping and not only for frequency alignment, then the time derived from
the oscillator will drift away from the GPS time. In that case, it is either necessary to
readjust the oscillator clock to the GPS clock periodically, which creates clock-jumps,
or to link the oscillator against the gps clock. The latter solution is preferred, because
the oscillator will be disciplined by the GPS receiver, which will increase the frequency
accuracy by several orders of magnitude.

Figure 20 shows one way of building such a system using a phase-locked loop.
In theory, any oscillator type can be used in a GPSDO, but most often, OCXOs are

used, because the offer the best performance in case of a GPS signal loss.
Some GPS receivers have additional outputs that can be used to lock a PLL. For

instance, the Navman Jupiter-T has a 10 kHz output that can be useful to lock a PLL. A

–36–

5 GPS as Time Synchronisation Source

GPS 1PPS

10MHz

Figure 20: The oscillator output is divided to get a 1 Hz signal that is compared
to the 1 Hz PPS signal from the GPS receiver. This phase comparison is then
used to tune the oscillator, forming a feedback loop.

GPSDO design including schematics is available at James Miller’s website.17

Type Accuracy Aging Power Weight
XO 10−5 10–20 PPM 20µW 20 g
TXCO 10−6 2–5 PPM 100µW 50 g
OXCO 10−8 2 · 10−8–2 · 10−7 1–3 W 200–500 g
Rb std. 10−9 2 · 10−10–2 · 10−9 6–12 W 1500–2500 g
GPSDO 10−8–10−11 10−13 0.5–4 W 100–500 g

Table 3: This table compares some metrics of different oscillator types.
Source: The Meinberg GPSDO product page http://www.meinberg.de/
english/specs/gpsopt.htm and the “Precision Frequency Generation” tuto-
rial [13]

5.4 Evaluation of the suitability of GPS receivers

On GPS receiver that seemed quite interesting for this application is the u-Blox LEA-6T. 18

This GPS receiver can drive two timepulse outputs, whose timing and frequency
can be configured. One timepulse can be used as a one-pulse-per-second output, such
that the rising edge is aligned to the GPS time. The other can be configured to output a
10 MHz square wave, whose frequency is controlled by the GPS.

Compared to a GPSDO with an OXCO, the performance will be worse, especially
in the case the GPS signal is lost. The oscillator in the LEA-6T is not designed for such
applications, because it offers a limited short-time stability. However, if this approach
works, this receiver will be usable as a very cost-effective time source for transmitter
synchronisation.

To evaluate it, I have designed a small printed circuit board, which is described
in appendix B. The board was manufactured at EPFL, and soldered by hand. Using
the “u-center” evaluation software,19 it is possible to control the correct function of the
receiver and to configure the timepulses.

Using the LeCroy WaveJet 354A oscilloscope, I have analysed the TIMEPULSE2
output configured at 10 MHz. From figure 21, it is immediately clear that an important

17http://www.jrmiller.demon.co.uk/projects/ministd/frqstd0.htm
18http://www.u-blox.com/en/gps-modules/u-blox-6-timing-module/lea-6t.html
19http://www.u-blox.com/en/evaluation-tools-a-software/u-center/u-center.html

–37–

http://www.meinberg.de/english/specs/gpsopt.htm
http://www.meinberg.de/english/specs/gpsopt.htm
http://www.jrmiller.demon.co.uk/projects/ministd/frqstd0.htm
http://www.u-blox.com/en/gps-modules/u-blox-6-timing-module/lea-6t.html
http://www.u-blox.com/en/evaluation-tools-a-software/u-center/u-center.html

5 GPS as Time Synchronisation Source

amount of jitter is present on the signal. When this signal is used as reference clock for
the USRP, the PLL IC is not able to lock properly (both USRP2 and USRP B100).

Figure 21: The TIMEPULSE2 signal of the U-Blox LEA-6T receiver configured at
10 MHz is subjected to considerable jitter.

Section 2.3.2 of the U-Blox timing application note [17] mentions that the TIMEPULSE
outputs are derived from a 48 MHz master clock, which explains the jitter on 10 MHz
since 10 does not divide 48. When configured to 8 MHz, the obvious jitter is not present,
as seen on figure 22. More precise jitter measurements require specialised equipment.
The same application note [17] also shows this behaviour in Section 3.2 Example 2.

The USRP B100 is not validated for a reference clock other than 10 MHz, but
it is possible to modify the B100 to accept a 8 MHz reference. More precisely, the
PLL configuration is entirely handled by the host code that interacts with the USRP
firmware. In the UHD driver code, by changing the constant REFERENCE_INPUT_RATE
in host/lib/usrp/b100/clock_ctrl.cpp, it is possible to tell the B100 that another
reference clock frequency is used. However, the B100 is unable to get a lock on the
reference, both when using 8 MHz and 6 MHz. It is unclear why this is the case, but the
GPS receiver alone might not have enough short-time stability to be suitable for this.

The GPS receiver could also be used to synchronise computer time using the NMEA-
0183 messages over the serial line. In this project, this is done using NTP.

–38–

5 GPS as Time Synchronisation Source

Figure 22: The TIMEPULSE2 signal of the U-Blox LEA-6T receiver configured at
8 MHz shows no obvious jitter.

–39–

5 GPS as Time Synchronisation Source

–40–

6 Laboratory Setup Used for Functional Verification

6 Laboratory Setup Used for Functional Verification

This part describes how the system was set up in the laboratory in the absence of a
GPS-based time source.

6.1 Using signal generators as time-source

At the start of the project, in order to facilitate development of the SFN functionality, it
was simpler to use signal generators as time sources than to find or develop a time source
based on GPS or any other technique.

In the lab, the following devices were available:

• The lab desktop computer (Core 2 Duo, Windows XP);

• Two signal generators (HP 33120A, Agilent 33250A);

• A LeCroy WaveJet 354A oscilloscope;

• Coaxial cabling and adapters.

Because the desktop computer was only running Windows, and because the CRC
mmbTools are made to run on Linux machines, I have brought two additional laptop
computers to the lab: One IBM Thinkpad T43p, and one Lenovo Thinkpad T420, both
running a recent linux distribution. Also, I have also brought a Gigabit Ethernet switch
to interconnect the computers and the USRP2.

Two USRPs were available for the tests: one USRP2 and one USRP B100, both with
WBX daughterboards. They were provided by the European Broadcasting Union.

In the first laboratory setup, I have used one generator to create a 1PPS signal and the
USRP internal oscillators as frequency reference. The T420 was running CRC-DABMUX
to create the ensemble, the Eti-TCP program to distribute the ensemble over TCP and
CRC-DABMOD to modulate for the USRP2. The T43p was only running CRC-DABMOD
for the USRP B100.20 Both modulators receive the ensemble over TCP/IP. The USRP2
and the two laptops are connected through the Gigabit Ethernet switch. I have used the
LeCroy WaveJet 354A oscilloscope to display the output RF signals from the two USRPs.
This first setup is shown in figure 23.

This setup cannot be used for longer tests, because the internal oscillators of the
USRPs will drift away from each other.

For this reason, I have added a second signal generator to generate the reference clock.
It is set to 10 MHz, sine with 1 Vpeak-peak amplitude. That way, both USRPs have a single
time-base. Figure 24 shows this setup.

This setup is problematic because the two signal generators were not synchronised,
and the 1PPS is not in the 10 MHz clock domain from the other generator. To solve this
problem, the generators were swapped because the Agilent generator has a sync input at
10 MHz. The HP generator then is used as reference clock for both USRPs and for the
Agilent generator. With the lab setup in figure 25, it was possible for the first time to have
a consistent synchronisation over several trials.

20The T43p contains a Pentium M processor that is not fast enough to resample the 2.048 Msps stream, which
is necessary for the USRP2. It could only be used to modulate using a USRP B100, thanks to the flexible master
clock configuration it offers.

–41–

6 Laboratory Setup Used for Functional Verification

USRP2

USRP B100
USBG

ig
a
b
it

Oscilloscope
RF

T420

T43p

HP33120A

MUX,MOD

MOD

1PPS

Figure 23: First lab setup with both USRPs

T420

USRP2

USRP B100T43p
USBG

ig
a
b
it

HP33120A

Oscilloscope

RF

MUX,MOD

MOD

Ag33250A
1PPS 10MHz

Figure 24: The second signal generator is used as REFCLK for both USRPs.

T420

USRP2

USRP B100T43p
USBG

ig
a
b
it

Oscilloscope

RF

MUX,MOD

MOD

HP33120AAg33250A
1PPS 10MHz

SYNC

Figure 25: With the two signal generators synchronised, the 1PPS signal is
always latched correctly.

–42–

6 Laboratory Setup Used for Functional Verification

6.2 Instantiation and communication between multiplexer and mod-
ulators

As explained above, a TCP/IP network is used between the multiplexer and the modulators.
This section shows how these elements must be launched, when using the last laboratory
setup above. It is assumed that the clocks of all computers are synchronised using NTP.

First, the CRC-DABMUX must be started to create the multiplex. Assuming that the
current working directory contains the audio files and the Eti-TCP server, the following
invocation will start the multiplexer:

CRC-DabMux -L "TuxMux" -s -r \
-A funk.mp2 -b 128 -i 10 -S -L "Funk" -C \
-A notfunk.mp2 -b 128 -i 3 -S -L "Not Funk" -C \
-O fifo:///dev/stdout?type=raw \
| ./eti_tcp.py 54001

This creates a multiplex composed of two programmes “Funk” and “Not Funk”,
whose content is read from the corresponding .mp2 files. The raw ETI(NI) output is
piped into the Eti-TCP server, that will listen on the arbitrarily chosen TCP port 54001.
The -s flag is required to set the TIST field, and the -r flag throttles multiplexing to the
nominal rate of one frame every 24 ms. In the lab setup, this invocation is done on the
T420 PC. We assume that the T420 possesses the IP address 192.168.0.2.

Now, the modulators must be started. If we follow the lab setup, there will be one
modulator on the T420, and one on the T43p. The netcat tool is used to receive the ETI
data, which is piped into CRC-DABMOD. For a USRP B100 that has a flexible master
clock, we execute:

nc 192.168.0.2 54001 | crc-dabmod /dev/stdin -g2 -O ./modulatoroffset \
-u "master_clock_rate=32768000,type=b100" \
-F 234208000

In this example, the file-based offset setting is enabled. The file ./modulatoroffset
contains a value that is slightly longer that the network delay, plus a margin of about
1 s. In a local ethernet network, a value of 2 s works well. The -u option is given to
UHD to configure the USRP B100 clock. The carrier frequency is chosen by the -F option.
234.208 MHz corresponds to DAB channel 13A. The -g2 option selects transmission
frame gain mode as described on opendigitalradio.org.21

When using a USRP2, the invocation is slightly different, because the master clock
rate cannot be changed. We must enable resampling using the -r parameter.

nc 192.168.0.2 54001 | crc-dabmod /dev/stdin -g2 -O ./modulatoroffset \
-r 4000000 -u "type=usrp2" -F 234208000

6.3 Results

Using the described setup with synchronous modulation, it is possible to see DAB
transmission frame synchronisation on the oscilloscope, as shown in figures 26, 27 and
28. The relative delay between the two transmitters is less than 50 ns.

The transmission has been tested with several receivers:
21http://opendigitalradio.org/index.php/CRC-DabMod

–43–

http://opendigitalradio.org/index.php/CRC-DabMod

6 Laboratory Setup Used for Functional Verification

Figure 26: The oscilloscope shows a full frame for each of the two signals from
the two USRPs.

Figure 27: The null symbol and the phase synchronisation symbol are visible at
the start of the transmission frame.

–44–

6 Laboratory Setup Used for Functional Verification

Figure 28: At a shorter time-span, the oscilloscope shows the synchronisation of
the beginning of the phase synchronisation symbol.

• The United DAB receiver, that contains a Frontier Silicon Venice 722 Receiver;

• A portable Dual DAB4 receiver;

• A Enspert Identity E201 android tablet with a special application that shows bit-
error rate, signal-to-noise ratio and data error correction information. It only works
in TM 1.

All three receivers are able to decode the combined signal from the two synchronous
USRPs, and do not experience glitches when one receiver is turned off. The single-
frequency network thus created by the two USRPs satisfies the desired timing constraints.

In a more realistic setup, in which several transmitter locations are used, the trans-
mitters will not share a common reference clock source. The 1PPS signals will also
be generated independently by two GPS receivers. In the absence of a common clock
source, the performance will likely be worse, since the generated reference clocks will not
necessarily be in phase. If they are 180◦ out of phase, the additional delay incurred will
be 50 ns. Furthermore, there might be an offset of up to 200 ns (according to datasheet)
between the two 1PPS signals. Considering these factors, the total delay will still be
below 1µs, which is in the specification. How this holds up in a real setup has to be
tested once GPS disciplined oscillators are available.

22Sadly, Frontier Silicon do not publish any data-sheets about their products, the only information that is
accessible is on their website http://www.frontier-silicon.com/products/modules/venice7.htm

–45–

http://www.frontier-silicon.com/products/modules/venice7.htm

6 Laboratory Setup Used for Functional Verification

–46–

7 Further work

7 Further work

7.1 Evaluating other ETI transport protocols

While transporting the ETI(NI) data over TCP works well, it is no the best solution.
There are other protocols that are more flexible, and that allow the user to choose what
guarantees are really necessary. SCTP for instance can be used to transmit messages in
contrast to TCP that transmits a stream, and similar to UDP that transports datagrams.
However, it’s behaviour for lost packets can be configured. The article “SCTP: What,
Why, and How” by Natarajan et al. [16] gives an introduction of the features this protocol
offers. Other protocols can also be evaluated for the purpose of transporting ETI data.

7.2 Porting the modulator to an embedded platform

The idea of having a small box that acts as a self-contained DAB modulator is very
appealing. It should be possible to get rid of the PC running CRC-DABMOD at each
transmitter site by using an embedded system instead. The USRP E100 is a model that
combines an USRP with a ARM-based embedded single-board computer. It also contains
a Xilinx Spartan 3A-DSP 1800 FPGA, with most logic elements unused by the default
UHD design.

This platform could be an interesting starting point for further developments. The
way CRC-DABMOD is built (using a flow-graph) makes it quite simple to take some
processing blocks and move them to dedicated logic in the FPGA.

7.3 Adding Transmitter Identification Information support to CRC-
DABMOD

In a DAB transmitter network, it is difficult to distinguish the contributions from each
transmitter if they do not have an unambiguous distinction. The Transmitter Identification
Information, described in section 14.8 of the main DAB standard [10] defines how such a
unique signal is created. Adding this to CRC-DABMOD would ease the creation and
maintenance of a single-frequency network.

7.4 CRC-DABMUX multiplex reconfiguration

All options and parameters necessary to describe the DAB ensemble are given as
command line arguments to CRC-DABMUX. When only one transmitter is used, it is
a light annoyance to have to cut transmission when we want to change the ensemble.
However, when several transmitters is used, it becomes much more delicate to shut
all modulators off and turn them on again. We would like to keep the modulators
running, and be able to reconfigure the ensemble without interruption, as described by
the standard (Annex E in ETS 300 799 [5]).

To add this feature to CRC-DABMUX, it would be necessary to represent ensemble
configuration in another format–using a configuration file or database would seem
appropriate–and to implement the reconfiguration protocol.

This would also simplify the delay handling for each modulator, that could then be
communicated using the MNSC.

–47–

7 Further work

7.5 Monitoring of CRC-DABMOD

In its present state, there is no feedback monitoring channel from the modulators to the
network operator. It is impossible to get any health information from the modulators.

However, such information is crucial for a network operator, otherwise management
and fault handling are very difficult if not impossible. What kind of information has to
be monitored, and how this information should be communicated has to be studied.

–48–

8 Conclusion

8 Conclusion

Thanks to the synchronised transmission that I have implemented in this project, it is
now possible to create single-frequency networks using the open-source mmbTools,
making new ambitious projects possible. The first project taking advantage of this
new feature will be a temporary broadcast during the event “Rencontres Mondiales du
Logiciel Libre”23 in which two transmitters will be used in this first real-world test of my
modifications. This temporary transmission will certainly also bring new insights about
the whole system, because it will use real GPS disciplined oscillators.

Since the u-Blox receiver can unfortunately not be used as time reference alone for the
USRPs, used GPSDOs from old cellular base-stations, available on an internet auction
site will be used. The u-blox receiver board can however still be used for other projects,
also in combination with the FPGA4U24 board thanks to the compatible serial UART
connector.

I hope that these tools will be used for many projects, and am confident that their
open-source nature will enable numerous improvements.

23http://2012.rmll.info
24http://fpga4u.epfl.ch

–49–

http://2012.rmll.info
http://fpga4u.epfl.ch

8 Conclusion

–50–

9 Acknowledgments

9 Acknowledgments

Working on this project has been highly interesting from the very beginning until the
end. This work has been made possible by the great support I have received from all
involved people.

I would first like to thank Pascal Charest and François Lefebvre from the Communica-
tions Research Centre Canada for the development of the CRC mmbTools, and for having
published them under an open-source license. Their work has enabled many small
broadcasters to create DAB transmissions, giving them the opportunity to participate
in the switch to digital radio broadcasting. Furthermore, I have had the chance to be in
contact with them during these developments. Thanks to this collaboration, the SFN
functionality has also been implemented into the new, not-yet published version of the
modulator that includes support for all transmission modes.

Also, my thanks go to Stan Röhrich and Mathias Coinchon (European Broadcasting
Union), who have worked on the mmbTools, and have created the OpenDigitalRadio.org
project. Their support has been very valuable to this project, and the two USRP platforms
the EBU has lent me were very useful.

Many thanks also go to René Beuchat (LAP) for his advice. He always asks the right
questions, those who require you to look at a specific problem from another perspective
and allow you to find another way to the solution. I would also like to express my
gratitude to all the people from the Processor Architecture Laboratory at EPFL, for the
many projects I could participate in.

Finally, the motivation for doing this project also originates from my activity at
Fréquence Banane, the student radio station of EPFL and Unil, that allowed me to step
into the world of radio broadcasting.

–51–

9 Acknowledgments

–52–

A Software versions and equipment

A Software versions and equipment

I have used the following development platforms in this project:

Lenovo ThinkPad T420

• Gentoo Linux base system;

• GCC 4.5.6 with glibc 2.14.1;

• Boost libraries 1.48.0;

• UHD library version 003.004.001-129-g23344268;

• Python 2.7.3;

• Linux kernel 3.2.12.

IBM ThinkPad T43p

• Arch Linux base system;

• GCC 4.6.3 with glibc 2.15;

• Boost libraries 1.49.0;

• UHD library version 003.004.000-1-gea19de0b;

• Python 2.7.3;

• Linux kernel 3.3.7.

–53–

A Software versions and equipment

–54–

B u-blox LEA-6T GPSDO design

B u-blox LEA-6T GPSDO design

The printed circuit board used to evaluate the u-blox LEA-6T GPSDO25 has been designed
with Altium.

CO

PAC102

PAC101

COC1

PAC202 PAC201
COC2

PAC302

PAC301

COC3

PAC402

PAC401
COC4

PAC502PAC501
COC5

PAD102

PAD101
COD1

PAD202PAD201

COD2
PAJ101

PAJ102

COJ1

PAJ20MINUS PAJ20PLUS

COJ2

PAJ304

PAJ303

PAJ302

PAJ301 COJ3
PAJ406

PAJ405

PAJ404 PAJ402

PAJ403 PAJ401COJ4

PAJ501
PAJ50GND

COJ5

PAJ601 PAJ60GND
COJ6

PAJ701 PAJ70GND
COJ7

PAJ800 PAJ804PAJ805

PAJ80
PAJ803 PAJ801PAJ802

COJ8

PAR301

PAR302COR3

PAR601 PAR602 COR6
PAR701 PAR702

COR7

PAU1014 PAU1015

PAU1016
PAU1017

PAU1018
PAU1019
PAU1020

PAU1021
PAU1022

PAU1023
PAU1024
PAU1025
PAU1026
PAU1027

PAU1028PAU101

PAU102

PAU103
PAU104

PAU105

PAU106
PAU107

PAU108

PAU109

PAU1010
PAU1011

PAU1012
PAU1013

COU1

PAU204 PAU205

PAU203PAU202PAU201

COU2

PAU304 PAU305

PAU303PAU302PAU301

COU3

PAU401PAU402PAU403

PAU406PAU405PAU404
COU4

PAC101

PAJ302

PAJ401

PAU106
PAU205

PAC201

PAU1024

PAU305

PAD102

PAJ102
PAC401

PAC501

PAD202

PAJ801

PAU301PAU303
PAU405

PAJ701

PAU109

PAJ803

PAU403

PAR702

PAU404

PAJ802

PAU401

PAR602

PAU406

PAC102

PAC202

PAC302

PAC402

PAC502PAJ101

PAJ20MINUS

PAJ301
PAJ404

PAJ405

PAJ406

PAJ50GND

PAJ60GND PAJ70GND

PAJ800 PAJ805

PAU107

PAU1013

PAU1014 PAU1015

PAU1017

PAU202

PAU302
PAU402

PAR301 PAU1018

PAR302 PAU1019

PAR601PAU1025
PAR701PAU1026

PAJ601

PAU1028

PAJ501PAU1016

PAJ403

PAU104

PAJ304

PAU102

PAJ303

PAU101

PAJ402

PAU103

PAC301

PAD101

PAD201

PAU201PAU203 PAJ20PLUS

PAU1011

Figure 29: The TOP layout sent to production.

The PCB has been fabricated at the EPFL-ACI, and has been assembled by hand.
Figures 31 and 32 show the completed receiver board.

25http://www.u-blox.com/en/gps-modules/u-blox-6-timing-module/lea-6t.html

–55–

http://www.u-blox.com/en/gps-modules/u-blox-6-timing-module/lea-6t.html

B u-blox LEA-6T GPSDO design

CO

PAC102

PAC101

COC1

PAC202 PAC201
COC2

PAC302

PAC301

COC3

PAC402

PAC401
COC4

PAC502PAC501
COC5

PAD102

PAD101
COD1

PAD202PAD201

COD2
PAJ101

PAJ102

COJ1

PAJ20MINUS PAJ20PLUS

COJ2

PAJ304

PAJ303

PAJ302

PAJ301 COJ3
PAJ406

PAJ405

PAJ404 PAJ402

PAJ403 PAJ401COJ4

PAJ501
PAJ50GND

COJ5

PAJ601 PAJ60GND
COJ6

PAJ701 PAJ70GND
COJ7

PAJ800 PAJ804PAJ805

PAJ80
PAJ803 PAJ801PAJ802

COJ8

PAR301

PAR302COR3

PAR601 PAR602 COR6
PAR701 PAR702

COR7

PAU1014 PAU1015

PAU1016
PAU1017

PAU1018
PAU1019
PAU1020

PAU1021
PAU1022

PAU1023
PAU1024
PAU1025
PAU1026
PAU1027

PAU1028PAU101

PAU102

PAU103
PAU104

PAU105

PAU106
PAU107

PAU108

PAU109

PAU1010
PAU1011

PAU1012
PAU1013

COU1

PAU204 PAU205

PAU203PAU202PAU201

COU2

PAU304 PAU305

PAU303PAU302PAU301

COU3

PAU401PAU402PAU403

PAU406PAU405PAU404
COU4

PAC101

PAJ302

PAJ401

PAU106
PAU205

PAC201

PAU1024

PAU305

PAD102

PAJ102
PAC401

PAC501

PAD202

PAJ801

PAU301PAU303
PAU405

PAJ701

PAU109

PAJ803

PAU403

PAR702

PAU404

PAJ802

PAU401

PAR602

PAU406

PAC102

PAC202

PAC302

PAC402

PAC502PAJ101

PAJ20MINUS

PAJ301
PAJ404

PAJ405

PAJ406

PAJ50GND

PAJ60GND PAJ70GND

PAJ800 PAJ805

PAU107

PAU1013

PAU1014 PAU1015

PAU1017

PAU202

PAU302
PAU402

PAR301 PAU1018

PAR302 PAU1019

PAR601PAU1025
PAR701PAU1026

PAJ601

PAU1028

PAJ501PAU1016

PAJ403

PAU104

PAJ304

PAU102

PAJ303

PAU101

PAJ402

PAU103

PAC301

PAD101

PAD201

PAU201PAU203 PAJ20PLUS

PAU1011

Figure 30: The BOT layout sent to production.

Figure 31: The u-blox LEA-6T receiver board seen from the top. On the upper
half, from left to right: External 5V power, UART connection, I2C connection,
USB 2.0 device; The SMA connectors: 1PPS output, configurable clock output,
and GPS antenna input.

–56–

B u-blox LEA-6T GPSDO design

Figure 32: The bottom side of the receiver board holds the backup battery.

–57–

B u-blox LEA-6T GPSDO design

–58–

C CRC-DABMUX ETI file formats

C CRC-DABMUX ETI file formats

CRC-DABMUX supports three output formats for the ETI stream, that have been
described on the mmbTools forum website.26

The three formats are called framed, streamed and raw.
The framed format is used for saving a finite ETI stream into a file. Each frame does

not contain any padding, and the format can be described as follows:

1 uint32_t nbFrames
2 // for each frame
3 uint16_t frameSize
4 uint8_t data[frameSize]

When streaming data, in which case the number of frames is not known in advance,
the streamed format can be used. This format is identical to the first one except for the
missing nbFrames.

1 // for each frame
2 uint16_t frameSize
3 uint8_t data[frameSize]

The raw format corresponds to ETI(NI), where each frame has a constant size of 6144
Bytes. The padding in this case is necessary.

1 // for each frame
2 uint8_t data[6144]

In order to select the format, the following syntax for the -O option is used: -O
file://filename?type=format, where format is one of framed, streamed or raw.

26http://mmbtools.crc.ca/component/option,com_fireboard/Itemid,55/func,view/id,4/catid,
13/#28

–59–

http://mmbtools.crc.ca/component/option,com_fireboard/Itemid,55/func,view/id,4/catid,13/#28
http://mmbtools.crc.ca/component/option,com_fireboard/Itemid,55/func,view/id,4/catid,13/#28

C CRC-DABMUX ETI file formats

–60–

References

References

[1] Anritsu. Understanding Frequency Accuracy in Crystal Controlled Instruments, March
2001. Application Note. Available at http://www.anritsu.com/en-GB/Downloads/
Application-Notes/Application-Note/DWL2308.aspx.

[2] Barrett, C. Fractional/Integer-N PLL Basics, Texas Instruments technical brief. http:
//www.ti.com/lit/an/swra029/swra029.pdf.

[3] Baset, S. A., Brosh, E., Misra, V., Rubenstein, D., and Schulzrinne, H. Understand-
ing the Behavior of TCP for Real-time CBR Workloads. Proceedings of the 2006 ACM
CoNEXT conference (2006). http://dx.doi.org/10.1145/1368436.1368502.

[4] Charest, P. CRC-DABMUX man page. http://opendigitalradio.org/index.php/
CRC-DabMux.

[5] ETSI. ETS 300 799, Digital Audio Broadcasting (DAB); Distribution interfaces; Ensemble
Transport Interface (ETI), September 1997.

[6] ETSI. TR 101 495, Digital Audio Broadcasting (DAB); Guide to DAB standards; Guidelines
and Bibliography, November 2000. V1.1.1. All DAB standards are available at
http://www.etsi.org/WebSite/Technologies/DAB.aspx.

[7] ETSI. TS 102 427, Digital Audio Broadcasting (DAB); Data Broadcasting – MPEG-2 TS
streaming, July 2005. V1.1.1.

[8] ETSI. TS 102 428, Digital Audio Broadcasting (DAB); DMB video service; User Application
Specification, June 2005. V1.1.1.

[9] ETSI. TS 102 821, Digital Radio Mondiale (DRM); Distribution and Communications
Protocol (DCP), October 2005. V1.2.1.

[10] ETSI. EN 300 401, Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers,
June 2006. V1.4.1.

[11] ETSI. TS 102 693, Digital Audio Broadcasting (DAB); Encapsulation of DAB Interfaces
(EDI), November 2009. V1.1.2.

[12] ETSI. TS 102 563, Digital Audio Broadcasting (DAB); Transport of Advanced Audio
Coding (AAC) audio, May 2010. V1.2.1.

[13] Frequency Electronics, Inc. Tutorial Precision Frequency Generation Utilizing OCXO
and Rubidium Atomic Standards with Applications for Commercial, Space, Military,
and Challenging Environments, March 2004. http://www.ieee.li/pdf/viewgraphs/
precision_frequency_generation.pdf.

[14] Hoeg, W., and Lauterbach, T. Digital Audio Broadcasting; Principles and Applications
of DAB, DAB+ and DMB. John Wiley & Sons Ltd., 2009.

[15] Nagle, J. Request For Comments 896, Congestion Control in IP/TCP Internetworks,
January 1984. http://tools.ietf.org/html/rfc896.

[16] Natarajan, P., Baker, F., Amer, P. D., and Leighton, J. T. Sctp: What, why, and
how. Internet Computing, IEEE 13, 5 (sept.-oct. 2009), 81–85. http://dx.doi.org/
10.1109/MIC.2009.114.

–61–

http://www.anritsu.com/en-GB/Downloads/Application-Notes/Application-Note/DWL2308.aspx
http://www.anritsu.com/en-GB/Downloads/Application-Notes/Application-Note/DWL2308.aspx
http://www.ti.com/lit/an/swra029/swra029.pdf
http://www.ti.com/lit/an/swra029/swra029.pdf
http://dx.doi.org/10.1145/1368436.1368502
http://opendigitalradio.org/index.php/CRC-DabMux
http://opendigitalradio.org/index.php/CRC-DabMux
http://www.etsi.org/WebSite/Technologies/DAB.aspx
http://www.ieee.li/pdf/viewgraphs/precision_frequency_generation.pdf
http://www.ieee.li/pdf/viewgraphs/precision_frequency_generation.pdf
http://tools.ietf.org/html/rfc896
http://dx.doi.org/10.1109/MIC.2009.114
http://dx.doi.org/10.1109/MIC.2009.114

References

[17] U-Blox. GPS-based Timing Considerations with u-blox 6 GPS receivers, Applica-
tion Note. http://www.u-blox.com/images/downloads/Product_Docs/Timing_
AppNote_%28GPS.G6-X-11007%29.pdf.

–62–

http://www.u-blox.com/images/downloads/Product_Docs/Timing_AppNote_%28GPS.G6-X-11007%29.pdf
http://www.u-blox.com/images/downloads/Product_Docs/Timing_AppNote_%28GPS.G6-X-11007%29.pdf

	Contents
	Acronyms
	Introduction
	The Digital Audio Broadcasting Standard
	History and design
	Modulation
	Ensemble Transport Interface
	Single-Frequency Networks
	Existing transmission systems

	The CRC Open-Source DAB+ Transmitter
	Overview of the CRC mmbTools transmission chain
	CRC mmbTools Transmission chain
	Ensemble multiplexing using CRC-DABMUX
	OFDM modulation using CRC-DABMOD
	Conversion to analog using the USRP

	Adding SFN Support to the CRC mmbTools
	Motivation and goals
	Requirements in a single-frequency network
	Tolerable relative delay between transmitters
	Distribution of the ETI data to all transmitters
	Delay management and fault handling

	Time handling in the USRP
	Modifications in the CRC mmbTools
	Encoding time into the ETI data
	Decoding timestamps in CRC-DABMOD
	Multi-threaded modulation and USRP driver output
	Handling per-modulator transmission delay
	Filtering
	Distribution of ETI over an IP network
	Summary of changes to CRC-DABMOD

	GPS as Time Synchronisation Source
	Overview
	Comparison of oscillator types
	Using GPS to discipline oscillators
	Evaluation of the suitability of GPS receivers

	Laboratory Setup Used for Functional Verification
	Using signal generators as time-source
	Instantiation and communication between multiplexer and modulators
	Results

	Further work
	Evaluating other ETI transport protocols
	Porting the modulator to an embedded platform
	Adding Transmitter Identification Information support to CRC-DABMOD
	CRC-DABMUX multiplex reconfiguration
	Monitoring of CRC-DABMOD

	Conclusion
	Acknowledgments
	Software versions and equipment
	u-blox LEA-6T GPSDO design
	CRC-DABMUX ETI file formats
	References

